Motor development related to duration of exclusive breastfeeding, B vitamin status and B12 supplementation in infants with a birth weight between 2000-3000 g, results from a randomized intervention trial

Ingrid Kristin Torsvik, Per Magne Ueland, Trond Markestad, Øivind Midttun, Anne-Lise Bjørke Monsen, Ingrid Kristin Torsvik, Per Magne Ueland, Trond Markestad, Øivind Midttun, Anne-Lise Bjørke Monsen

Abstract

Background: Exclusive breastfeeding for 6 months is assumed to ensure adequate micronutrients for term infants. Our objective was to investigate the effects of prolonged breastfeeding on B vitamin status and neurodevelopment in 80 infants with subnormal birth weights (2000-3000 g) and examine if cobalamin supplementation may benefit motor function in infants who developed biochemical signs of impaired cobalamin function (total homocysteine (tHcy) > 6.5 μmol/L) at 6 months.

Methods: Levels of cobalamin, folate, riboflavin and pyridoxal 5´-phosphate, and the metabolic markers tHcy and methylmalonic acid (MMA), were determined at 6 weeks, 4 and 6 months (n = 80/68/66). Neurodevelopment was assessed with the Alberta Infants Motor Scale (AIMS) and the parental questionnaire Ages and Stages (ASQ) at 6 months. At 6 months, 32 of 36 infants with tHcy > 6.5 μmol/L were enrolled in a double blind randomized controlled trial to receive 400 μg hydroxycobalamin intramuscularly (n = 16) or sham injection (n = 16). Biochemical status and neurodevelopment were evaluated after one month.

Results: Except for folate, infants who were exclusively breastfed for >1 month had lower B vitamin levels at all assessments and higher tHcy and MMA levels at 4 and 6 months. At 6 months, these infants had lower AIMS scores (p = 0.03) and ASQ gross motor scores (p = 0.01). Compared to the placebo group, cobalamin treatment resulted in a decrease in plasma tHcy (p < 0.001) and MMA (p = 0.001) levels and a larger increase in AIMS (p = 0.02) and ASQ gross motor scores (p = 0.03).

Conclusions: The findings suggest that prolonged exclusive breastfeeding may not provide sufficient B vitamins for small infants, and that this may have a negative effect on early gross motor development. In infants with mild cobalamin deficiency at 6 months, cobalamin treatment significantly improvement cobalamin status and motor function, suggesting that the observed impairment in motor function associated with long-term exclusive breastfeeding, may be due to cobalamin deficiency.

Clinical trial registration: ClinicalTrials.gov, number NCT01201005.

Figures

Fig. 1
Fig. 1
a. Dose-response relationship of cobalamin, folate, PLP, riboflavin, tHcy and MMA at 6 months with months of exclusive breastfeeding by Generalized additive models (GAM), adjusted for gender, infant weight at 6 months and iron and folate supplementation. The solid line shows the fitted model and the shaded areas indicate 95 % CIs. PLP, pyridoxal 5´phosphate; tHcy, total homocysteine; MMA, methylmalonic acid. b. Dose-response relationship of tHcy and MMA at 6 months with AIMS scores at 6 months by Generalized Additive Models (GAM), adjusted for gender, infant weight at 6 months and iron and folate supplementation. The solid line shows the fitted model and the shaded areas indicate 95 % CIs. tHcy, total homocysteine; MMA, methylmalonic acid

References

    1. Allen LH. B vitamins in breast milk: relative importance of maternal status and intake, and effects on infant status and function. Adv Nutr (Bethesda, Md) 2012;3(3):362–369. doi: 10.3945/an.111.001172.
    1. Bjorke Monsen AL, Ueland PM, Vollset SE, Guttormsen AB, Markestad T, Solheim E, et al. Determinants of cobalamin status in newborns. Pediatrics. 2001;108(3):624–630. doi: 10.1542/peds.108.3.624.
    1. Kramer MS, Kakuma R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst Rev. 2012;8:CD003517.
    1. Berglund SK, Westrup B, Domellof M. Iron supplementation until 6 months protects marginally low-birth-weight infants from iron deficiency during their first year of life. J Pediatr Gastroenterol Nutr. 2015;60(3):390–395. doi: 10.1097/MPG.0000000000000633.
    1. Lohner S, Fekete K, Berti C, Hermoso M, Cetin I, Koletzko B, et al. Effect of folate supplementation on folate status and health outcomes in infants, children and adolescents: a systematic review. Int J Food Sci Nutr. 2012;63(8):1014–1020. doi: 10.3109/09637486.2012.683779.
    1. Greer FR. Do breastfed infants need supplemental vitamins? Pediat Clin N Amer. 2001;48(2):415. doi: 10.1016/S0031-3955(08)70034-8.
    1. Markestad T, Aksnes L, Finne PH, Aarskog D. Plasma concentrations of vitamin D metabolites in a case of rickets of prematurity. Acta Paediatr Scand. 1983;72(5):759–761. doi: 10.1111/j.1651-2227.1983.tb09808.x.
    1. American Academy of Pediatrics Committee on Fetus and Newborn Controversies concerning vitamin K and the newborn. American Academy of Pediatrics Committee on Fetus and Newborn. Pediatrics. 2003;112(1 Pt 1):191–192. doi: 10.1542/peds.112.1.191.
    1. Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122(5):1142–1152. doi: 10.1542/peds.2008-1862.
    1. DoH LH. Vitamin K for newborn babies. PL/CMO. 1998;1998:98(3).
    1. Vinutha B, Mehta MN, Shanbag P. Vitamin a status of pregnant women and effect of post partum vitamin a supplementation. Indian Pediatr. 2000;37(11):1188–1193.
    1. Greibe E, Lildballe DL, Streym S, Vestergaard P, Rejnmark L, Mosekilde L, et al. Cobalamin and haptocorrin in human milk and cobalamin-related variables in mother and child: a 9-mo longitudinal study. Am J Clin Nutr. 2013;98(2):389–395. doi: 10.3945/ajcn.113.058479.
    1. Butte N, Lopez-Alarcon MG, Garza C. Nutrient adequacy of exclusive breastfeeding for the term infnat during the first six months of life. Geneva: World health organization; 2002.
    1. Fokkema MR, Woltil HA, van Beusekom CM, Schaafsma A, Dijck-Brouwer DA, Muskiet FA. Plasma total homocysteine increases from day 20 to 40 in breastfed but not formula-fed low-birthweight infants. Acta Paediatr. 2002;91(5):507–511. doi: 10.1111/j.1651-2227.2002.tb03268.x.
    1. Specker BL, Brazerol W, Ho ML, Norman EJ. Urinary methylmalonic acid excretion in infants fed formula or human milk. Am J Clin Nutr. 1990;51(2):209–211.
    1. Tamura T, Yoshimura Y, Arakawa T. Human milk folate and folate status in lactating mothers and their infants. Am J Clin Nutr. 1980;33(2):193–197.
    1. Bamji MS, Prema K, Jacob CM, Ramalakshmi BA, Madhavapeddi R. Relationship between maternal vitamins B2 and B6 status and the levels of these vitamins in milk at different stages of lactation. A study in a low-income group of Indian women. Hum Nutr Clin Nutr. 1986;40(2):119–124.
    1. Dostalova L. Vitamin status during puerperium and lactation. Ann Nutr Metab. 1984;28(6):385–408. doi: 10.1159/000176851.
    1. Craft IL, Matthews DM, Linnell JC. Cobalamins in human pregnancy and lactation. J Clin Pathol. 1971;24(5):449–455. doi: 10.1136/jcp.24.5.449.
    1. Bjorke-Monsen AL, Ueland PM. Cobalamin status in children. J Inherit Metab Dis. 2011;34(1):111–119. doi: 10.1007/s10545-010-9119-1.
    1. Benton D. Vitamins and neural and cognitive developmental outcomes in children. Proc Nutr Soc. 2012;71(1):14–26. doi: 10.1017/S0029665111003247.
    1. Torsvik I, Ueland PM, Markestad T, Bjorke-Monsen AL. Cobalamin supplementation improves motor development and regurgitations in infants: results from a randomized intervention study. Am J Clin Nutr. 2013;98(5):1233–1240. doi: 10.3945/ajcn.113.061549.
    1. Black MM, Baqui AH, Zaman K, Ake Persson L, El Arifeen S, Le K, et al. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr. 2004;80(4):903–910.
    1. Elizabeth KE, Krishnan V, Vijayakumar T. Umbilical cord blood nutrients in low birth weight babies in relation to birth weight & gestational age. Indian J Med Res. 2008;128(2):128–133.
    1. Angulo-Barroso RM, Schapiro L, Liang W, Rodrigues O, Shafir T, Kaciroti N, et al. Motor development in 9-month-old infants in relation to cultural differences and iron status. Dev Psychobiol. 2011;53(2):196–210. doi: 10.1002/dev.20512.
    1. Wighton MC, Manson JI, Speed I, Robertson E, Chapman E. Brain damage in infancy and dietary vitamin B12 deficiency. Med J Austr. 1979;2:1–3.
    1. Skjaerven R, Gjessing HK, Bakketeig LS. Birthweight by gestational age in Norway. Acta Obstet Gynecol Scand. 2000;79(6):440–449. doi: 10.1080/j.1600-0412.2000.079006440.x.
    1. Minet JC, Bisse E, Aebischer CP, Beil A, Wieland H, Lutschg J. Assessment of vitamin B-12, folate, and vitamin B-6 status and relation to sulfur amino acid metabolism in neonates. Am J Clin Nutr. 2000;72(3):751–757.
    1. Bjorke-Monsen AL, Torsvik I, Saetran H, Markestad T, Ueland PM. Common metabolic profile in infants indicating impaired cobalamin status responds to cobalamin supplementation. Pediatrics. 2008;122(1):83–91. doi: 10.1542/peds.2007-2716.
    1. Kassab M, Foster JP, Foureur M, Fowler C. Sweet-tasting solutions for needle-related procedural pain in infants one month to one year of age. Cochrane Database Syst Rev. 2012;12:CD008411.
    1. Arsky GH, Lande B. Mat for spedbarn. Oslo: Helsedirektoratet afe; 2001.
    1. Nilsen RM, Vollset SE, Gjessing HK, Magnus P, Meltzer HM, Haugen M, et al. Patterns and predictors of folic acid supplement use among pregnant women: the Norwegian Mother and Child Cohort Study. Am J Clin Nutr. 2006;84(5):1134–1141.
    1. Bjorke-Monsen AL, Roth C, Magnus P, Midttun O, Nilsen RM, Reichborn-Kjennerud T, et al. Maternal B vitamin status in pregnancy week 18 according to reported use of folic acid supplements. Mol Nutr Food Res. 2013;57(4):645–652. doi: 10.1002/mnfr.201200114.
    1. Piper MC, Pinnell LE, Darrah J, Maguire T, Byrne PJ. Construction and validation of the Alberta Infant Motor Scale (AIMS) Can J Public Health. 1992;83(Suppl 2):S46–50.
    1. Squires J, Bricker D, Twombly E:, Nickel R, Clifford J, Murphy K, et al. Ages & Stages Questionnaires®, Third Edition (ASQ-3™) 2009.
    1. Darrah J, Piper M, Watt MJ. Assessment of gross motor skills of at-risk infants: predictive validity of the Alberta Infant Motor Scale. Dev Med Child Neurol. 1998;40(7):485–491. doi: 10.1111/j.1469-8749.1998.tb15399.x.
    1. Richter J, Janson H. A validation study of the Norwegian version of the Ages and Stages Questionnaires. Acta Paediatr. 2007;96(5):748–752. doi: 10.1111/j.1651-2227.2007.00246.x.
    1. Schonhaut L, Armijo I, Schonstedt M, Alvarez J, Cordero M. Validity of the ages and stages questionnaires in term and preterm infants. Pediatrics. 2013;131(5):e1468–1474. doi: 10.1542/peds.2012-3313.
    1. Windelberg A, Arseth O, Kvalheim G, Ueland PM. Automated assay for the determination of methylmalonic acid, total homocysteine, and related amino acids in human serum or plasma by means of methylchloroformate derivatization and gas chromatography-mass spectrometry. Clin Chem. 2005;51(11):2103–2109. doi: 10.1373/clinchem.2005.053835.
    1. Kelleher BP, Broin SD. Microbiological assay for vitamin B12 performed in 96-well microtitre plates. J Clin Pathol. 1991;44(7):592–595. doi: 10.1136/jcp.44.7.592.
    1. O’Broin S, Kelleher B. Microbiological assay on microtitre plates of folate in serum and red cells. J Clin Pathol. 1992;45(4):344–347. doi: 10.1136/jcp.45.4.344.
    1. Midttun O, Hustad S, Ueland PM. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2009;23(9):1371–1379. doi: 10.1002/rcm.4013.
    1. Lung FW, Shu BC, Chiang TL, Lin SJ. Twin-singleton influence on infant development: a national birth cohort study. Child Care Health Dev. 2009;35(3):409–418. doi: 10.1111/j.1365-2214.2009.00963.x.
    1. Rahu K, Rahu M, Pullmann H, Allik J. Effect of birth weight, maternal education and prenatal smoking on offspring intelligence at school age. Early Hum Dev. 2010;86(8):493–497. doi: 10.1016/j.earlhumdev.2010.06.010.
    1. Rydz D, Shevell MI, Majnemer A, Oskoui M. Developmental screening. J Child Neurol. 2005;20(1):4–21. doi: 10.1177/08830738050200010201.
    1. Heineman KR, Hadders-Algra M. Evaluation of neuromotor function in infancy-A systematic review of available methods. J Dev Behav Pediatr. 2008;29(4):315–323. doi: 10.1097/DBP.0b013e318182a4ea.
    1. WHOMGRS Group WHO Motor Development Study: windows of achievement for six gross motor development milestones. Acta Paediatr. 2006;450:86–95.
    1. Intakes SCotSEoDR . Vitamin B12. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academy Press; 2000. pp. 306–356.
    1. Majnemer A, Snider L. A comparison of developmental assessments of the newborn and young infant. Ment Retard Dev Disabil Res Rev. 2005;11(1):68–73. doi: 10.1002/mrdd.20052.
    1. Cheung YB, Yip PS, Karlberg JP. Fetal growth, early postnatal growth and motor development in Pakistani infants. Int J Epidemiol. 2001;30(1):66–72. doi: 10.1093/ije/30.1.66.
    1. Kramer MS, Kakuma R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst Rev. 2002;1:CD003517.
    1. Baker H, Thind IS, Frank O, DeAngelis B, Caterini H, Louria DB. Vitamin levels in low-birth-weight newborn infants and their mothers. Am J Obstet Gynecol. 1977;129(5):521–524.
    1. Fomon SJ, Strauss RG. Nutrient deficiencies in breast-fed infants. N Engl J Med. 1978;299(7):355–357. doi: 10.1056/NEJM197808172990708.
    1. Siimes MA, Vuori E, Kuitunen P. Breast milk iron--a declining concentration during the course of lactation. Acta Paediatr Scand. 1979;68(1):29–31. doi: 10.1111/j.1651-2227.1979.tb04425.x.
    1. Black AK, Allen LH, Pelto GH, de Mata MP, Chavez A. Iron, vitamin B-12 and folate status in Mexico: associated factors in men and women and during pregnancy and lactation. J Nutr. 1994;124(8):1179–1188.
    1. Ford C, Rendle M, Tracy M, Richardson V, Ford H. Vitamin B12 levels in human milk during the first nine months of lactation. Int J Vit Nutr Res. 1996;66(4):329–331.

Source: PubMed

3
Abonner