Pathogenesis of flavivirus encephalitis

Thomas J Chambers, Michael S Diamond, Thomas J Chambers, Michael S Diamond

Abstract

Within the flavivirus family, viruses that cause natural infections of the central nervous system (CNS) principally include members of the Japanese encephalitis virus (JEV) serogroup and the tick-borne encephalitis virus (TBEV) serocomplex. The pathogenesis of diseases involves complex interactions of viruses, which differ in neurovirulence potential, and a number of host factors, which govern susceptibility to infection and the capacity to mount effective antiviral immune responses both in the periphery and within the CNS. This chapter summarizes progress in the field of flavivirus neuropathogenesis. Mosquito-borne and tickborne viruses are considered together. Flavivirus neuropathogenesis involves both neuroinvasiveness (capacity to enter the CNS) and neurovirulence (replication within the CNS), both of which can be manipulated experimentally. Neuronal injury as a result of bystander effects may be a factor during flavivirus neuropathogenesis given that microglial activation and elaboration of inflammatory mediators, including IL-1β and TNF-α, occur in the CNS during these infections and may accompany the production of nitric oxide and peroxynitrite, which can cause neurotoxicity.

Figures

Fig 1
Fig 1
Soluble IgM-deficient mice are highly sensitive to peripheral infection with WNV. Mice were infected by subcutaneous inoculation of the footpad with 100 plaque-forming units of WNV NY 99 and monitored for mortality from CNS disease.
Fig 2
Fig 2
C3-deficient mice are highly sensitive to peripheral infection with WNV. Mice were infected as described in Fig. 1 and monitored for mortality from CNS disease.
Fig 5
Fig 5
Yellow fever encephalitis in the rhesus monkey showing microglial nodule with neuronophagia of a cortical neuron stained for viral antigen. Courtesy of USAMRIID. (See Color Insert.)
Fig 4
Fig 4
Yellow fever encephalitis in the rhesus monkey showing focus of perivascular infiltrate with mononuclear cells in the cerebral cortex. Courtesy of USAMRIID. (See Color Insert.)
Fig 3
Fig 3
Yellow fever virus meningoencephalitis in the rhesus monkey showing leptomeningeal accumulation of acute inflammatory cells. Courtesy of the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). (See Color Insert.)
Fig 6
Fig 6
Electron micrograph of a mouse CNS neuron infected with SLE virus showing characteristic cytoplasmic pathology but integrity of the nuclear (N) envelope. Arrow indicates virions within inner and outer nuclear membranes. From Murphy et al. (1968), with permission.
Fig 7
Fig 7
WNV infection in the Syrian golden hamster. (A) Viral antigen-positive neurons in the cerebral cortex. (B) TUNEL-positive apoptotic neurons in the cortex. Courtesy of Dr. Shu-Yan Xiao. From Xiao et al., 2001. (See Color Insert.)
Fig 8
Fig 8
Wild-type or B-cell-deficient (uMT) mice were inoculated with WNV in the footpad, and the virus content in serum, peripheral tissues, and brain was measured serially using plaque assay or quantitative polymerase chain reaction. From Diamond et al. (2003), with permission.
Fig 9
Fig 9
Neutralizing IgM and IgG antibody responses in acute WNV encephalitis in the mouse model. From Diamond et al. (2003), with permission.

References

    1. Aihara H, Takasaki T, Toyosaki-Maeda T, Suzuki R, Okuno Y, Kurane I. T-cell activation and induction of antibodies and memory T cells by immunization with inactivated Japanese encephalitis vaccine. Viral Immunol. 2000;13:179–186.
    1. Albrecht P. Pathogenesis of neurotropic arbovirus infections. Curr. Top. Microbiol. Immunol. 1968;43:44–91.
    1. Aloisi F, Care A, Borsellino G, Gallo P, Rosa S, Bassani A, Cabibbo A, Testa U, Levi G, Peschle C. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha. J. Immunol. 1992;149:2358–2366.
    1. Andersen A., A, Hanson R.P. Influence of sex and age on natural resistance to St. Louis encephalitis virus infection in mice. Infect. Immun. 1974;9:1123–1125.
    1. Anderson J.F, Rahal J.J. Efficacy of interferon alpha-2b and ribavirin against West Nile virus in vitro. Emerg. Infect. Dis. 2002;8:107–108.
    1. Anderson R, Wang S, Osiowy C, Issekutz A.C. Activation of endothelial cells via antibody-enhanced dengue virus infection of peripheral blood monocytes. J. Virol. 1997;71:4226–4232.
    1. Andrews D.M, Matthews V.B, Sammels L.M, Carrello A.C, McMinn P.C. The severity of Murray Valley encephalitis in mice is linked to neutrophil infiltration and inducible nitric oxide synthase activity in the central nervous system. J. Virol. 1999;73:8781–8790.
    1. Asada-Kubota M, Ueda T, Nakashima T, Kobayashi M, Shimada M, Takeda K, Hamada K, Maekawa S, Sokawa Y. Localization of 2′,5′-oligoadenylate synthetase and the enhancement of its activity with recombinant interferon-alpha A⧸D in the mouse brain. Anat. Embryol. (Berl.) 1997;195:251–257.
    1. Asher D.M. Movement disorders in rhesus monkeys after infection with tick-borne encephalitis virus. Adv. Neurol. 1975;10:277–289.
    1. Asnis D.S, Conetta R, Teixeira A.A, Waldman G, Sampson B.A. The West Nile Virus outbreak of 1999 in New York: The Flushing Hospital experience. Clin. Infect. Dis. 2000;30:413–418.
    1. Atkinson T, Barrett A.D.T, Mackenzie A, Dimmock N.J. Persistence of virulent Semliki Forest virus in mouse brain following co-inoculation with defective interfering particles. J. Gen. Virol. 1986;67:1189–1194.
    1. Atrasheuskaya A.V, Fredeking T.M, Ignatyev G.M. Changes in immune parameters and their correction in human cases of tick-borne encephalitis. Clin. Exp. Immunol. 2003;131:148–154.
    1. Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M. Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J. Immunol. 1998;161:6338–6346.
    1. Azad R, Gupta R.K, Kumar S, Pandey C.M, Prasad K.N, Husain N, Husain M. Is neurocysticercosis a risk factor in coexistent intracranial disease? An MRI-based study. J. Neurol. Neurosurg. Psychiatry. 2003;74:359–361.
    1. Baron-Delage S, Abadie A, Echaniz-Laguna A, Melki J, Beretta L. Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes. Mol. Med. 2000;6:957–968.
    1. Barrett A.D.T, Dimmock N.J. Modulation of Semliki Forest virus-induced infection of mice by defective interfering virus. J. Infect. Dis. 1984;150:98–103.
    1. Barrington R, Zhang M, Fischer M, Carroll M.C. The role of complement in inflammation and adaptive immunity. Immunol. Rev. 2001;180:5–15.
    1. Baruah H.C, Biswas D, Patgiri D, Mahanta J. Clinical outcome and neurological sequelae in serologically confirmed cases of Japanese encephalitis patients in Assam, India. Indian Pediatr. 2002;39:1143–1148.
    1. Baumgarth N, Herman O.C, Jager G.C, Brown L.E, Herzenberg L.A, Chen J. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J. Exp. Med. 2000;192:271–280.
    1. Ben-Nathan D, Huitinga I, Lustig S, van Rooijen N, Kobiler D. West Nile virus neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch. Virol. 1996;141:459–469.
    1. Ben-Nathan D, Kobiler D, Rzotkiewicz S, Lustig S, Katz Y. CNS penetration by noninvasive viruses following inhalational anesthetics. Ann. N. Y. Acad. Sci. 2000;917:944–950.
    1. Ben-Nathan D, Lustig S, Feuerstein G. The influence of cold or isolation stress on neuroinvasiveness and virulence of an attenuated variant of West Nile virus. Arch. Virol. 1989;109:1–10.
    1. Ben-Nathan D, Lustig S, Kobiler D. Cold stress-induced neuroinvasiveness of attenuated arboviruses is not solely mediated by corticosterone. Arch. Virol. 1996;141:1221–1229.
    1. Ben-Nathan D, Lustig S, Kobiler D, Danenberg H.D, Lupu E, Feuerstein G. Dehydroepiandrosterone protects mice inoculated with West Nile virus and exposed to cold stress. J. Med. Virol. 1992;38:159–166.
    1. Benveniste E.N. Cytokine expression in the nervous system. In: Keane R.W, Hickey W.F, editors. Immunology of the Nervous System. Oxford Univ. Press; New York: 1997. pp. 419–459.
    1. Bergmann C.C, Ramakrishna C, Kornacki M, Stohlman S.A. Impaired T cell immunity in B cell-deficient mice following viral central nervous system infection. J. Immunol. 2001;167:1575–1583.
    1. Bernard K.A, Klimstra W.B, Johnston R.E. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology. 2000;276:93–103.
    1. Bielefeldt-Ohmann H. Analysis of antibody-independent binding of dengue viruses and dengue virus envelope protein to human myelomonocytic cells and B lymphocytes. Virus Res. 1998;57:63–79.
    1. Binder G, Griffin D.E. Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science. 2001;293:303–306.
    1. Blackwell J.L, Brinton M.A. BHK cell proteins that bind to the 3′ stem-loop structure of the West Nile virus genome RNA. J. Virol. 1995;69:5650–5658.
    1. Blackwell J.L, Brinton M.A. Translation elongation factor-1 alpha interacts with the 3′ stem-loop region of West Nile virus genomic RNA. J. Virol. 1997;71:6433–6444.
    1. Blitvich B.J, Scanlon D, Shiell B.J, Mackenzie J.S, Hall R.A. Identification and analysis of truncated and elongated species of the flavivirus NS1 protein. Virus Res. 1999;60:67–79.
    1. Boes M, Esau C, Fischer M.B, Schmidt T, Carroll M, Chen J. Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 1998;160:4776–4787.
    1. Bonnevie-Nielsen V, Heron I, Monath T.P, Calisher C.H. Lymphocytic 2′,5′-oligoadenylate synthetase activity increases prior to the appearance of neutralizing antibodies and immunoglobulin M and immunoglobulin G antibodies after primary and secondary immunization with yellow fever vaccine. Clin. Diag. Lab. Immunol. 1995;2:302–306.
    1. Bonnevie-Nielsen V, Larsen M.L, Frifelt J.J, Michelsen B, Lernmark A. Association of IDDM and attenuated response of 2′,5′-oligoadenylate synthetase to yellow fever vaccine. Diabetes. 1989;38:1636–1642.
    1. Bosch I, Xhaja K, Estevez L, Raines G, Melichar H, Warke R.V, Fournier M.V, Ennis F.A, Rothman A.L. Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J. Virol. 2002;76:5588–5597.
    1. Bradish C.J, Fitzgeorge R, Titmuss D. The responses of normal and athymic mice to infections by togaviruses: Strain differentiation in active and adoptive immunization. J. Gen. Virol. 1980;46:255–265.
    1. Bradl M, Flugel A. The role of T cells in brain pathology. Curr. Top. Microbiol. Immunol. 2002;265:141–162.
    1. Brandriss M.W, Schlesinger J.J. Antibody-mediated infection of P388D1 cells with 17D yellow fever virus: Effects of chloroquine and cytochalasin B. J. Gen. Virol. 1984;65:791–794.
    1. Brandriss M.W, Schlesinger J.J, Walsh E.E, Briselli M. Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses. J. Gen. Virol. 1986;67:229–234.
    1. Brandt W.E, McCown J.M, Gentry M.K, Russell P.K. Infection enhancement of dengue type 2 virus in the U-937 human monocyte cell line by antibodies to flavivirus cross-reactive determinants. Infect. Immun. 1982;36:1036–1041.
    1. Brinton M.A. Characterization of West Nile virus persistent infection in genetically resistant and susceptible mouse cells. I. Generation of defective nonplaquing virus particles. Virology. 1982;116:84–94.
    1. Brinton M.A. Host factors involved in West Nile virus replication. Ann. N. Y. Acad. Sci. 2000;951:207–219.
    1. Brooks T.J, Phillpotts R.J. Interferon-alpha protects mice against lethal infection with St. Louis encephalitis virus delivered by the aerosol and subcutaneous routes. Antiviral Res. 1999;41:57–64.
    1. Broom A.K, Wallace M.J, Mackenzie J.S, Smith D.W, Hall R.A. Immunisation with gamma globulin to Murray Valley encephalitis virus and with an inactivated Japanese encephalitis virus vaccine as prophylaxis against Australian encephalitis: Evaluation in a mouse model. J. Med. Virol. 2000;61:259–265.
    1. Bunning M.L, Bowen R.A, Cropp C.B, Sullivan K.G, Davis B.S, Komar N, Godsey M.S, Baker D, Hettler D.L, Holmes D.A, Biggerstaff B.J, Mitchell C.J. Experimental infection of horses with West Nile virus. Emerg. Infect. Dis. 2002;8:380–386.
    1. Burke D.S, Lorsomrudee W, Leake C.J, Hoke C.H, Nisalak A, Chongswasdi V, Laorakpongse T. Fatal outcome in Japanese encephalitis. Am. J. Trop. Med. Hyg. 1985;34:1203–1210.
    1. Burke D.S, Nisalak A, Lorsomrudee W, Ussery M.A, Laorpongse T. Virus-specific antibody-producing cells in blood and cerebrospinal fluid in acute Japanese encephalitis. J. Med. Virol. 1985;17:283–292.
    1. Burke D.S, Nisalak A, Usery M.A, Laorakpongse T, Chantavibul S. Kinetics of IgM and IgG responses to Japanese encephalitis virus in human serum and cerebrospinal fluid. J. Infect. Dis. 1985;151:1093–1099.
    1. Burke D.S, Morill J.C. Levels of interferon in the plasma and cerebrospinal fluid of patients with acute Japanese encephalitis. J. Infect. Dis. 1987;155:797–799.
    1. Burke D.S, Monath T.P. Flaviviruses. In: Knipe D.M, Howley P.M, editors. 4th Ed. Vol. 1. Lippincott Williams & Wilkins; Philadelphia: 2001. pp. 1043–1125. (Fields Virology).
    1. Byrne S.N, Halliday G.M, Johnston L.J, King N.J. Interleukin-1beta but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL⧸6 mice. J. Invest. Dermatol. 2001;117:702–709.
    1. Camenga D.L, Nathanson N, Cole G.A. Cyclophosphamide-potentiated West Nile viral encephalitis: Relative influence of cellular and humoral factors. J. Infect. Dis. 1974;130:634–641.
    1. Cane P.A, Gould E.A. Reduction of yellow fever virus mouse neurovirulence by immunization with a bacterially synthesized nonstructural protein (NS1) fragment. J. Gen. Virol. 1988;69:1241–1246.
    1. Cardosa M.J, Porterfield J.S, Gordon S. Complement receptor mediates enhanced flavivirus replication in macrophages. J. Exp. Med. 1983;158:258–263.
    1. Cardosa M.J, Gordon S, Hirsch S, Springer T.A, Porterfield J.S. Interaction of West Nile virus with primary murine macrophages: Role of cell activation and receptors for antibody and complement. J. Virol. 1986;57:952–959.
    1. Carroll M.C. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol. 1998;16:545–568.
    1. Carson P.J, Steidler T, Patron R, Tate J.M, Tight R, Smego R.A.Jr. Plasma cell pleiocytosis in cerebrospinal fluid in patients with West Nile virus encephalitis. Clin. Infect. Dis. 2003;37:e12–e15.
    1. Casali P, Notkins A.L. CD5+ B lymphocytes, polyreactive antibodies and the human B-cell repertoire. Immunol. Today. 1989;10:364–368.
    1. Cernescu C, Ruta S.M, Tardei G, Grancea C, Moldoveanu L, Spulbar E, Tsai T. A high number of severe neurologic clinical forms during an epidemic of West Nile virus infection. Rom. J. Virol. 1997;48:13–25.
    1. Chambers T.J, Nickells M. Neuroadapted yellow fever virus 17D: Genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone. J. Virol. 2001;75:10912–10922.
    1. Charlier N, Leyssen P, Paeshuyse J, Drosten C, Schmitz H, Van Lommel A, De Clercq E, Neyts J. Infection of SCID mice with Montana Myotis leukoencephalitis virus as a model for flavivirus encephalitis. J. Gen. Virol. 2002;83:1887–1896.
    1. Chaturvedi U.C, Dhawan R, Khanna M, Mathur A. Breakdown of the blood-brain barrier during dengue virus infection of mice. J. Gen. Virol. 1991;72:859–866.
    1. Chen C.J, Liao S.L, Kuo M.D, Wang Y.M. Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport. 2000;11:1933–1937.
    1. Chen H.W, Pan C.H, Huan H.W, Liau M.Y, Chiang J.R, Tao M.H. Suppression of immune response and protective immunity to a Japanese encephalitis virus DNA vaccine by coadministration of an IL-12-expressing plasmid. J. Immunol. 2001;166:7419–7426.
    1. Chen H.W, Pan C.H, Liau M.Y, Jou R, Tsai C.J, Wu H.J, Lin Y.L, Tao M.H. Screening of protective antigens of Japanese encephalitis virus by DNA immunization: A comparative study with conventional viral vaccines. J. Virol. 1999;73:10137–10145.
    1. Chen L.K, Liao C.L, Lin C.G, Lai S.C, Liu C.I, Ma S.H, Huang Y.Y, Lin Y.L. Persistence of Japanese encephalitis virus is associated with abnormal expression of the nonstructural protein NS1 in host cells. Virology. 1996;217:220–229.
    1. Chen Y, Maguire T, Hileman R.E, Fromm J.R, Esko J.D, Linhardt R.J, Marks R.M. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Med. 1997;3:866–871.
    1. Chu C.T, Howell D.N, Morenlander J.C, Hulette C.M, McLendon R.E, Miller S.E. Electron microscopic diagrosis of human flavivirus encephalitis: use of confocal microscopy as an aid. Am. J. Surg. Path. 1999;23:1217–1226.
    1. Co M.D, Terajima M, Cruz J, Ennis F.A, Rothman A.L. Human cytotoxic T lymphocyte responses to live attenuated 17D yellow fever vaccine: Identification of HLA-B35-restricted CTL epitopes on nonstructural proteins NS1, NS2b, NS3, and the structural protein E. Virology. 2002;293:151–163.
    1. Cole G.A, Nathanson N. Potentiation of experimental arbovirus encephalitis by immunosuppressive doses of cyclophosphamide. Nature. 1968;220:399–401.
    1. Colombage G, Hall R, Pavy M, Lobigs M. DNA-based and alphavirus-vectored immunisation with prM and E proteins elicits long-lived and protective immunity against the flavivirus, Murray Valley encephalitis virus. Virology. 1998;250:151–163.
    1. Cousens L.P, Peterson R, Hsu S, Dorner A, Altman J.D, Ahmed R, Biron C.A. Two roads diverged: Interferon alpha⧸beta- and interleukin 12-mediated pathways in promoting T cell interferon gamma responses during viral infection. J. Exp. Med. 1999;189:1315–1328.
    1. Crill W.D, Roehrig J.T. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol. 2001;75:7769–7773.
    1. Cypess R.H, Lubiniecki A.S, Hammon W.M. Immunosuppression and increased susceptibility to Japanese B encephalitis virus in Trichinella spiralis-infected mice. Proc. Soc. Exp. Biol. Med. 1973;143:469–473.
    1. Da Costa X.J, Brockman M.A, Alicot E, Ma M, Fischer M.B, Zhou X, Knipe D.M, Carroll M.C. Humoral response to herpes simplex virus is complement-dependent. Proc. Natl. Acad. Sci. USA. 1999;96:2708–11272.
    1. Dalod M, Salazar-Mather T.P, Malmgaard L, Lewis C, Asselin-Paturel C, Briere F, Trinchieri G, Biron C.A. Interferon alpha⧸beta and interleukin 12 responses to viral infections: Pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 2002;195:517–528.
    1. Debnath N.C, Tiernery R, Sil B.K, Wills M.R, Barrett A.D. In vitro homotypic and heterotypic interference by defective interfering particles of West Nile virus. J. Gen. Virol. 1991;72:2705–2711.
    1. De Nova-Ocampo M, Villegas-Sepulveda N, del Angel RM. Translation elongation factor-1alpha, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology. 2002;295:337–347.
    1. Desai A, Ravi V, Chandramuki A, Gourie-Devi M. Proliferative response of human peripheral blood mononuclear cells to Japanese encephalitis virus. Microbiol. Immunol. 1995;39:269–273.
    1. Desai A, Ravi V, Chandramuki A, Gourie-Devi M. Detection of immune complexes in the CSF of Japanese encephalitis patients: Correlation of findings with outcome. Intervirology. 1994;37:352–355.
    1. Desai A, Ravi V, Guru S.C, Shankar S.K, Kaliaperumal V.G, Chandramuki A, Gourie-Devi M. Detection of autoantibodies to neural antigens in the CSF of Japanese encephalitis patients and correlation of findings with the outcome. J. Neurol. Sci. 1994;122:109–116.
    1. Despres P, Dietrich J, Girard M, Bouloy M. Recombinant baculoviruses expressing yellow fever virus E and NS1 proteins elicit protective immunity in mice. J. Gen. Virol. 1991;72:2811–2816.
    1. Despres P, Frenkiel M.-P, Ceccaldi P.-E, Dos Santos C.D, Deubel V. Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. J. Virol. 1998;72:823.
    1. Diamond M, Roberts T, Edgil D, Lu B, Ernst J, Harris E. Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J. Virol. 2000;74:4957–4966.
    1. Diamond M.S, Edgil D, Roberts T.G, Lu B, Harris E. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J. Virol. 2000;74:7814–7823.
    1. Diamond M.S, Harris E. Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology. 2001;289:297–311.
    1. Diamond M.S, Shrestha B, Marri A, Mahan D, Engle M. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 2003;77:2578–2586.
    1. Dominguez C, Baruch E. Histopathology of the central nervous system in Swiss mice intracerebrally inoculated with 17-D strain of yellow fever virus. Am. J. Trop Med. Hyg. 1963;12:815–819.
    1. Dropulic B, Masters C.L. Entry of neurotropic arboviruses into the central nervous system: An in vitro study using mouse brain endothelium. J. Infect. Dis. 1990;161:685–691.
    1. Douglas M.W, Kesson A.M, King N.J. CTL recognition of West Nile virus-infected fibroblasts is cell cycle dependent and is associated with virus-induced increases in class I MHC antigen expression. Immunology. 1994;82:561–570.
    1. Duarte dos Santos C.N, Frenkiel M.-P, Courageot M.-P, Rocja C.F.S, Vazeille-Falcoz M.-C, Wien M.W, Rey F.A, Deubel V, Despres P. Determinants in the envelope E protein and viral RNA helicase NS3 that influence the induction of apoptosis in response to infection with dengue type 1 virus. Virology. 2000;274:292–308.
    1. Edelman R, Schneider R.J, Vejjajiva A, Pornpibul R, Voodhikul P. Persistence of virus-specific IgM and clinical recovery after Japanese encephalitis. Am. J. Trop. Med. Hyg. 1976;25:733–738.
    1. Eldadah A.H, Nathanson N, Sarsitis R. Pathogenesis of West Nile virus encephalitis in mice and rats. I. Influence of age and species on mortality and infection. Am. J. Epidemiol. 1967;86:765–775.
    1. Eldadah A.H, Nathanson N. Pathogenesis of West Nile virus encephalitis in mice and rats. II. Virus multiplication, evolution of immunofluorescence, and development of histological lesions in the brain. Am. J. Epidemiol. 1967;86:776–790.
    1. Falconar A.K. Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: Design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins. Arch. Virol. 1999;144:2313–2330.
    1. Falgout B, Bray M, Schlesinger J.J, Lai C.J. Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J. Virol. 1990;64(9):4356–4363.
    1. Fazakerley J. Programmed cell death in virus infections of the nervous system. Curr. Top. Micro. Immunol. 2001;253:95–119.
    1. Fazakerley J. Pathogenesis of Semliki Forest virus encephalitis. J. Neurovirol. 2002;8(S2):66–74.
    1. Finley K, Riggs N. Convalescence and sequellae. In: Monath T.P, editor. St. Louis Encephalitis. APHA; Washington, DC: 1980. pp. 535–550.
    1. Fischer M.B, Ma M, Goerg S, Zhou X, Xia J, Finco O, Han S, Kelsoe G, Howard R.G, Rothstein T.L, Kremmer E, Rosen F.S, Carroll M.C. Regulation of the B cell response to T-dependent antigens by classical pathway complement. J. Immunol. 1996;157:549–556.
    1. Fitzgeorge R, Bradish C.J. The in vivo differentiation of strains of yellow fever virus in mice. J. Gen. Virol. 1980;46:1–13.
    1. Flugel A, Schwaiger F.W, Neumann H, Medana I, Willem M, Wekerle H, Kreutzberg G.W, Graeber M.B. Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol. 2000;10:353–364.
    1. Fokina G.I, Roikhel V.M, Magaznik S.S, Volkova L.I, Frolova T.V, Pogodina V.V. Development of antibodies to axonal neurofilaments in the progression of chronic tick-borne encephalitis. Acta Virol. 1991;35:458–463.
    1. Freestone D.S. Yellow fever vaccine. In: Plotkin S.A, Mortimer E.M, editors. Vaccines. 2nd Ed., Saunders; Philadelphia: 1994. pp. 741–779.
    1. Gagnon S.J, Ennis F.A, Rothman A.L. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4+ cytotoxic T-lymphocyte clones. J. Virol. 1999;73:3623–3629.
    1. Germi R, Crance J.M, Garin D, Guimet J, Lortat-Jacob H, Ruigrok R.W, Zarski J.P, Drouet E. Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology. 2002;292:162–168.
    1. Glass J.D, Samuels O, Rich M.M. Poliomyelitis due to West Nile virus. N. Engl. J. Med. 2002;347:1280–1281.
    1. Gobet R, Cerny A, Ruedi E, Hengartner H, Zinkernagel R.M. The role of antibodies in natural and acquired resistance of mice to vesicular stomatitis virus. Exp. Cell. Biol. 1988;56:175–180.
    1. Gollins S.W, Porterfield J.S. Flavivirus infection enhancement in macrophages: Radioactive and biological studies on the effect of antibody on viral fate. J. Gen. Virol. 1984;65:1261–1272.
    1. Gould E.A, Buckley A. Antibody-dependent enhancement of yellow fever and Japanese encephalitis virus neurovirulence. J. Gen. Virol. 1989;70:1605–1608.
    1. Gould E.A, Buckley A, Groeger B.K, Cane P.A, Doenhoff M. Immune enhancement of yellow fever virus neurovirulence for mice: Studies of mechanisms involved. J. Gen. Virol. 1987;68:3105–3112.
    1. Gresikova M, Sekeyova M, Stupalova S, Necas S. Sheep milk-borne epidemic of tick-borne encephalitis in Slovakia. Intervirology. 1975;5:57–61.
    1. Greve K.W, Houston R.J, Adams D, Stanford M.S, Bianchini K.J, Clancy A, Rabito F.J., Jr. The neurobehavioural consequences of St. Louis encephalitis infection. Brain Injury. 2002;16:917–927.
    1. Griffin D.E, Hardwick J.M. Perspective: Virus infections and the death of neurons. Trends Microbiol. 1999;7:155–160.
    1. Griffin D.E, Levine B, Tyor W, Ubol S, Després P. The role of antibody in recovery from alphavirus encephalitis. Immunol. Rev. 1997;159:155–161.
    1. Grossberg S.E, Scherer W.F. The effect of host age, virus dose and route of inoculation on inapparent infection in mice with Japanese encephalitis virus. Proc. Soc. Exp. Biol. Med. 1966;123:118–124.
    1. Grubeck-Loebenstein B, Wick G. The aging of the immune system. Adv. Immunol. 2002;80:243–284.
    1. Gunther G, Haglund M, Lindquist L, Skoldenberg B, Forsgren M. Intrathecal production of neopterin and beta 2 microglobulin in tick-borne encephalitis (TBE) compared to meningoencephalitis of other etiology. Scand. J. Infect. Dis. 1996;28:131–138.
    1. Gunther G, Haglund M, Lindquist L, Skoldenberg B, Forsgren M. Intrathecal IgM, IgA and IgG antibody response in tick-borne encephalitis: Long-term follow-up related to clinical course and outcome. Clin. Diagn. Virol. 1997;8:17–29. . Erratum in Clin. Diagn. Virol. 8:167–168.
    1. Gunther G, Haglund M, Mesko L, Bremmer S, Lindquist L, Forsgren M, Skoldenberg B, Rudberg U. Regional cerebral blood flow scintigraphy in tick-borne encephalitis and other aseptic meningoencephalitis. J. Nuclear Med. 1998;39:2055–2061.
    1. Gupta A.K, Pavri K.M. Alteration in immune response of mice with dual infection of Toxocara canis and Japanese encephalitis virus. Trans. R. Soc. Trop. Med. Hyg. 1987;81:835–840.
    1. Haglund M, Gunther G. Tick-borne encephalitis: Pathogenesis, clinical course and long-term follow-up. Vaccine. 2003;21(Suppl. 1):S11–S18.
    1. Hajnicka V, Kocakova P, Slovak M, Labuda M, Fuchsberger N, Nuttall P.A. Inhibition of the antiviral action of interferon by tick salivary gland extract. Parasite Immunol. 2000;22:201–206.
    1. Halevy M, Akov Y, Ben-Nathan D, Kobiler D, Lachmi B, Lustig S. Loss of active neuroinvasiveness in attenuated strains of West Nile virus: Pathogenicity in immunocompetent and SCID mice. Arch. Virol. 1994;137:355–370.
    1. Halstead S.B, O'Rourke E.J. Antibody-enhanced dengue virus infection in primate leukocytes. Nature. 1977;265:739–741.
    1. Halstead S.B, Porterfield J.S, O'Rourke E.J. Enhancement of dengue virus infection in monocytes by flavivirus antisera. Am. J. Trop. Med. Hyg. 1980;29:638–642.
    1. Halstead S.B, Venkateshan C.N, Gentry M.K, Larsen L.K. Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J. Immunol. 1984;132:1529–1532.
    1. Hambleton P, Stephenson J.R, Baskerville A, Wiblin C.N. Pathogenesis and immune response of vaccinated and unvaccinated rhesus monkeys to tick-borne encephalitis virus. Infect. Imm. 1983;40:995–1003.
    1. Han X.Y, Ren Q.W, Tsai T.F. Serum and cerebrospinal fluid immunoglobulins M, A, and G in Japanese encephalitis. J. Clin. Micro. 1988;26:976–978.
    1. Harinasuta C, Nimmanitya S, Tisyakorn U. The effect of interferon alpha on two cases of Japanese encephalitis in Thailand. Southeast Asia J. Trop. Med. Pub. Health. 1985;16:332–336.
    1. Harrington D.G, Hilmas D.E, Elwell M.R, Whitmire R.E, Stephen E.L. Intranasal infection of monkeys with Japanese encephalitis virus: Clinical response and treatment with a nuclease-resistant derivative of poly(I)-poly(C) Am. J. Trop. Med. Hyg. 1977;26:1191–1198.
    1. Hase T, Dubois D.R, Summers P.L, Downs M.B, Ussery M.A. Comparison of replication rates and pathogenicities between the SA14 parent and SA14-14-2 vaccine strains of Japanese encephalitis virus in mouse brain neurons. Arch. Virol. 1993;130:131–143.
    1. Havert M.B, Schofield B, Griffin D.E, Irani D.N. Activation of divergent neuronal cell death pathways in different target cell populations during neuroadapted Sindbis virus infection in mice. J. Virol. 2000;74:5352–5356.
    1. Hawkes R.A. Enhancement of the infectivity of arboviruses by specific antisera produced in domestic fowls. Aust. J. Exp. Biol. Med. Sci. 1964;42:465–482.
    1. Hayashi K, Arita T. Experimental double infection of Japanese encephalitis virus and herpes simplex virus in mouse brain. Jpn. J. Exp. Med. 1977;47:9–13.
    1. Heinz F.X. Epitope mapping of flavivirus glycoproteins. Adv. Vir. Res. 1986;31:103–168.
    1. Henchal E.A, Henchal L.S, Schlesinger J.J. Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J. Gen. Virol. 1988;69:2101–2117.
    1. Hickey W.F. Leukocyte traffic in the central nervous system: The participants and their roles. Semin. Immunol. 1999;11:125–137.
    1. Hilgard P, Stockert R. Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology. 2000;32:1069–1077.
    1. Hill A.B, Lobigs M, Blanden R.V, Kulkarni A, Müllbacher A. The cellular immune response to flaviviruses. In: Brian Thomas D, editor. Viruses and the Cellular Immune Response. Dekker; New York: 1993. pp. 363–388.
    1. Hill A.B, Müllbacher A, Parrish C, Coia G. Broad cross-reactivity with marked fine-specificity in the cytotoxic T cell response to flaviviruses. J. Gen. Virol. 1992;73:1115–1123.
    1. Hirsch M.R, Cailla H, Wietzerbin J, Goridis C. Interferon-alpha, -beta and -gamma induce (2′-5′) oligoadenylate synthetase in cultured mouse brain cells. Neurosci. Lett. 1986;65:139–144.
    1. Hirsch M.S, Murphy F.A. Effects of anti-thymocyte serum on 17D yellow fever infection in adult mice. Nature. 1967;216:179–180.
    1. Ho L.J, Wang J.J, Shaio M.F, Kao C.L, Chang D.M, Han S.W, Lai J.H. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J. Immunol. 2001;166:1499–1506.
    1. Hofmann H, Frisch-Niggemeyer W, Kunz C. Protection of mice against tick-borne encephalitis by different classes of immunoglobulin. Infection. 1978;6:154–157.
    1. Huang C.H, Wong C. Relation of the peripheral multiplication of Japanese B encephalitis virus to the pathogenesis of the infection in mice. Acta Virol. 1963;7:322–330.
    1. Huang Y.H, Lei H.Y, Liu H.S, Lin Y.S, Liu C.C, Yeh T.M. Dengue virus infects human endothelial cells and induces IL-6 and IL-8 production. Am. J. Trop. Med. Hyg. 2000;63:71–75.
    1. Hubalek Z, Halouzka J. West Nile fever—a reemerging mosquito–borne viral disease in Europe. Emerg. Inf. Dis. 1999;5:643–650.
    1. Huy B.V, Tu H.C, Luan T.V, Lindquist R. Early mental and neurological sequellae after Japanese B encephalitis. Southeast Asia J. Trop. Med. Public Health. 1994;25:549–553.
    1. Igarashi A. Characteristics of Aedes albopictus cells persistently infected with dengue viruses. Nature. 1979;280:690–691.
    1. Iliyenko V.I, Komandenko N.I, Paltonov V.G, Prozorova I.N, Panov A.G. Investigation of the pathogenesis of chronic forms of tick-borne encephalitis. Acta Virol. 1974;18:341–346.
    1. Innis B.L. Antibody responses to dengue virus infection. In: Gubler D.J, Kuno G, editors. Dengue and Dengue Hemorrhagic Fever. CAB International; Wallingford, UK: 1997. pp. 221–243.
    1. Isaeva M.P, Leonova G.N, Kozhemiako V.B, Borisevich V.G, Maistrovskaia O.S, Rasskazov V.A. Apoptosis as a mechanism for the cytopathic action of tick-borne encephalitis virus. Vopr. Virusol. 1998;43:182–186.
    1. Ishii K, Matsunaga Y, Kono R. Immunoglobulins produced in response to Japanese encephalitis virus infections of man. J. Immunol. 1968;101:770–775.
    1. Ishii T, Matsushita M, Hamada S. Characteristic residual neuropathological features of Japanese B encephalitis. Acta. Neuropathol. (Berl.) 1977;38:181–186.
    1. Iwamoto M, Jernigan D.B, Guasch A, Trepka M.J, Blackmore C.G, Hellinger W.C, Pham S.M, Zaki S, Lanciotti R.S, Lance-Parker S.E, DiazGranados C.A, Winquist A.G, Perlino C.A, Wiersma S, Hillyer K.L, Goodman J.L, Marfin A.A, Chamberland M.E, Petersen L.R, West Nile Virus in Transplant Recipients Investigation Team. Transmission of West Nile virus from an organ donor to four transplant recipients. N. Engl. J. Med. 2003;348:2196–2203.
    1. Iwasaki Y, Zhao J.-X, Yamamoto Y, Konno H. Immunohistochemical demonstration of viral antigens in Japanese encephalitis. Acta Neuropathol. 1986;70:79–81.
    1. Iwasaki Y, Sako K, Tsunoda I, Ohara Y. Phenotypes of mononuclear cell infiltrates in human central nervous system. Acta. Neuropathol. (Berl.) 1993;85:653–657.
    1. Jacoby R.O, Bhatt P.N, Schwartz A. Protection of mice from lethal flavivirus encephalitis by adoptive transfer of splenic cells from donors infected with live virus. J. Infect. Dis. 1980;141:617–624.
    1. Jan J.T, Chatterjee S, Griffin D.E. Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J. Virol. 2000;74:6425–6432.
    1. Jarman R.V, Morgan P.N, Duffy C.E. Persistence of West Nile virus in L-929 mouse fibroblasts. Proc. Soc. Exp. Med. Biol. 1968;129:633–637.
    1. Johnson A.J, Roehrig J.T. New mouse model for dengue virus vaccine testing. J. Virol. 1999;73:83–86.
    1. Johnson R.T, Burke D.S, Elwell M, Leake C.J, Nisalak Japanese encephalitis: Immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Ann. Neurol. 1985;18:567–573.
    1. Johnson R.T, Intralawan P, Puapanwatton S. Japanese encephalitis: Identification of inflammatory cells in cerebrospinal fluid. Ann. Neurol. 1986;20:691–695.
    1. Johnston L.J, Halliday G.M, King N.J. Phenotypic changes in Langerhans' cells after infection with arboviruses: A role in the immune response to epidermally acquired viral infection. J. Virol. 1996;70:4761–4766.
    1. Johnston L.J, Halliday G.M, King N.J. Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J. Invest Dermatol. 2000;114:560–568.
    1. Johnston C, Jiang W, Chu T, Levine B. Identification of genes involved in the host response to neurovirulent alphavirus infection. J. Virol. 2001;75:10431–10445.
    1. Jordan I, Briese T, Fischer N, Lau J.Y, Lipkin W.I. Ribavirin inhibits West Nile virus replication and cytopathic effect in neural cells. J. Infect. Dis. 2000;182:1214–1217.
    1. Kaiser R, Holzmann H. Laboratory findings in tick-borne encephalitis: Correlation with clinical outcome. Infection. 2000;28:78–84.
    1. Kaiser R. Tick-borne encephalitis (TBE) in Germany and clinical course of the disease. Int. J. Med. Microbiol. 2002;291(Suppl. 33):58–61.
    1. Kalita J, Misra U.K. Markedly severe dystonia in Japanese encephalitis. Mov. Disord. 2000;15:1168–1172.
    1. Kanesa-Thasan N, Putnak J.R, Mangiafico J.A, Saluzzo J.E, Ludwig G.V. Short report: Absence of protective neutralizing antibodies to West Nile virus in subjects following vaccination with Japanese encephalitis or dengue vaccines. Am. J. Trop. Med. Hyg. 2002;66:115–116.
    1. Katz E, Goldblum N. Establishment, steady state, and cure of a chronic infection of LLC cells with West Nile virus. Arch. Ges. Virus Forsch. 1968;25:69–82.
    1. Kengsakul K, Sathirapongsasuti K, Punyagupta S. Fatal myeloencephalitis following yellow fever vaccination in a case with HIV infection. J. Med. Assoc. Thai. 2002;85:131–134.
    1. Kerr D.A, Larsen T, Cook S.H, Fanjiang Y.R, Choi E, Griffin D.E, Hardwick J.M, Irani D.N. BCL-2 and BAX protect adult mice from lethal Sindbis virus infection but do not protect spinal cord motor neurons or prevent paralysis. J. Virol. 2002;76:10393–10400.
    1. Kesson A.M, Blanden R.V, Müllbacher A. The primary in vivo murine cytotoxic T cell response to the flavivirus, West Nile. J. Gen. Virol. 1987;68:2001–2006.
    1. Kesson A.M, King N.J. Transcriptional regulation of major histocompatibility complex class I by flavivirus West Nile is dependent on NF-kappaB activation. J. Infect. Dis. 2001;184:947–954.
    1. Khan N.U, Pulford K.A, Farquharson M.A, Howatson A, Stewart C, Jackson R, McNicol A.M, Foulis A.K. The distribution of immunoreactive interferon-alpha in normal human tissues. Immunology. 1989;66:201–206.
    1. Khozinsky V.V, Semenov B.F, Gresikova M, Chunikhin S.P, Sekeyova M, Kozuch O. Role of macrophages in the pathogenesis of experimental tick-borne encephalitis in mice. Acta Virol. 1985;29:194–202.
    1. Kimura-Kuroda J, Ichikawa M, Ogata A, Nagashima K, Yasui K. Specific tropism of Japanese encephalitis virus for developing neurons in primary rat brain culture. Arch. Virol. 1992;130:477–484.
    1. Kimura-Kuroda J, Yasui K. Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. J. Immunol. 1988;141:3606–3610.
    1. King N.J, Kesson A.M. Interferon-independent increases in class I major histocompatibility complex antigen expression follow flavivirus infection. J. Gen. Virol. 1988;69:2535–2543.
    1. King N.J, Maxwell L.E, Kesson A.M. Induction of class I major histocompatibility complex antigen expression by West Nile virus on gamma interferon-refractory early murine trophoblast cells. Proc. Natl. Acad. Sci. USA. 1989;86:911–915.
    1. Klimstra W.B, Ryman K.D, Johnston R.E. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J. Virol. 1998;72:7357–7366.
    1. Kobiler D, Lustig S, Gozes Y, Ben-Nathan D, Akov Y. Sodium dodecylsulphate induces a breach in the blood-brain barrier and enables a West Nile virus variant to penetrate into mouse brain. Brain Res. 1989;496:314–316.
    1. Konishi E, Kurane I, Mason P.W, Innis B.L, Ennis F.A. Proliferative responses of human peripheral blood T lymphocytes against Japanese encephalitis antigens. Am. J. Trop. Med. Hyg. 1995;53:278–283.
    1. Konishi E, Kurane I, Mason P.W, Shope R.E, Ennis F.A. Poxvirus-based Japanese encephalitis vaccine candidates induce JE virus-specific CD8+ cytotoxic lymphocytes in mice. Virology. 1997;227:353–360.
    1. Konishi E, Kurane I, Mason P.W, Shope R.E, Kanesa-thasan N, Smucny J, Hoke C.H, Ennis F.A. Induction of Japanese encephalitis virus cytotoxic T lymphocytes in humans by poxvirus-based DNA vaccines. Vaccine. 1998;8:842–849.
    1. Konishi E, Yamaoka M, Win K.S, Kurane I, Mason P.W. Induction of protective immunity against Japanese encephalitis in mice by immunization with a plasmid encoding JE virus premembrane and envelope genes. J. Virol. 1998;72:4925–4939.
    1. Konishi E, Yamaoka M, Win K.-S, Kurane I, Takada K, Mason P.W. The anamnestic neutralizing antibody response is critical for protection of mice from challenge following vaccination with a plasmid encoding the Japanese encephalitis virus premembrane and envelope genes. J. Virol. 1999;73:5527–5534.
    1. Kopecky J, Grubhoffer L, Kovar V, Jindrak L, Vokurkova D. A putative host cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting. Intervirology. 1999;42:9–16.
    1. Kopf M, Abel B, Gallimore A, Carroll M, Bachmann M.F. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nature Med. 2002;8:373–378.
    1. Korenberg E.I, Gorban L.Y, Kovalevskii Y.V, Frizen V.I, Karavanov A.S. Risk for human tick-borne encephalitis, borrelioses, and double infection in the pre-Ural region of Russia. Emerg. Infect. Dis. 2001;7:459–462.
    1. Kozuch O, Chunikhin S.P, Gresikova M, Nosek J, Kurenkov V.B, Lysy J. Experimental characteristics of viraemia caused by two strains of tick-borne encephalitis virus in small rodents. Acta Virol. 1981;25:219–224.
    1. Kramer L.D, Bernard K.A. West Nile virus infection in birds and mammals. Ann. N. Y. Acad. Sci. 2001;951:84–93.
    1. Kreil T.R, Eibl M.M. Viral infection of macrophages profoundly alters requirements for induction of nitric oxide synthesis. Virology. 1995;212:174–178.
    1. Kreil T.R, Eibl M.M. Nitric oxide and viral infection: NO antiviral activity against a flavivirus in vitro, and evidence for contribution to pathogenesis in experimental infection in vivo. Virology. 1996;219:304–306.
    1. Kreil T.R, Maier E, Fraiss S, Attakpah E, Burger I, Mannhalter J.W, Eibl M.M. Vaccination against tick-borne encephalitis virus, a flavivirus, prevents disease but not infection, although viremia is undetectable. Vaccine. 1998;16:1083–1086.
    1. Kreil T.R, Maier E, Fraiss S, Eibl M.M. Neutralizing antibodies protect against lethal flavivirus challenge but allow for the development of active humoral immunity to a nonstructural virus protein. J. Virol. 1998;72:3076–3081.
    1. Kubes M, Fuchsberger N, Labuda M, Zuffova E, Nuttall P.A. Salivary gland extracts of partially fed Dermacentor reticulatus ticks decrease natural killer cell activity in vitro. Immunology. 1994;82:113–116.
    1. Kubes M, Kocakova P, Slovak M, Slavikova M, Fuchsberger N, Nuttall P.A. Heterogeneity in the effect of different ixodid tick species on human natural killer cell activity. Parasite Immunol. 2002;24:23–28.
    1. Kulkarni A.B, Müllbacher A, Blanden R.V. Functional analysis of macrophages, B cells and splenic dendritic cells as antigen-presenting cells in West Nile virus-specific murine T lymphocyte proliferation. Immunol. Cell. Biol. 1991;69:71–80.
    1. Kulkarni A.B, Müllbacher A, Blanden R.V. In vitro T-cell proliferative response to the flavivirus, West Nile. Viral Immunol. 1991;4:73–82.
    1. Kulkarni A.B, Müllbacher A, Parrish C. Analysis of murine major histocompatibility complex class II-restricted T-cell responses to the Kunjin virus using vaccinia virus expression. J. Virol. 1992;66:3583–3592.
    1. Kumar R, Mathur A, Singh K.B. Clinical sequellae of Japanese encephalitis in children. Ind. J. Med. Res. 1993;97:9–13.
    1. Kumar S, Misra U.K, Kalita J, Salwani V, Gupta R.K, Gujral R. MRI in Japanese encephalitis. Nueroradiology. 1997;39:180–184.
    1. Kundig T.M, Hengartner H, Zinkernagel R.M. T cell-dependent IFN-gamma exerts an antiviral effect in the central nervous system but not in peripheral solid organs. J. Immunol. 1993;150:2316–2321.
    1. Kuno G, Hayes C.G, Chen W.J. Cytokine concentrations in cerebrospinal fluid in flavivirus infections. Southeast Asian J. Trop. Med. Public Health. 1993;24:781–782.
    1. Kurane I. Immune responses to Japanese encephalitis virus. In: Mackenzie J.S, Barrett A.D.T, Deubel V, editors. Japanese Encephalitis and West Nile Viruses, Springer-Verlag; Berlin: 2002. pp. 91–104.
    1. Kurane I, Hebblewaite D, Brandt W.E, Ennis F.A. Lysis of dengue virus-infected cells by natural cell-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity. J. Virol. 1984;52:223–230.
    1. Kurane I, Innis B.L, Nisalak A, Hoke C, Nimmannitya S, Meager A, Ennis F.A. Human T cell responses to dengue virus antigens: Proliferative responses and interferon gamma production. J. Clin. Invest. 1989;83:506–513.
    1. Kurane I, Brinton M.A, Samson A.L, Ennis F.A. Dengue virus-specific, human CD4+ CD8− cytotoxic T-cell clones: Multiple patterns of virus cross-reactivity recognized by NS3-specific T-cell clones. J. Virol. 1991;65:1823–1828.
    1. Kurane I, Innis B.L, Hoke C.H., Jr, Eckels K.H, Meager A, Janus J, Ennis F.A. T cell activation in vivo by dengue virus infection. J. Clin. Lab. Immunol. 1995;46:35–40.
    1. Kurane I, Janus J, Ennis F.A. Dengue virus infection of human skin fibroblasts in vitro production of IFN-beta, IL-6 and GM-CSF. Arch. Virol. 1992;124:21–30.
    1. Kutubuddin M, Kolaskar A.S, Galande S, Gore M.M, Ghosh S.N, Banerjee K. Recognition of helper T cell epitopes in envelope (E) glycoprotein of Japanese encephalitis, West Nile and dengue viruses. Mol. Immunol. 1991;28:149–154.
    1. Labrada L, Liang X.H, Zheng W, Johnston C, Levine B. Age-dependent resistance to lethal alphavirus encephalitis in mice: Analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12. J. Virol. 2002;76:688–703.
    1. Labuda M, Jones L.D, Williams T, Nuttall P.A. Enhancement of tick-borne encephalitis virus transmission by tick salivary gland extracts. Med. Vet. Entomol. 1993;7:193–196.
    1. Lancaster M.U, Hodgetts S.I, Makenzie J.S, Urosevic N. Characterization of defective viral RNA produced during persistent infection of Vero cells with Murray Valley encephalitis virus. J. Virol. 1998;72:2474–2482.
    1. Lee E, Lobigs M. Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J. Virol. 2000;74:8867–8875.
    1. Lee E, Lobigs M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J. Virol. 2002;76:4901–4911.
    1. Lee H.W, Scherer W.F. The anamnestic antibody response to Japanese encephalitis virus in monkeys and its implications concerning naturally acquired immunity. J. Immunol. 1961;86:151–164.
    1. Leis A.A, Stokic D.S, Polk J.L, Dostrow V, Winkelmann M. A poliomyelitis-like syndrome from West Nile virus infection. N. Engl. J. Med. 2002;347:1279–1280.
    1. Leport C, Janowski M, Brun-Vezinet F, Rouzioux C, Rodhain F, Vilde J.L. West Nile virus meningoencephalitis: value of inteferon assays in primary encephalitis. Ann. Med. Interne (Paris) 1984;135:460–463.
    1. Levenbook I.S, Pellen L.J, Ellisberg B.L. The monkey safety test for neurovirulence of YF vaccines: The utility of quantitative clinical evaluation and histological examination. J. Biol. Stand. 1987;15:305–313.
    1. Levine B. Apoptosis in viral infections of neurons: A protective or pathologic host response. Curr. Top. Micro. Immunol. 2002;265:95–118.
    1. Levine B, Griffin D.E. Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J. Virol. 1992;66:6429–6435.
    1. Levine B, Griffin D.E. Molecular analysis of neurovirulent strains of Sindbis virus that evolve during persistent infection of scid mice. J. Virol. 1993;67:6872–6875.
    1. Levine B, Hardwick J.M, Trapp B.D, Crawford T.O, Bollinger R.C, Griffin D.E. Antibody-mediated clearance of alphavirus infection from neurons. Science. 1991;254:856–860.
    1. Levine B, Huang Q, Isaacs J.T, Reed J.C, Griffin D.E, Hardwick J.M. Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature. 1993;361:739–742.
    1. Lewis J, Wesselingh S.L, Griffin D.E, Hardwick J.M. Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J. Virol. 1996;70:1828–1835.
    1. Leyssen P, Drosten C, Paning M, Charlier N, Paeshuyse J, De Clercq E, Neyts J. Interferons, interferon inducers, and interferon-ribavirin in treatment of flavivirus-induced encephalitis in mice. Antimicrob. Agents Chemother. 2003;47:777–782.
    1. Leyssen P, Paeshuyse J, Charlier N, Van Lommel A, Drosten C, De Clercq E, Neyts J. Impact of direct virus-induced neuronal dysfunction and immunological damage on the progression of flavivirus (Modoc) encephalitis in a murine model. J. Neurovirol. 2003;9:69–78.
    1. Li W, Li Y, Kedersha N, Anderson P, Emara M, Swiderek K.M, Moreno G.T, Brinton M.A. Cell proteins TIA-1 and TIAR interact with the 3′ stem-loop of the West Nile virus complementary minus strand RNA and facilitate virus replication. J. Virol. 2002;76:11989–12000.
    1. Liang X.H, Kleeman L.K, Jiang H.H, Gordon G, Goldman J.E, Berry G, Herman B, Levine B. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 1998;72:8586–8596.
    1. Liao C.-L, Lin Y.-L, Shen S.-C, Shen Y.-Y, Su H.-L, Huang Y.-L, Ma S.-H, Sun Y.-C, Chen K.-P, Chen L.-K. Antiapoptotic but not antiviral function of human bcl-2 assists establishment of Japanese encephalitis virus persistence in cultured cells. J. Virol. 1998;72:9844–9854.
    1. Liao C.L, Lin Y.L, Wang J.J, Huang Y.L, Yeh C.T, Ma S.H, Chen L.K. Effect of enforced expression of human bcl-2 on Japanese encephalitis virus-induced apoptosis in cultured cells. J. Virol. 1997;71:5963–5971.
    1. Libraty D.H, Pichyangkul S, Ajariyakhajorn C, Endy T.P, Ennis F.A. Human dendritic cells are activated by dengue virus infection: Enhancement by gamma interferon and implications for disease pathogenesis. J. Virol. 2001;75:3501–3508.
    1. Licon Luna R.M, Lee E, Müllbacher A, Blanden R.V, Langman R, Lobigs M. Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J. Virol. 2002;76:3202–3211.
    1. Lin M.T, Hinton D.R, Marten N.W, Bergmann C.C, Stohlman S.A. Antibody prevents virus reactivation within the central nervous system. J. Immunol. 1999;162:7358.
    1. Lin Y.L, Huang Y.L, Ma S.H, Yeh C.T, Chiou S.Y, Chen L.K, Liao C.L. Inhibition of Japanese encephalitis virus infection by nitric oxide: Antiviral effect of nitric oxide on RNA virus replication. J. Virol. 1997;71:5227–5235.
    1. Lin Y.L, Liao C.L, Chen L.K, Yeh C.T, Liu C.I, Ma S.H, Huang Y.Y, Huang Y.L, Kao C.L, King C.C. Study of dengue virus infection in SCID mice engrafted with human K562 cells. J. Virol. 1998;72:9729–9737.
    1. Liou M.L, Hsu C.Y. Japanese encephalitis virus is transported across the cerebral blood vessels by endocytosis in mouse brain. Cell Tissue Res. 1998;293:389–394.
    1. Liu M.T, Armstrong D, Hamilton T.A, Lane T.E. Expression of Mig (monokine induced by interferon gamma) is important in T lymphocyte recruitment and host defense following viral infection of the central nervous system. J. Immunol. 2001;166:1790–1795.
    1. Liu M.T, Chen B.P, Oertel P, Buchmeier M.J, Armstrong D, Hamilton T.A, Lane T.E. The T cell chemoattractant IFN-inducible protein 10 is essential in host defense against viral-induced neurological disease. J. Immunol. 2000;165:2327–2330.
    1. Liu M.T, Lane T.E. Chemokine expression and viral infection of the central nervous system: Regulation of host defense and neuropathology. Immunol. Res. 2001;24:111–119.
    1. Liu T, Chambers T.J. Yellow fever virus encephalitis: Properties of the brain-associated T-cell response during virus clearance in normal and gamma interferon-deficient mice and requirement for CD4+ lymphocytes. J. Virol. 2001;75:2107–2118.
    1. Liu Y, Blanden R.V, Müllbacher A. Identification of cytolytic lymphocytes in West Nile virus-infected murine central nervous system. J. Gen. Virol. 1989;70:565–573.
    1. Liu Y, King N, Kesson A, Blanden R.V, Müllbacher A. West Nile virus infection modulates the expression of class I and class II MHC antigens on astrocytes in vitro. Ann. N. Y. Acad. Sci. 1988;540:483–485.
    1. Liu Y, King N, Kesson A, Blanden R.V, Müllbacher A. Flavivirus infection up-regulates the expression of class I and class II major histocompatibility antigens on and enhances T cell recognition of astrocytes in vitro. J. Neuroimmunol. 1989;21:157–168.
    1. Lobigs M, Müllbacher A, Blanden R.V, Hammerling G.J, Momburg F. Antigen presentation in Syrian hamster cells: Substrate selectivity of TAP controlled by polymorphic residues in TAP1 and differential requirements for loading of H2 class I molecules. Immunogenetics. 1999;49:931–941.
    1. Lobigs M, Müllbacher A, Wang Y, Pavy M, Lee E. Role of type I and type II interferon responses in recovery from infection with an encephalitic flavivirus. J. Gen. Virol. 2003;84:567–572.
    1. Lobigs M, Pavy M, Hall R. Cross-protective and infection-enhancing immunity in mice vaccinated against flaviviruses belonging to the Japanese encephalitis virus serocomplex. Vaccine. 2003;21:1572–1579.
    1. Loginova N.V, Deryabin P.G, Mikhailova G.R, Tsareva A.A, Buinitskaya O.B. Chronic infection of HeLa cells with Japanese encephalitis virus: General characteristics of the system. Acta. Virol. 1980;24:399–405.
    1. Loke H, Bethell D.B, Phuong C.X, Dung M, Schneider J, White N.J, Day N.P, Farrar J, Hill A.V. Strong HLA class I-restricted T cell responses in dengue hemorrhagic fever: A double-edged sword? J. Infect. Dis. 2001;184:1369–1373.
    1. Lubiniecki A.S, Cypess R.H, Lucas J.P. Synergistic interaction of two agents in mice: Japanese B encephalitis virus and Trichinella spiralis. Am. J. Trop. Med. Hyg. 1974;23:235–241.
    1. Luby J.P, Miller G, Gardner P, Pigford C.A, Henderson B.E, Eddins D. The epidemiology of St. Louis encephalitis in Houston, Texas, 1964. Am. J. Epidemiol. 1967;86:584–597.
    1. Luby J.P, Stewart W.E, 2nd, Sulkin S.E, Sanford J.P. Interferon in human infections with St. Louis encephalitis virus. Ann. Intern. Med. 1969;71:703–709.
    1. Lucas M, Mashimo T, Frenkiel M.P, Simon-Chazottes D, Montagutelli X, Ceccaldi P.E, Guenet J.L, Despres P. Infection of mouse neurones by West Nile virus is modulated by the interferon-inducible 2′-5′ oligoadenylate synthetase 1b protein. Immunol. Cell Biol. 2003;81:230–236.
    1. Ludewig B, Ehl S, Karrer U, Odermatt B, Hengartner H, Zinkernagel R.M. Dendritic cells efficiently induce protective immunity. J. Virol. 1998;72:3812–3818.
    1. Lustig S, Danenberg H.D, Kafri Y, Kobiler D, Ben-Nathan D. Viral neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators. J. Exp. Med. 1992;176:707–712.
    1. Malkova D, Frankova V. The lymphatic system in the development of experimental tick-bone encephalitis in mice. Acta Virol. 1959;3:210–214.
    1. Mandl C.W, Kroschewski H, Allison S.L, Kofler R, Holzmann H, Meixner T, Heinz F.X. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vitro. J. Virol. 2001;75:5627–5637.
    1. Manuelidis E.E. Neuropathology of experimental West Nile virus infection in monkeys. J. Neuropathol Exp. Neurol. 1956;15:448–460.
    1. Marianneau P, Steffan A.M, Royer C, Drouet M.T, Jaeck D, Kirn A, Deubel V. Infection of primary cultures of human Kupffer cells by dengue virus: No viral progeny synthesis, but cytokine production is evident. J. Virol. 1999;73:5201–5206.
    1. Markoff L. Points to consider in the development of a surrogate for efficacy of novel Japanese encephalitis virus vaccines. Vaccine. 2000;18(Suppl. 2):26–32.
    1. Martin D.A, Biggerstaff B.J, Allen B, Johnson A.J, Lanciotti R.S, Roehrig J.T. Use of immunoglobulin M cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin. Diagn. Lab. Immunol. 2002;9:544–549.
    1. Martinez-Barragan J.J, del Angel R.M. Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J. Virol. 2001;75:7818–7827.
    1. Mashimo T, Lucas M, Simon-Chazottes D, Frenkiel M.-P, Montagutelli X, Ceccaldi P.-E, Deubel V, Guenet J.-L, Despres P. A nonsense mutation in the gene encoding 2′-5′-oligoadenylate synthetase⧸L1 isoform is associated with West Nile virus susceptibility in laboratory mice. Proc. Natl. Acad. Sci. USA. 2002;99:11311–11316.
    1. Massa P.T, Whitney L.W, Wu C, Ropka S.L, Jarosinski K.W. A mechanism for selective induction of 2′-5′ oligoadenylate synthetase, anti-viral state, but not MHC class I genes by interferon-beta in neurons. J. Neurovirol. 1999;5:161–171.
    1. Mathews J.H, Allan J.E, Roehrig J.T, Brubaker J.R, Uren M.F, Hunt A.R. T-helper cell and associated antibody response to synthetic peptides of the E glycoprotein of Murray Valley encephalitis virus. J. Virol. 1991;65:5141–5148.
    1. Mathews J.H, Roehrig J.T, Brubaker J.R, Hunt A.R, Allan J.E. A synthetic peptide to the E glycoprotein of Murray Valley encephalitis virus defines multiple virus-reactive T- and B-cell epitopes. J. Virol. 1992;66:6555–6562.
    1. Mathews V, Robertson T, Kendrick T, Abdo M, Papadimitrou J, McMinn P. Morphological features of Murray Valley encephalitis virus infection in the central nervous system of Swiss mice. Int. J. Exp. Pathol. 2000;81:31–40.
    1. Mathur A, Arora K.L, Rawat S, Chaturvedi U.C. Persistence, reactivation and latency of Japanese encephalitis virus infection in mice. J. Gen. Virol. 1986;67:381–385.
    1. Mathur A, Chaturvedi U.C. Breakdown of the blood-brain barrier by virus-induced cytokine during Japanese encephalitis virus infection. Int. J. Exp. Pathol. 1992;73:603–611.
    1. Mathur A, Kulshreshtha R, Chaturvedi U.C. Evidence of latency of Japanese encephalitis virus in T lymphocytes. J. Gen. Virol. 1989;70:461–465.
    1. McMinn P.C. The molecular basis of virulence of the encephalitogenic flaviviruses. J. Gen. Virol. 1997;78:2711–2722.
    1. McMinn P.C, Dalgarno L, Weir R.C. A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation. Virology. 1996;220:414–423.
    1. Medana I, Li Z, Flugel A, Tschopp J, Wekerle H, Neumann H. Fas ligand (CD95L) protects neurons against perforin-mediated T lymphocyte cytotoxicity. J. Immunol. 2001;167:674–681.
    1. Medana I.M, Gallimore A, Oxenius A, Martinic M.M.A, Wekerle H, Neumann H. MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas⧸FasL, but not the perforin pathway. Eur. J. Immunol. 2000;30:3623–3633.
    1. Misra U.K, Kalita J. Movement disorders in Japanese encephalitis. J. Neurol. 1997;244:299–303.
    1. Misra U.K, Kalita J. Anterior horn cells are also involved in Japanese encephalitis. Acta Neurol. Scand. 1997;96:114–117.
    1. Miyake M. The pathology of Japanese encephalitis. Bull World Health Org. 1964;30:153–160.
    1. Momburg F, Müllbacher A, Lobigs M. Modulation of transporter associated with antigen processing (TAP)-mediated peptide import into the endoplasmic reticulum by flavivirus infection. J. Virol. 2001;75:5663–5671.
    1. Monath T.P. Neutralizing antibody responses in the major immunoglobulin classes to yellow fever 17D vaccination of humans. Am. J. Epidemiol. 1971;93:122–129.
    1. Monath T.P. Pathobiology of the flaviviruses. In: Schlesinger S, Schlesinger M.J, editors. The Togaviridae and the Flaviviridae. Plenum Press; New York: 1986. pp. 375–440.
    1. Monath T.P, Borden E.C. Effects of thorotrast on humoral antibody, viral multiplication and interferon during infection with St. Louis encephalitis virus in mice. J. Infect. Dis. 1971;123:297–300.
    1. Monath T.P, Cropp C.B, Harrison A.K. Mode of entry of a neurotropic arbovirus into the central nervous system: Reinvestigation of an old controversy. Lab. Investigation. 1983;48:399–410.
    1. Monath T.P, Heinz F.X. Flaviviruses. In: Fields B.N, Knipe D.M, Howley P.M, editors. Fields Virology. Lippincott-Raven; Philadelphia: 1996. pp. 961–1034.
    1. Müllbacher A, King N.J.C. Natural killer cell lysis of target cells is influenced by β2-microglobulin expression. Scand. J. Immunology. 1989;30:21–29.
    1. Müllbacher A, Lobigs M. Up-regulation of MHC class I by flavivirus-induced peptide translocation into the endoplasmic reticulum. Immunity. 1995;3:207–214.
    1. Munoz M.L, Cisneros A, Cruz J, Das P, Tovar R, Ortega A. Putative dengue virus receptors from mosquito cells. FEMS Microbiol. Lett. 1998;168:251–258.
    1. Murali-Krishna K, Ravi V, Manjunath R. Protection of adult but not newborn mice against lethal intracerebral challenge with Japanese encephalitis virus by adoptively transferred virus-specific cytotoxic T lymphocytes: Requirement for L3T4+ T cells. J. Gen. Virol. 1996;77:705–714.
    1. Murgod U.A, Muthane U.B, Ravi V, Radhesh S, Desai A. Persistent movement disorders following Japanese encephalitis. Neurology. 2001;57:2313–2315.
    1. Murphy F.A, Harrison A.K, Gary G.W, Jr., Whitfield S.G, Forrester F.T. St. Louis encephalitis virus infection in mice: Electron microscopic studies of central nervous system. Lab. Invest. 1968;19:652–662.
    1. Myint K.S, Raengsakulrach B, Young G.D, Gettyayacamin M, Ferguson L.M, Innis B.L, Hoke C.H, Jr., Vaughn D.W. Production of lethal infection that resembles fatal human disease by intranasal inoculation of macaques with Japanese encephalitis virus. Am. J. Trop. Med. Hyg. 1999;60:338–342.
    1. Nargi-Aizenman J.L, Griffin D.E. Sindbis virus-induced neuronal death is both necrotic and apoptotic and is ameliorated by N-methyl-D-aspartate receptor antagonists. J. Virol. 2001;75:7114–7121.
    1. Nathanson N, Cole G.A. Fatal Japanese encephalitis virus infection in immunosuppressed spider monkeys. Clin. Exp. Immunol. 1970;6:161–166.
    1. Nathanson N, Davis M, Thind I.S. Histologic studies of the neurovirulence of group B arboviruses. II. Selection of indicator centers. Am. J. Epidemiol. 1966;84:524–535.
    1. Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, Virelizier J.L, Arenzana-Seisdedos F, Despres P. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 2003;4(Suppl):1–6.
    1. Navin T.R, Krug E.C, Pearson R.D. Effect of immunoglobulin M from normal human serum on Leishmania donovani promastigote agglutination, complement-mediated killing, and phagocytosis by human monocytes. Infect. Immun. 1989;57:1343–1346.
    1. Neogi D.K, Bhattacharya N, Chakrabarti T, Mukherjee K.K. Detection of HIV seropositivity during an outbreak of Japanese encephalitis in Manipur. J. Commun. Dis. 1998;30:113–116.
    1. Neumann H, Cavalie A, Jenne D.E, Wekerle H. Induction of MHC class I genes in neurons. Science. 1995;269:549–552.
    1. Ni H, Barrett A.D.T. Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape mutants. Virology. 1998;241:30–36.
    1. Ni H, Ryman K.D, Wang H, Saeed M.F, Hull R, Wood D, Minor P.D, Watowich S.J, Barrett A.D.T. Interaction of yellow fever virus French neurotropic vaccine strain with monkey brain: Characterization of monkey brain membrane receptor escape variants. J. Virol. 2000;74:2903–2906.
    1. Nir Y, Beemer A, Goldwasser R.A. West Nile virus infection in mice following exposure to a viral aerosol. Br. J. Exp. Pathol. 1965;46:443–449.
    1. Njenga M.K, Pease L.R, Wettstein P, Mak T, Rodriguez M. Interferon alpha⧸beta mediates early virus-induced expression of H-2D and H-2K in the central nervous system. Lab. Invest. 1997;77:71–84.
    1. Oberhaus S.M, Smith R.L, Clayton G.H, Dermody T.S, Tyler K.L. Reovirus infection and tissue injury in the mouse central nervous system are associated with apoptosis. J. Virol. 1997;71:2100–2106.
    1. Ochsenbein A.F, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, Zinkernagel R.M. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999;286:2156–2159.
    1. Ochsenbein A.F, Pinschewer D.D, Odermatt B, Carroll M.C, Hengartner H, Zinkernagel R.M. Protective T cell-independent antiviral antibody responses are dependent on complement. J. Exp. Med. 1999;190:1165–1174.
    1. Ochsenbein A.F, Zinkernagel R.M. Natural antibodies and complement link innate and acquired immunity. Immunol. Today. 2000;21(12):624–630.
    1. Odeola H.A, Oduye O.O. West Nile virus infection of adult mice by oral route. Arch. Virol. 1977;54:251–253.
    1. Ogata A, Nagashima K, Hall W.W, Ichikawa M, Kimura-Kuroda J, Yasui K. Japanese encephalitis virus neurotropism is dependent on the degree of neuronal maturity. J. Virol. 1991;65:880–886.
    1. Ogata A, Tashiro K, Pradhan S. Parkinsonism due to predominant involvement of substantia nigra in Japanese encephalitis. Neurology. 2000;55:602.
    1. Ogawa M, Okubo H, Tsuji Y. Chronic progressive encephalitis occurring 13 years after Russian spring-summer encephalitis. J. Neurol. Sci. 1973;19:363–373.
    1. Okhuysen P.C, Crane J.K, Pappas J. St. Louis encephalitis in patients with human immuodeficiency virus infection. Clin. Infect. Dis. 1993;17:140–141.
    1. O'Leary J.L, Smith M.G, Reames H.R. Influence of age on susceptibility of mice to St. Louis encephalitis virus and on the distribution of lesions. J. Exp. Med. 1942;75:233–247.
    1. Oliver K.R, Fazakerley J.K. Transneuronal spread of Semliki Forest virus in the developing mouse olfactory system is determined by neuronal maturity. Neuroscience. 1998;82:867–877.
    1. Oliver K.R, Scallan M.F, Dyson H, Fazakerley J.K. Susceptibility to a neurotropic virus and its distribution in the developing brain is a function of CNS maturity. J. Neurovirol. 1997;3:38–48.
    1. Orange J.S, Fassett M.S, Koopman L.A, Boyson J.E, Strominger J.L. Viral evasion of natural killer cells. Nature Immunol. 2002;3:1006–1012.
    1. Pan C.-H, Chen H.-W, Huang H.-W, Tao M.-H. Protective mechanisms induced by a Japanese encephalitis virus DNA vaccine: Requirement for antibody but not CD8+ cytotoxic T-cell responses. J. Virol. 2001;75:11457–11463.
    1. Panasiuk B, Prokopowicz D, Panasiuk A. Immunological response in HIV-positive patients vaccinated against tick-borne encephalitis. Infection. 2003;31:45–46.
    1. Parquet M.C, Kumatori A, Hasebe F, Morita K, Igarashi A. West Nile virus-induced bax-dependent apoptosis. FEBS Lett. 2001;500:17–24.
    1. Pavri K.M, Ghalsasi G.R, Dastur D.K, Goverdhan M.K, Lalitha V.S. Dual infections of mice: Visceral larva migrans and sublethal infection with Japanese encephalitis virus. Trans. R. Soc. Trop. Med. Hyg. 1975;69:99–110.
    1. Peiris J.S.M, Gordon S, Unkeless J.C, Porterfield J.S. Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages. Nature. 1981;289:189–191.
    1. Perelygin A.A, Scherbik S.V, Zhulin I.B, Stockman B.M, Li Y, Brinton M.A. Positional cloning of the murine flavivirus resistance gene. Proc. Natl. Acad. Sci. USA. 2002;99:9322–9327.
    1. Phillpotts R.J, Jones L.D, Lukaszewski R.A, Lawrie C, Brooks T.J. Antibody and interleukin-12 treatment in murine models of encephalitogenic flavivirus (St. Louis encephalitis, tick-borne encephalitis) and alphavirus (Venezuelan equine encephalitis) infection. J. Interferon Cytokine Res. 2003;23:47–50.
    1. Pincus S, Mason P.W, Konishi E, Fonseca B.A, Shope R.E, Rice C.M, Paoletti E. Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology. 1992;187:290–297.
    1. Pogodina V.V, Frolova M.P, Malenko G.V, Fokina G.I, Koreshkova G.V, Kiseleva L.L, Bochkova N.G, Ralph N.M. Study on West Nile virus persistence in monkeys. Arch. Virol. 1983;75:71–86.
    1. Pogodina V.V, Levina L.S, Fokina G.I. Persistence of tick-borne encephalitis virus in monkeys. III. Phenotypes of the persisting virus. Acta Virol. 1981;25:352–360.
    1. Poidinger M, Coelen R.J, Mackenzie J.S. Persistent infection of Vero cells by the flavivirus Murray Valley encephalitis virus. J. Gen. Virol. 1991;72:573–578.
    1. Popko B, Corbin J.G, Baerwald K.D, Dupree J, Garcia A.M. The effects of interferon-gamma on the central nervous system. Mol. Neurobiol. 1997;14:19–35.
    1. Potula R, Badrinath S, Srinivasan S. Japanese encephalitis in and around Pondicherry, South India: A clinical appraisal and prognostic indicators for the outcome. J. Trop. Pediatr. 2003;49:48–53.
    1. Powell K.E, Kappus K.D. Epidemiology of St. Louis encephalitis and other acute encephalitides. Adv. Neurol. 1978;19:197–213.
    1. Pradhan S, Pandey N, Shashank S, Gupta R.K, Mathur A. Parkinsonism due to predominant involvement of substantia nigra in Japanese encephalitis. Neurology. 1999;53:1781–1786.
    1. Prikhod'ko G.G, Prikhod'ko E.A, Cohen J.I, Pletnev A.G. Infection with Langat flavivirus or expression of the envelope protein induces apoptotic cell death. Virology. 2001;286:328–335.
    1. Prikhod'ko G.G, Prikhod'ko E.A, Pletnev A.G, Cohen J.I. Langat flavivirus protease NS3 binds caspase-8 and induces apoptosis. J. Virol. 2002;76:5701–5710.
    1. Putnak, J. R., and Schlesinger, J. J. (1990) Protection of mice against yellow fever virus encephalitis by immunization with a vaccinia virus recombinant encoding the yellow fever virus non-structural proteins, NS1, NS2a and NS2b. J. Gen. Virol.71: 1697–1702
    1. Raengsakulrach B, Nisalak A, Gettayacamin M, Thirawuth V, Young G.D, Myint K.S, Ferguson L.M, Hoke C.H, Jr., Innis B.L, Vaughn D.W. An intranasal challenge model for testing Japanese encephalitis vaccines in rhesus monkeys. Am. J. Trop. Med. Hyg. 1999;60:329–337.
    1. Raghupathy R, Chaturvedi U.C, A1-Sayer H, Elbishbishi E.A, Agarwal R, Nagar R, Kapoor S, Misra A, Mathur A, Nusrat H, Azizieh F, Khan M.A, Mustafa A.S. Elevated levels of IL-8 in dengue hemorrhagic fever. J. Med. Virol. 1998;56:280–285.
    1. Ramakrishna C, Ravi V, Desai A, Subbakrishna D.K, Shankar S.K, Chandramuki A. T helper responses to Japanese encephalitis virus infection are dependent on the route of inoculation and the strain of mouse used. J. Gen. Virol. 2003;84:1559–1567.
    1. Ramos-Castaneda J, Imbert J.L, Barron B.L, Ramos C. A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. J. Neurovirol. 1997;3:435–440.
    1. Randolph V.A, Hardy J.L. Establishment and characterization of St. Louis encephalitis virus persistent infections in Aedes and Culex mosquito cell lines. J. Gen. Virol. 1988;69:2189–2198.
    1. Randolph V.A, Hardy J.L. Phenotypes of St. Louis encephalitis virus mutants produced in persistently infected mosquito cell cultures. J. Gen Virol. 1988;69:2199–2207.
    1. Raung S.L, Kuo M.D, Wang Y.M, Chen C.J. Role of reactive oxygen intermediates in Japanese encephalitis virus infection in murine neuroblastoma cells. Neurosci. Lett. 2001;315:9–12.
    1. Ravi V, Desai A.S, Shenoy P.K, Satishchandra P, Chandramuki A, Gourie-Devi M. Persistence of Japanese encephalitis virus in the human nervous system. J. Med. Virol. 1993;40:326–329.
    1. Ravi V, Parida S, Desai A, Chandramuki A, Gourie-Devi M, Grau G.E. Correlation of tumor necrosis factor levels in the serum and cerebrospinal fluid with clinical outcome in Japanese encephalitis patients. J. Med. Virol. 1997;51:132–136.
    1. Receveur M.C, Thiebaut R, Vedy S, Malvy D, Mercie P, Bras M.L. Yellow fever vaccination of human immunodeficiency virus-infected patients: Report of 2 cases. Clin. Infect. Dis. 2000;31:E7–E8.
    1. Reiss C.S, Chesler D.A, Hodges J, Ireland D.D.C, Chen N. Innate immune responses in viral encephalitis. Curr. Top. Microbiol. Immunol. 2002;265:63–84.
    1. Reyes M.G, Gardner J.J, Poland J.D, Monath T.P. St. Louis encephalitis: Quantitative histologic and immunofluorescent studies. Arch. Neurol. 1981;38:329–334.
    1. Richter R.W. Neurologic sequellae of Japanese B encephalitis. Neurology. 1961;11:553–559.
    1. Roehrig J.T, Hunt A.R, Johnson A.J, Hawkes R.A. Synthetic peptides derived from the deduced amino acid sequence of the E-glycoprotein of Murray Valley encephalitis virus elicit antiviral antibody. Virology. 1989;171:49–60.
    1. Roehrig J.T, Johnson A.J, Hunt A.R, Beaty B.J, Mathews J.H. Enhancement of antibody response to flavivirus B-cell epitopes by using homologous or heterologous T-cell epitopes. J. Virol. 1992;66:3385–3390.
    1. Roehrig J.T, Nash D, Maldin B, Labowitz A, Martin D.A, Lanciotti R.S, Campbell G.L. Persistence of virus-reactive serum immunoglobulin M antibody in confirmed West Nile virus encephalitis cases. Emerg. Infect. Dis. 2003;9:376–379.
    1. Roehrig J.T, Staudinger L.A, Hunt A.R, Mathews J.H, Blair C.D. Antibody prophylaxis and therapy for flaviviral encephalitis infections. Ann. N.Y. Acad. Sci. 2001;951:286–297.
    1. Rojanasuphot S, Shaffer N, Chotpitayasunondh T, Phumiamorn S, Mock P, Chearskul S, Waranawat N, Yuentrakul P, Mastro T.D, Tsai T.F. Response to JE vaccine among HIV-infected children, Bangkok, Thailand. Southeast Asian J. Trop. Med. Public Health. 1998;29:443–450.
    1. Rothman A.L, Ennis F.A. Immunopathogenesis of dengue hemorrhagic fever. Virology. 1999;257:1–6.
    1. Sammin D.J, Butler D, Atkins G.J, Sheahan B.J. Cell death mechanisms in the olfactory bulb of rats infected intranasally with Semliki Forest virus. Neuropathol. Appl. Neurobiol. 1999;25:236–243.
    1. Sampson B.A, Ambrosi C, Charlot A, Reiber K, Veress J.F, Armbrustmacher V. The pathology of human West Nile Virus infection. Hum. Path. 2000;31:527–531.
    1. Samuel C.E. Host genetic variability and West Nile virus susceptibility. Proc. Natl. Acad. Sci. USA. 2002;99:11555–11557.
    1. Sangster M.K, Urosevic N, Mansfield J.P, Mackenzie J.S, Shellam G.R. Mapping the Flv locus controlling resistance to flaviviruses on mouse chromosome 5. J. Virol. 1994;68:448–452.
    1. Saxena S.K, Singh A, Mathur A. Antiviral effect of nitric oxide during Japanese encephalitis virus infection. Int. J. Exp. Pathol. 2000;81:165–172.
    1. Schlesinger J.J, Brandriss M.W. 17D yellow fever virus infection of P388D1 cells mediated by monoclonal antibodies: Properties of the macrophage Fc receptor. J. Gen. Virol. 1983;64:1255–1262.
    1. Schlesinger J.J, Brandriss M.W, Cropp C.B, Monath T.P. Protection against yellow fever in monkeys by immunization with yellow fever virus nonstructural protein NS1. J. Virol. 1986;60:1153–1155.
    1. Schlesinger J.J, Brandriss M.W, Putnak J.R, Walsh E.E. Cell surface expression of yellow fever virus non-structural glycoprotein NS1: Consequences of interaction with antibody. J. Gen. Virol. 1990;71:593–599.
    1. Schlesinger J.J, Brandriss M.W, Walsh E.E. Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. J. Immunol. 1985;135:2805–2809.
    1. Schlesinger J.J, Brandriss M.W, Walsh E.E. Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J. Gen. Virol. 1987;68:853–857.
    1. Schlesinger J.J, Chapman S. Neutralizing F(ab′)2 fragments of protective monoclonal antibodies to yellow fever virus (YF) envelope protein fail to protect mice against lethal YF encephalitis. J. Gen. Virol. 1995;76:217–220.
    1. Schlesinger J.J, Chapman S, Nestorowicz A, Rice C.M, Chambers T.J. Replication of yellow fever virus in the mouse central nervous system: Comparison of neuroadapted and nonneuroadapted virus and partial sequence analysis of the neuroadapted strain. J. Gen. Virol. 1996;77:1277–1285.
    1. Schlesinger J.J, Foltzer M, Chapman S. The Fc portion of antibody to yellow fever virus NS1 is a determinant of protection against YF encephalitis in mice. Virology. 1993;192:132–141.
    1. Schmaljohn C, Blair C.D. Persistent infection of cultured mammalian cells by Japanese encephalitis virus. J. Virol. 1977;24:580–589.
    1. Schmaljohn C.S, Blair C.D. Clonal analysis of mammalian cell cultures persistently infected with Japanese encephalitis virus. J. Virol. 1979;31:816–822.
    1. Schneider-Schaulies J, Liebert U.G, Dorries R, ter Meullen V. Establishment and control of viral infections in the central nervous system. In: Keane R.W, Hickey W.F, editors. Immunology of the Nervous System. Oxford Univ. Press; New York: 1997. pp. 576–616.
    1. Shah P.S, Gadkari D.A. Persistent infection of porcine kidney cells with Japanese encephalitis virus. Ind. J. Med Res. 1987;85:481–491.
    1. Shahar A, Lustig S, Akov Y, David Y, Schneider P, Friedmann A, Levin R. West Nile virions aligned along myelin lamellae in organotypic spinal cord cultures. J. Neurosci. Res. 1990;26:495–500.
    1. Sharma S, Mathur A, Prakash V, Kulshreshta R, Kumar R, Chaturvedi U.C. Japanese encephalitis virus latency in peripheral blood lymphocytes and recurrence of infection in children. Clin. Exp. Immunol. 1991;85:85–91.
    1. Shoji H, Murakami T, Murai I, Kida H, Sato Y, Kojima K, Abe T, Okudera T. A follow-up study by CT and MRI in 3 cases of Japanese encephalitis. Neuroradiology. 1990;32:215–219.
    1. Sibailly T.S, Wiktor S.Z, Tsai T.F, Cropp C.B, Ekpini E.R, Adjorlolo-Johnson G, Gnaore E, DeCock K.M, Greenberg A.E. Poor antibody response to yellow fever vaccination in children infected with human immunodeficiency virus type 1. Pediat. Infect. Dis. 1997;16:1177–1179.
    1. Singh A, Kulshreshta R, Mathur A. Secretion of the chemokine interleukin-8 during Japanese encephalitis virus infection. J. Med. Micro. 2000;49:607–612.
    1. Slavin H.B. Persistence of the virus of St. Louis encephalitis in the central nervous system of mice for over five months. J. Bacteriol. 1943;46:113–116.
    1. Smith A.L. Genetic resistance to lethal flavivirus encephalitis: Effect of host age and immune status and route of inoculation on production of interfering Banzi virus in vivo. Am. J. Trop. Med. Hyg. 1981;30:1319–1323.
    1. Smith H.R, Idris A.H, Yokoyama W.M. Murine natural killer cell activation receptors. Immunol. Rev. 2001;181:115–125.
    1. Solomon T, Dung N.M, Wills B, Kneen R, Gainsborough M, Diet T.V, Thuy T.T, Loan H.T, Khanh V.C, Vaughn D.W, White N.J, Farrar J.J. Interferon alpha-2a in Japanese encephalitis: A randomised double-blind placebo-controlled trial. Lancet. 2003;361:821–826.
    1. Solomon T, Kneen R, Dung N.M, Khanh V.C, Thuy T.T, HA D.Q, Day N.P, Nisalak A, Vaughn D.W, White N.J. Poliomyelitis-like illness due to Japanese encephalitis virus. Lancet. 1998;351:1094–1097.
    1. Solomon T, Vaughn D.W. Pathogenesis and clinical features of Japanese encephalitis and West Nile infections. In: Mackenzie J.S, Barrett A.D.T, Deubel V, editors. Japanese Encephalitis and West Nile Viruses. Springer-Verlag; Berlin: 2002. pp. 171–194.
    1. Southam C.M, Nojes W.F, Mellors R. Virus in human cancer cells in vivo. Virology. 1958;5:395–400.
    1. Spain-Santana T.A, Marglin S, Ennis F.A, Rothman A.L. MIP-1 alpha and MIP-1 beta induction by dengue virus. J. Med. Virol. 2001;65:324–330.
    1. Steele K.E, Linn M.J, Schoepp R.J, Komar N, Geisbert T.W, Manduca R.M, Calle P.P, Raphael B.L, Clippinger T.L, Larsen T, Smith J, Lanciotti R.S, Panella N.A, McNamara T.S. Pathology of fatal West Nile virus infections in native and exotic birds during the 1999 outbreak in New York City, New York. Vet. Pathol. 2000;37:208–224.
    1. Stephens H.A, Klaythong R, Sirikong M, Vaughn D.W, Green S, Kalayanarooj S, Endy T.P, Libraty D.H, Nisalak A, Innis B.L, Rothman A.L, Ennis F.A, Chandanayingyong D. HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens. 2002;60:309–318.
    1. Stohlman S.A, Bergmann C.C, Lin M.T, Cua D.J, Hinton D.R. CTL effector function within the central nervous system requires CD4+ T cells. J. Immunol. 1998;160:2896–2904.
    1. Su C.M, Liao C.L, Lee Y.L, Lin Y.L. Highly sulfated forms of heparin sulfate are involved in Japanese encephalitis virus infection. Virology. 2001;286:206–215.
    1. Su H.L, Liao C.L, Lin Y.L. Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J. Virol. 2002;76:4162–4171.
    1. Suri N.K, Banerjee K. Growth and cytopathic effect of Japanese encephalitis virus in astrocyte-enriched cell cultures from neonatal mouse brains. Acta Virol. 1995;39:143–148.
    1. Suzuki M, Phillips C.A. St. Louis encephalitis: A histopathologic study of the fatal cases from the Houston epidemic in 1964. Arch. Pathol. 1966;81:47–54.
    1. Suzuki T, Ogata A, Tashiro K, Nagashima K, Tamura M, Yasui K, Nishihira J. Japanese encephalitis virus up-regulates expression of macrophage migration inhibitory factor (MIF) mRNA in the mouse brain. Biochim. Biophys. Acta. 2000;1517:100–106.
    1. Szilak I, Minamoto G.Y. West Nile viral encephalitis in an HIV-positive woman in New York. N. Engl. J. Med. 2000;42:59–60.
    1. Ta M, Vrati S. Mov34 protein from mouse brain interacts with the 3′ noncoding region of Japanese encephalitis virus. J. Virol. 2000;74:5108–5115.
    1. Takada K, Masaki H, Konishi E, Takahashi M, Kurane I. Definition of an epitope on Japanese encephalitis virus (JEV) envelope protein recognized by JEV-specific murine CD8+ cytotoxic T lymphocytes. Arch. Virol. 2000;145:523–534.
    1. Tassaneetrithep B, Burgess T.H, Granelli-Piperno A, Trumpfheller C, Finke J, Sun W, Eller M.A, Pattanapanyasat K, Sarasombath S, Birx D.L, Steinman R.M, Schlesinger S, Marovich M.A. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 2003;197:823–829.
    1. Tesh R.B, Travassos da Rosa A.P, Guzman H, Araujo T.P, Xiao S.Y. Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg Infect. Dis. 2002;8:245–251.
    1. Thakare J.P, Wadia R.S, Banerjee K, Ghosh S.N. Increased level of myelin basic protein in cerebrospinal fluid of patients of Japanese encephalitis. Indian J. Med. Res. 1988;88:297–300.
    1. Thakare J.P, Gore M.M, Risbud A.R, Banerjee K, Ghosh S.N. Detection of virus specific IgG subclasses in Japanese encephalitis patients. Indian J. Med. Res. 1991;93:271–276.
    1. Theerasurakarn S, Ubul S. Apoptosis induction in brain during the fixed strain of rabies virus infection correlates with onset and severity of illness. J. Neurovirol. 1998;4:407–414.
    1. Tschen S.-I, Bergmann C.C, Ramakrishna C, Morales S, Atkinson R, Stohlman S.A. Recruitment kinetics and composition of antibody-secreting cells within the central nervous system following viral encephalomyelitis. J. Immunol. 2002;168:2922–2929.
    1. Turell M.J, Spielman A. Nonvascular delivery of Rift Valley fever virus by infected mosquitoes. Am. J. Trop. Med. Hyg. 1992;47:190–194.
    1. Turell M.J, Tammariello R.F, Spielman A. Nonvascular delivery of St. Louis encephalitis and Venezuelan equine encephalitis viruses by infected mosquitoes (Diptera: Culicidae) feeding on a vertebrate host. J. Med. Entomol. 1995;32:563–568.
    1. Tyor W.R, Wesselingh S, Levine B, Griffin D.E. Long term intraparenchymal Ig secretion after acute viral encephalitis in mice. J. Immunol. 1992;149:4016–4020.
    1. Uren M.F, Doherty P.C, Allan J.E. Flavivirus-specific murine L3T4+ T cell clones: Induction, characterization and cross-reactivity. J. Gen. Virol. 1987;68:2655–2663.
    1. Urosevic N, van Maanen M, Mansfield J.P, Mackenzie J.S, Shellam G.R. Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and -resistant mice after challenge with Murray Valley encephalitis virus. J. Gen. Virol. 1997;78:23–29.
    1. van der Most R.G, Harrington L.E, Giuggio V, Mahar P.L, Ahmed R. Yellow fever virus 17D envelope and NS3 proteins are major targets of the antiviral T cell response in mice. Virology. 2002;296:117–124.
    1. van der Most R.G, Murali-Krishna K, Ahmed R. Prolonged presence of effector-memory CD8 T cells in the central nervous system after dengue virus encephalitis. Int. Immunol. 2003;15:119–125.
    1. van der Most R.G, Murali-Krishna K, Ahmed R, Strauss J.H. Chimeric yellow fever⧸dengue virus as a candidate dengue vaccine: Quantitation of the dengue virus-specific CD8 T cell response. J. Virol. 2000;74:8094–8101.
    1. Vaneeva G.G. Long-term observation over children having sustained tick-borne encephalitis. Pediatrics. 1969;48:46–48.
    1. Vargin V.V, Semenov B.F. Changes of natural killer cell activity in different mouse lines by acute and asymptomatic flavivirus infections. Acta Virol. 1986;30:303–308.
    1. Varnavski A.N, Khromykh A.A. Noncytopathic flavivirus replicon RNA-based system for expression and delivery of heterologous genes. Virology. 1999;255:366–375.
    1. Vince V, Grevic N. Development of morphological changes in experimental tick-borne meningoencephalitis induced in mice by different virus doses. J. Neurol. Sci. 1969;9:109–130.
    1. Vlaycheva L, Chambers T.J. Neuroblastoma cell-adapted yellow fever 17D: Characterization of a viral variant associated with persistent infection and decreased virus spread. J. Virol. 2002;75:10912–10922.
    1. Volanakis J.E. The role of complement in innate and adaptive immunity. Curr. Top. Microbiol. Immunol. 2002;266:41–56.
    1. Waldvogel K, Bossart W, Huisman T, Boltshauser E, Nadal D. Severe tick-borne encephalitis following passive immunization. Eur. J. Pediatr. 1996;155:775–779.
    1. Wang J.J, Liao C.L, Chiou Y.W, Chiou C.T, Huang Y.L, Chen L.K. Ultrastructure and localization of E proteins in cultured neuron cells infected with Japanese encephalitis virus. Virology. 1997;238:30–39.
    1. Wasay M, Diaz-Arrastia R, Suss R.A, Kojan S, Haq A, Burns D, Van Ness P. St Louis encephalitis: A review of 11 cases in a 1995 Dallas, Tex, epidemic. Arch. Neurol. 2000;57:114–118.
    1. Weiner L.P, Cole G.A, Nathanson N. Experimental encephalitis following peripheral inoculation of West Nile virus in mice of different ages. J. Hyg. 1970;68:435–446.
    1. Wesselingh S.L, Levine B, Fox R.J, Choi S, Griffin D.E. Intracerebral cytokine mRNA expression during fatal and nonfatal alphavirus encephalitis suggests a predominant type 2 T cell response. J. Immunol. 1994;152:1289–1297.
    1. Wu S.J, Grouard-Vogel G, Sun W, Mascola J.R, Brachtel E, Putvatana R, Louder M.K, Filgueira L, Marovich M.A, Wong H.K, Blauvelt A, Murphy G.S, Robb M.L, Innes B.L, Birx D.L, Hayes C.G, Frankel S.S. Human skin Langerhans cells are targets of dengue virus infection. Nature Med. 2000;6:816–820.
    1. Xiao S.Y, Guzman H, Zhang H, Travassos da Rosa A.P, Tesh R.B. West Nile virus infection in the golden hamster (Mesocricetus auratus): A model for West Nile encephalitis. Emerg. Infect. Dis. 2001;7:714–721.
    1. Yang J.S, Ramanathan M.P, Muthumani K, Choo A.Y, Jin S.H, Yu Q.C, Hwang D.S, Choo D.K, Lee M.D, Dang K, Tang W, Kim J.J. Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg. Infect. Dis. 2002;8:1379–1384.
    1. Yazi Mendoza M, Salas-Benito J.S, Lanz-Mendoza H, Hernandez-Martinez S, del Angel R.M. A putative receptor for dengue virus in mosquito tissues: Localization of a 45-kDa glycoprotein. Am. J. Trop. Med. Hyg. 2002;67:76–84.
    1. Yocupicio-Monroy R.M, Medina F, Reyes del Valle J, del angel R.M. Cellular protein from human monocytes bind to dengue 4 virus minus strand 3′ untranslated RNA. J. Virol. 2003;77:3067–3076.
    1. Zeidner N.S, Higgs S, Happ C.M, Beaty B.J, Miller B.R. Mosquito feeding modulates Th1 and Th2 cytokines in flavivirus susceptible mice: An effect mimicked by injection of sialokinins, but not demonstrated in flavivirus resistant mice. Parasite Immunol. 1999;21:35–44.
    1. Zhang M.J, Wang M.J, Jiang S.Z, Ma W.Y. Passive protection of mice, goats, and monkeys against Japanese encephalitis with monoclonal antibodies. J. Med. Virol. 1989;29:133–138.
    1. Zhang P.F, Klutch M, Muller J, Marcus-Sekura C.J. St. Louis encephalitis virus establishes a productive, cytopathic and persistent infection of Sf 9 cells. J. Gen. Virol. 1993;74:1703–1708.
    1. Zimmerman H.M. The pathology of Japanese B encephalitis. Am. J. Pathol. 1946;22:965–991.
    1. Zisman B, Wheelock E.F, Allison A.C. Role of macrophages and antibody in resistance of mice against yellow fever virus. J. Immunol. 1971;107:236–243.
    1. Zlotnik I, Carter G.B, Grant D.P. The persistence of louping ill virus in immunosuppressed guinea-pigs. Br. J. Exp. Pathol. 1971;52:395–407.
    1. Zlotnik I, Grant D.P, Carter G.B. Experimental infection of monkeys with viruses of the tick-borne encephalitis complex: Degenerative cerebellar lesions following inapparent forms of the disease or recovery from clinical encephalitis. Br. J. Exp. Pathol. 1976;57:200–210.
    1. Zocher M, Czub S, Schulte-Monting J, de La Torre J.C, Sauder C. Alterations in neurotrophin and neurotrophin receptor gene expression patterns in the rat central nervous system following perinatal Borna disease virus infection. J. Neurovirol. 2000;6:462–467.

Source: PubMed

3
Abonner