High frequency percussive ventilation increases alveolar recruitment in early acute respiratory distress syndrome: an experimental, physiological and CT scan study

Thomas Godet, Matthieu Jabaudon, Raïko Blondonnet, Aymeric Tremblay, Jules Audard, Benjamin Rieu, Bruno Pereira, Jean-Marc Garcier, Emmanuel Futier, Jean-Michel Constantin, Thomas Godet, Matthieu Jabaudon, Raïko Blondonnet, Aymeric Tremblay, Jules Audard, Benjamin Rieu, Bruno Pereira, Jean-Marc Garcier, Emmanuel Futier, Jean-Michel Constantin

Abstract

Background: High frequency percussive ventilation (HFPV) combines diffusive (high frequency mini-bursts) and convective ventilation patterns. Benefits include enhanced oxygenation and hemodynamics, and alveolar recruitment, while providing hypothetic lung-protective ventilation. No study has investigated HFPV-induced changes in lung aeration in patients with early acute respiratory distress syndrome (ARDS).

Methods: Eight patients with early non-focal ARDS were enrolled and five swine with early non-focal ARDS were studied in prospective computed tomography (CT) scan and animal studies, in a university-hospital tertiary ICU and an animal laboratory. Patients were optimized under conventional "open-lung" ventilation. Lung CT was performed using an end-expiratory hold (Conv) to assess lung morphology. HFPV was applied for 1 hour to all patients before new CT scans were performed with end-expiratory (HFPV EE) and end-inspiratory (HFPV EI) holds. Lung volumes were determined after software analysis. At specified time points, blood gases and hemodynamic data were collected. Recruitment was defined as a change in non-aerated lung volumes between Conv, HFPV EE and HFPV EI. The main objective was to verify whether HFPV increases alveolar recruitment without lung hyperinflation. Correlation between pleural, upper airways and HFPV-derived pressures was assessed in an ARDS swine-based model.

Results: One-hour HFPV significantly improved oxygenation and hemodynamics. Lung recruitment significantly rose by 12.0% (8.5-18.0%), P = 0.05 (Conv-HFPV EE) and 12.5% (9.3-16.8%), P = 0.003 (Conv-HFPV EI). Hyperinflation tended to increase by 2.0% (0.5-2.5%), P = 0.89 (Conv-HFPV EE) and 3.0% (2.5-4.0%), P = 0.27 (Conv-HFPV EI). HFPV hyperinflation correlated with hyperinflated and normally-aerated lung volumes at baseline: r = 0.79, P = 0.05 and r = 0.79, P = 0.05, respectively (Conv-HFPV EE); and only hyperinflated lung volumes at baseline: r = 0.88, P = 0.01 (Conv-HFPV EI). HFPV CT-determined tidal volumes reached 5.7 (1.1-8.1) mL.kg-1 of ideal body weight (IBW). Correlations between pleural and HFPV-monitored pressures were acceptable and end-inspiratory pleural pressures remained below 25cmH20.

Conclusions: HFPV improves alveolar recruitment, gas exchanges and hemodynamics of patients with early non-focal ARDS without relevant hyperinflation. HFPV-derived pressures correlate with corresponding pleural or upper airways pressures.

Trial registration: ClinicalTrials.gov, NCT02510105 . Registered on 1 June 2015. The trial was retrospectively registered.

Keywords: Acute respiratory distress syndrome; Alveolar hyperinflation; Alveolar recruitment; High frequency percussive ventilation; Lung morphology; Mechanical ventilation.

Conflict of interest statement

Ethics approval and consent to participate

Our institutional review board approved the protocol (CPP Sud-Est VI, approval number AU 1138). All participants or their next-of-kin provided written consent to participate in this study. The clinical trial is registered at http://www.clinicaltrials.gov (NCT 02510105).

This study was approved by the National Ethics Committee on animal research (approval number 01505.01), and was carried out in accordance with the International Guiding Principles for Biomedical Research Involving Animals.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Evolution of arterial oxygen tension (PaO2) to inspiratory oxygen fraction (FiO2) ratio and arterial carbon dioxide tension (PaCO2) (upper graphs) and hemodynamic parameters (lower graphs): Mean arterial pressure (MAP) and Norepinephrine doses during the experimental procedure. *P < 0.05 versus time 0 (T0). HFPV high frequency percussive ventilation
Fig. 2
Fig. 2
UCLA color encoding of lung computed tomography (CT) attenuation in a patient with non-focal acute respiratory distress syndrome (ARDS) phenotype. Direct visualization of lung aeration was performed after processing CT scan images with CT attenuation color-encoding. In this patient with non-focal ARDS, high frequency percussive ventilation (HFPV) resulted in an important recruitment of non-aerated (red) lung zones, and increasing normally aerated (blue) ones. HFPV allowed large alveolar recruitment and was associated with almost no concomitant hyperinflation (white) of aerated lung regions. Consecutive images were recorded using: (1) an end-expiratory hold during conventional mechanical ventilation, (2) an end-expiratory hold or (3) an end-inspiratory hold during HFPV. Color encoding of CT attenuation: hyperinflation (white), normal aeration (blue), poor aeration (green) and absent aeration (red). CMV conventional mechanical ventilation
Fig. 3
Fig. 3
Correlation and Bland and Altman bias between maximal end-inspiratory pleural pressure and high frequency percussive ventilation (HFPV) mean pressures considering all pairs of measurements performed during the study. aN = 58, red line: 95% confidence ellipsis; bN = 58, lines: bias (black dotted) and +2SD/-2SD limits of agreement (red dotted). SD standard deviation
Fig. 4
Fig. 4
Evolution of lung volumes under conventional ventilation and high frequency percussive ventilation (HFPV). Abbreviations: conv conventional ventilation, expi expiratory hold during HFPV, inspi inspiratory hold during HFPV, Non non-aerated lung volume, Norm normally aerated lung volume, Over overdistended lung volume, Poor poorly aerated lung volume. Data are presented as percentages of total lung volume. *P < 0.05 versus conventional ventilation

References

    1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36. doi: 10.1056/NEJMra1208707.
    1. Network ARDS, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8. doi: 10.1056/NEJM200005043421801.
    1. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, Lefrant JY, Prat G, Richecoeur J, Nieszkowska A, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646–55. doi: 10.1001/jama.299.6.646.
    1. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68. doi: 10.1056/NEJMoa1214103.
    1. Damiani LP, Berwanger O, Paisani D, Laranjeira LN, Suzumura EA, Amato MBP, Carvalho CRR, Cavalcanti AB. Statistical analysis plan for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART). A randomized controlled trial. Rev Bras Ter Intensiva. 2017;29(2):142–53. doi: 10.5935/0103-507X.20170024.
    1. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805. doi: 10.1056/NEJMoa1215554.
    1. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, Group OS. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–13. doi: 10.1056/NEJMoa1215716.
    1. Rizkalla NA, Dominick CL, Fitzgerald JC, Thomas NJ, Yehya N. High-frequency percussive ventilation improves oxygenation and ventilation in pediatric patients with acute respiratory failure. J Crit Care. 2014;29(2):314 e1–7. doi: 10.1016/j.jcrc.2013.11.009.
    1. Allan PF, Osborn EC, Chung KK, Wanek SM. High-frequency percussive ventilation revisited. J Burn Care Res. 2010;31(4):510–20. doi: 10.1097/BCR.0b013e3181e4d605.
    1. Chung KK, Wolf SE, Renz EM, Allan PF, Aden JK, Merrill GA, Shelhamer MC, King BT, White CE, Bell DG, et al. High-frequency percussive ventilation and low tidal volume ventilation in burns: a randomized controlled trial. Crit Care Med. 2010;38(10):1970–7. doi: 10.1097/CCM.0b013e3181eb9d0b.
    1. Cartotto R, Ellis S, Gomez M, Cooper A, Smith T. High frequency oscillatory ventilation in burn patients with the acute respiratory distress syndrome. Burns. 2004;30(5):453–63. doi: 10.1016/j.burns.2004.01.015.
    1. Reper P, Van Bos R, Van Loey K, Van Laeke P, Vanderkelen A. High frequency percussive ventilation in burn patients: hemodynamics and gas exchange. Burns. 2003;29(6):603–8. doi: 10.1016/S0305-4179(03)00068-8.
    1. Eastman A, Holland D, Higgins J, Smith B, Delagarza J, Olson C, Brakenridge S, Foteh K, Friese R. High-frequency percussive ventilation improves oxygenation in trauma patients with acute respiratory distress syndrome: a retrospective review. Am J Surg. 2006;192(2):191–5. doi: 10.1016/j.amjsurg.2006.01.021.
    1. Dmello D, Nayak RP, Matuschak GM. High-frequency percussive ventilation for airway clearance in cystic fibrosis: a brief report. Lung. 2010;188(6):511–3. doi: 10.1007/s00408-010-9252-5.
    1. Lucangelo U, Zin WA, Fontanesi L, Antonaglia V, Peratoner A, Ferluga M, Marras E, Borelli M, Ciccolini M, Berlot G. Early short-term application of high-frequency percussive ventilation improves gas exchange in hypoxemic patients. Respiration. 2012;84(5):369–76. doi: 10.1159/000334403.
    1. Blondonnet R, Aliane J, Godet T, Souweine B, Constantin JM. High-frequency percussive ventilation as a rescue therapy for ARDS patients under ECMO: about a case. Anaesth Crit Care Pain Med. 2015;34(2):105–7. doi: 10.1016/j.accpm.2015.02.003.
    1. Boscolo A, Peralta A, Baratto F, Rossi S, Ori C. High-frequency percussive ventilation: a new strategy for separation from extracorporeal membrane oxygenation. A A Case Rep. 2015;4(7):79–84. doi: 10.1213/XAA.0000000000000131.
    1. Salim A, Martin M. High-frequency percussive ventilation. Crit Care Med. 2005;33(3 Suppl):S241–5. doi: 10.1097/01.CCM.0000155921.32083.CE.
    1. Flow Ventilation(R). . Accessed Apr 2017.
    1. Godet T, Jabaudon M, Blondonnet R, Pereira B, Garcier J-M, Futier E, Constantin J-M. High frequency percussive ventilation increases alveolar recruitment in patients with early acute respiratory distress syndrome. A physiological CT-scan study. In: ATS 2016. vol. 193. San Francisco: Am J Respir Crit Care Med. 2016.
    1. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.
    1. Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med. 2000;26(7):857–69. doi: 10.1007/s001340051274.
    1. Constantin JM, Grasso S, Chanques G, Aufort S, Futier E, Sebbane M, Jung B, Gallix B, Bazin JE, Rouby JJ, et al. Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome. Crit Care Med. 2010;38(4):1108–17. doi: 10.1097/CCM.0b013e3181d451ec.
    1. International guiding principles for biomedical research involving animals issued by CIOMS. Vet Q. 1986; 8(4):350-2.
    1. Ambrosio AM, Luo R, Fantoni DT, Gutierres C, Lu Q, Gu WJ, Otsuki DA, Malbouisson LM, Auler JO, Jr, Rouby JJ, et al. Effects of positive end-expiratory pressure titration and recruitment maneuver on lung inflammation and hyperinflation in experimental acid aspiration-induced lung injury. Anesthesiology. 2012;117(6):1322–34. doi: 10.1097/ALN.0b013e31827542aa.
    1. Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, Malcangi V, Petrini F, Volta G, Bobbio Pallavicini FM, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009;301(23):2445–52. doi: 10.1001/jama.2009.856.
    1. Chiumello D, Algieri I, Grasso S, Terragni P, Pelosi P. Recruitment maneuvers in acute respiratory distress syndrome and during general anesthesia. Minerva Anestesiol. 2016;82(2):210–20. Epub 2015 Apr 17.
    1. Godet T, Constantin JM, Jaber S, Futier E. How to monitor a recruitment maneuver at the bedside. Curr Opin Crit Care. 2015;21(3):253–8. doi: 10.1097/MCC.0000000000000195.
    1. Malbouisson LM, Muller JC, Constantin JM, Lu Q, Puybasset L, Rouby JJ, Group CTSAS. Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163(6):1444–50. doi: 10.1164/ajrccm.163.6.2005001.
    1. Suki B, Barabasi AL, Hantos Z, Petak F, Stanley HE. Avalanches and power-law behaviour in lung inflation. Nature. 1994;368(6472):615–8. doi: 10.1038/368615a0.
    1. Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174(3):268–78. doi: 10.1164/rccm.200506-976OC.
    1. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175(2):160–6. doi: 10.1164/rccm.200607-915OC.
    1. Nieszkowska A, Lu Q, Vieira S, Elman M, Fetita C, Rouby JJ. Incidence and regional distribution of lung overinflation during mechanical ventilation with positive end-expiratory pressure. Crit Care Med. 2004;32(7):1496–503. doi: 10.1097/01.CCM.0000130170.88512.07.
    1. Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, Hedenstierna G, Slutsky AS, Ranieri VM. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 2004;32(4):1018–27. doi: 10.1097/.
    1. Grasso S, Stripoli T, Sacchi M, Trerotoli P, Staffieri F, Franchini D, De Monte V, Valentini V, Pugliese P, Crovace A, et al. Inhomogeneity of lung parenchyma during the open lung strategy: a computed tomography scan study. Am J Respir Crit Care Med. 2009;180(5):415–23. doi: 10.1164/rccm.200901-0156OC.
    1. Lucangelo U, Antonaglia V, Zin WA, Berlot G, Fontanesi L, Peratoner A, Bernabe F, Gullo A. Mechanical loads modulate tidal volume and lung washout during high-frequency percussive ventilation. Respir Physiol Neurobiol. 2006;150(1):44–51. doi: 10.1016/j.resp.2005.02.015.
    1. Spoelstra-de Man AM, Smit B, Oudemans-van Straaten HM, Smulders YM. Cardiovascular effects of hyperoxia during and after cardiac surgery. Anaesthesia. 2015;70(11):1307–19. doi: 10.1111/anae.13218.
    1. Moradkhan R, Sinoway LI. Revisiting the role of oxygen therapy in cardiac patients. J Am Coll Cardiol. 2010;56(13):1013–6. doi: 10.1016/j.jacc.2010.04.052.
    1. Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care. 2004;8(5):350–5. doi: 10.1186/cc2854.
    1. Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, Lundin S, Stenqvist O, Gattinoni L. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40(11):1670–8. doi: 10.1007/s00134-014-3415-4.
    1. Boussarsar M, Thierry G, Jaber S, Roudot-Thoraval F, Lemaire F, Brochard L. Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med. 2002;28(4):406–13. doi: 10.1007/s00134-001-1178-1.
    1. Tobin MJ. Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1360–1. doi: 10.1056/NEJM200005043421808.
    1. Ajcevic M, Lucangelo U, Ferluga M, Zin WA, Accardo A. In vitro estimation of pressure drop across tracheal tubes during high-frequency percussive ventilation. Physiol Meas. 2014;35(2):177–88. doi: 10.1088/0967-3334/35/2/177.
    1. Ajcevic M. Personalized setup of high frequency percussive ventilator by estimation of respiratory system viscoelastic parameters. Trieste: Universita Degli Studi di Trieste; 2014.

Source: PubMed

3
Abonner