Maternal Folate Status and the BHMT c.716G>A Polymorphism Affect the Betaine Dimethylglycine Pathway during Pregnancy

Jose M Colomina, Pere Cavallé-Busquets, Sílvia Fernàndez-Roig, Pol Solé-Navais, Joan D Fernandez-Ballart, Mónica Ballesteros, Per M Ueland, Klaus Meyer, Michelle M Murphy, Jose M Colomina, Pere Cavallé-Busquets, Sílvia Fernàndez-Roig, Pol Solé-Navais, Joan D Fernandez-Ballart, Mónica Ballesteros, Per M Ueland, Klaus Meyer, Michelle M Murphy

Abstract

The effect of the betaine: homocysteine methyltransferase BHMT c.716G>A (G: guanosine; A: adenosine) single nucleotide polymorphism (SNP) on the BHMT pathway is unknown during pregnancy. We hypothesised that it impairs betaine to dimethylglycine conversion and that folate status modifies its effect. We studied 612 women from the Reus Tarragona Birth Cohort from ≤12 gestational weeks (GW) throughout pregnancy. The frequency of the variant BHMT c.716A allele was 30.8% (95% confidence interval (CI): 28.3, 33.5). In participants with normal-high plasma folate status (>13.4 nmol/L), least square geometric mean [95% CI] plasma dimethylglycine (pDMG, µmol/L) was lower in the GA (2.35 [2.23, 2.47]) versus GG (2.58 [2.46, 2.70]) genotype at ≤12 GW (p < 0.05) and in the GA (2.08 [1.97, 2.19]) and AA (1.94 [1.75, 2.16]) versus GG (2.29 [2.18, 2.40]) genotypes at 15 GW (p < 0.05). No differences in pDMG between genotypes were observed in participants with possible folate deficiency (≤13.4 nmol/L) (p for interactions at ≤12 GW: 0.023 and 15 GW: 0.038). PDMG was lower in participants with the AA versus GG genotype at 34 GW (2.01 [1.79, 2.25] versus 2.44 [2.16, 2.76] and at labour, 2.51 [2.39, 2.64] versus 3.00 [2.84, 3.18], (p < 0.01)). Possible deficiency compared to normal-high folate status was associated with higher pDMG in multiple linear regression analysis (β coefficients [SEM] ranging from 0.07 [0.04], p < 0.05 to 0.20 [0.04], p < 0.001 in models from early and mid-late pregnancy) and the AA compared to GG genotype was associated with lower pDMG (β coefficients [SEM] ranging from -0.11 [0.06], p = 0.055 to -0.23 [0.06], p < 0.001).

Conclusion: During pregnancy, the BHMT pathway is affected by folate status and by the variant BHMT c.716A allele.

Keywords: A; BHMT c.716G> betaine; betaine: homocysteine methyltransferase; dimethylglycine; folate; pregnancy.

Conflict of interest statement

The authors declare no conflicts of interests.

Figures

Figure 1
Figure 1
Flow chart of participation in the study.
Figure 2
Figure 2
Plasma dimethylglycine according to BHMT c.716G>A genotype and folate status in early pregnancy. G: guanosine; A: adenosine; GW: Gestational weeks. Low: possibly deficient (plasma folate ≤ 13.4 nmol/L). Normal: normal-high (plasma folate > 13.4 nmol/L). At ≤12 GW, Low: GG (n = 57), GA (n = 48), AA (n = 14); Normal: GG (n = 231), GA (n = 193), AA (n = 47). At 15 GW, Low: GG (n = 37), GA (n = 40), AA (n = 6); Normal: GG (n = 169), GA (n = 141), AA (n = 34). The triple screening blood sample at 15 GW is optional and blood samples were available from less participants. Values are least square geometric means. Error bars represent 95% confidence interval. Comparisons between genotypes were made using ANCOVA adjusting for plasma betaine and gestational age at time of blood draw with posthoc Bonferroni correction for multiple comparisons of p values: * p < 0.05.

References

    1. McKeever M.P., Weir D.G., Molloy A., Scott J.M. Betaine-homocysteine methyltransferase: Organ distribution in man, pig and rat and subcellular distribution in the rat. Clin. Sci. 1991;81:551–556. doi: 10.1042/cs0810551.
    1. Finkelstein J.D., Martin J.J. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J. Biol. Chem. 1984;259:9508–9513.
    1. Finkelstein J.D. Methionine metabolism in mammals. J. Nutr. Biochem. 1990;1:228–237. doi: 10.1016/0955-2863(90)90070-2.
    1. Lambert B.D., Titgemeyer E.C., Stokka G.L., DeBey B.M., Löest C.A. Methionine supply to growing steers affects hepatic activities of methionine synthase and betaine-homocysteine methyltransferase, but not cystathionine synthase. J. Nutr. 2002;132:2004–2009.
    1. Gaull G.E., Von Berg W., Räihä N.C., Sturman J.A. Development of methyltransferase activities of human fetal tissues. Pediatr. Res. 1973;7:527–533.
    1. Sunden L.F., Renduchintala M.S., Park E.I., Miklasz S.D., Garrow T.A. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch. Biochem. Biophys. 1997;345:171–174. doi: 10.1006/abbi.1997.0246.
    1. Melse-Boonstra A., Holm P.I., Ueland P.M., Olthof M., Clarke R., Verhoef P. Betaine concentration as a determinant of fasting total homocysteine concentrations and the effect of folic acid supplementation on betaine concentrations. Am. J. Clin. Nutr. 2005;81:1378–1382.
    1. Imbard A., Smulders Y.M., Barto R., Smith D.E.C., Kok R.M., Jakobs C., Blom H.J. Plasma choline and betaine correlate with serum folate, plasma S-adenosyl-methionine and S-adenosyl-homocysteine in healthy volunteers. Clin. Chem. Lab. Med. 2013;51:683–692. doi: 10.1515/cclm-2012-0302.
    1. Allen R.H., Stabler S.P., Lindenbaum J. Serum betaine, N,N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism. 1993;42:1448–1460. doi: 10.1016/0026-0495(93)90198-W.
    1. Holm P.I., Ueland P.M., Vollset S.E., Midttun Ø., Blom H.J., Keijzer M.B., den Heijer M. Betaine and folate status as cooperative determinants of plasma homocysteine in humans. Arterioscler. Thromb. Vasc. Biol. 2005;25:379–385. doi: 10.1161/01.ATV.0000151283.33976.e6.
    1. Holm P.I., Bleie Ø., Ueland P.M., Lien E., Refsum H., Nordrehaug J.E., Nygård O. Betaine as a determinant of postmethionine load total plasma homocysteine before and after B-vitamin supplementation. Arterioscler. Thromb. Vasc. Biol. 2004;24:301–307. doi: 10.1161/01.ATV.0000114569.54976.31.
    1. Fernàndez-Roig S., Cavallé-Busquets P., Fernandez-Ballart J.D., Ballesteros M., Berrocal-Zaragoza M.I., Salat-Batlle J., Ueland P.M., Murphy M.M. Low folate status enhances pregnancy changes in plasma betaine and dimethylglycine concentrations and the association between betaine and homocysteine. Am. J. Clin. Nutr. 2013;97:1252–1259.
    1. Park E.I., Garrow T. Interaction between dietary methionine and methyl donor intake on rat liver betaine-homocysteine methyltransferase gene expression and organization of the human gene. J. Biol. Chem. 1999;274:7816–7824. doi: 10.1074/jbc.274.12.7816.
    1. Heil S.G., Lievers K.J., Boers G.H., Verhoef P., den Heijer M., Trijbels F.J., Blom H.J. Betaine-homocysteine methyltransferase (BHMT): Genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans. Mol. Genet. Metab. 2000;71:511–519. doi: 10.1006/mgme.2000.3078.
    1. Weisberg I.S., Park E., Ballman K.V., Berger P., Nunn M., Suh D.S., Breksa A.P., Garrow T.A., Rozen R. Investigations of a common genetic variant in betaine-homocysteine methyltransferase (BHMT) in coronary artery disease. Atherosclerosis. 2003;167:205–214. doi: 10.1016/S0021-9150(03)00010-8.
    1. Ananth C.V., Elsasser D., Kinzler W.L., Peltier M.R., Getahun D., Leclerc D., Rozen R.R. Polymorphisms in methionine synthase reductase and betaine-homocysteine S-methyltransferase genes: Risk of placental abruption. Mol. Genet. Metab. 2007;91:104–110. doi: 10.1016/j.ymgme.2007.02.004.
    1. Fredriksen A., Meyer K., Ueland P.M., Vollset S.E., Grotmol T., Schneede J. Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum. Mutat. 2007;28:856–865. doi: 10.1002/humu.20522.
    1. Liang S., Zhou Y., Wang H., Qian Y., Ma D., Tian W., Persaud-Sharma V., Yu C., Ren Y., Zhou S., et al. The effect of multiple single nucleotide polymorphisms in the folic acid pathway genes on homocysteine metabolism. Biomed. Res. Int. 2014;2014:560183. doi: 10.1155/2014/560183.
    1. Liu J., Qi J., Yu X., Zhu J., Zhang L., Ning Q., Luo X. Investigations of single nucleotide polymorphisms in folate pathway genes in Chinese families with neural tube defects. J. Neurol. Sci. 2014;337:61–66. doi: 10.1016/j.jns.2013.11.017.
    1. Shaw G.M., Lu W., Zhu H., Yang W., Briggs F.B.S., Carmichael S.L., Barcellos L.F., Lammer E.J., Finnell R.H. 118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects. BMC Med. Genet. 2009;10:621. doi: 10.1186/1471-2350-10-49.
    1. Boyles A.L., Billups A.V., Deak K.L., Siegel D.G., Mehltretter L., Slifer S.H., Bassuk A.G., Kessler J.A., Reed M.C., Nijhout H.F., et al. Neural tube defects and folate pathway genes: Family-based association tests of gene-gene and gene-environment interactions. Environ. Health Perspect. 2006;114:1547–1552. doi: 10.1289/ehp.9166.
    1. Mostowska A., Hozyasz K.K., Wojcicki P., Dziegelewska M., Jagodzinski P.P. Associations of folate and choline metabolism gene polymorphisms with orofacial clefts. J. Med. Genet. 2010;47:809–815. doi: 10.1136/jmg.2009.070029.
    1. Zampieri B.L., Biselli J.M., Goloni-Bertollo E.M., Vannucchi H., Carvalho V.M., Cordeiro J.A., Pavarino E.C. Maternal risk for Down syndrome is modulated by genes involved in folate metabolism. Dis. Markers. 2012;32:73–81. doi: 10.1155/2012/693864.
    1. Amorim M.R., Moura C.M., Gomes A.D., Barboza H.N., Lopes R.B., Ribeiro M.G., Costa Lima M.A. Betaine–homocysteine methyltransferase 742G>A polymorphism and risk of down syndrome offspring in a Brazilian population. Mol. Biol. Rep. 2013;40:4685–4689. doi: 10.1007/s11033-013-2563-x.
    1. Álvarez-Dardet C., Alonso J., Domingo A., Regidor E. La Medición de la Clase Social en Ciencias de la Salud. SG Editores, SEE; Barcelona, Spain: 1995.
    1. Dirección General de Salud Pública (Ministerio de Sanidad y Consumo—Gobierno de España) Recomendaciones Sobre Suplementación con ácido Fólico para la Prevención de Defectos del Tubo Neural. Volume 25 Dirección General de Salud Pública; Madrid, Spain: 2001.
    1. Molloy A.M., Scott J.M. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Methods Enzymol. 1997;281:43–53.
    1. Holm P.I., Ueland P.M., Kvalheim G., Lien E.A. Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin. Chem. 2003;49:286–294. doi: 10.1373/49.2.286.
    1. Ueland P.M., Midttun O., Windelberg A., Svardal A., Skålevik R., Hustad S. Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry. Clin. Chem. Lab. Med. 2007;45:1737–1745. doi: 10.1515/CCLM.2007.339.
    1. Midttun Ø., Hustad S., Ueland P.M. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009;23:1371–1379. doi: 10.1002/rcm.4013.
    1. Meyer K., Fredriksen A., Ueland P.M. High-level multiplex genotyping of polymorphisms involved in folate or homocysteine metabolism by matrix-assisted laser desorption/ionization mass spectrometry. Clin. Chem. 2004;50:391–402. doi: 10.1373/clinchem.2003.026799.
    1. World Health Organization Serum and Red Blood Cell Folate Concentrations for Assessing Folate Status in Populations. 2012. [(accessed on 6 September 2016)]. Vitamin and Mineral Nutrition Information System. Available online: .
    1. Giusti B., Sestini I., Saracini C., Sticchi E., Bolli P., Magi A., Gori A.M., Marcucci R., Gensini G.F., Abbate R. High-throughput multiplex single-nucleotide polymorphism (SNP) analysis in genes involved in methionine metabolism. Biochem. Genet. 2008;46:406–423. doi: 10.1007/s10528-008-9159-5.
    1. Castro C., Breksa A.P., Salisbury E., Garrow T.A. Betaine-Homocysteine S-Methyltransferase (BHMT) Transcription Is Inhibited by S-Adenosylmethionine (ADOMET) In: Milstien S., Kapatos G., Levine R.A., Shane B., editors. Chemistry and Biology of Pteridines and Folates. Springer; Bethesda, Spain: 2002. pp. 549–556.
    1. Ou X., Yang H., Ramani K., Ara A.I., Chen H., Mato J.M., Lu S.C. Inhibition of human betaine-homocysteine methyltransferase expression by S-adenosylmethionine and methylthioadenosine. Biochem. J. 2007;401:87–96. doi: 10.1042/BJ20061119.
    1. Finkelstein J.D., Martin J.J. Inactivation of betaine-homocysteine methyltransferase by adenosylmethionine and adenosylethionine. Biochem. Biophys. Res. Commun. 1984;118:14–19. doi: 10.1016/0006-291X(84)91060-X.
    1. Finkelstein J.D., Kyle W.E., Harris B.J. Methionine metabolism in mammals: Regulatory effects of S-adenosylhomocysteine. Arch. Biochem. Biophys. 1974;165:774–779. doi: 10.1016/0003-9861(74)90306-3.
    1. Finkelstein J.D., Harris B.J., Kyle W.E. Methionine metabolism in mammals: Kinetic study of betaine-homocysteine methyltransferase. Arch. Biochem. Biophys. 1972;153:320–324. doi: 10.1016/0003-9861(72)90451-1.
    1. Szegedi S.S., Castro C.C., Koutmos M., Garrow T.A. Betaine-homocysteine S-methyltransferase-2 is an S-methylmethionine-homocysteine methyltransferase. J. Biol. Chem. 2008;283:8939–8945. doi: 10.1074/jbc.M710449200.
    1. Christensen K.E., Mikael L.G., Leung K.Y., Lévesque N., Deng L., Wu Q., Malysheva O.V., Best A., Caudill M.A., Greene N.D., et al. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am. J. Clin. Nutr. 2015;101:646–658. doi: 10.3945/ajcn.114.086603.
    1. Chmurzynska A., Malinowska A.M. Homocysteine homeostasis in the rat is maintained by compensatory changes in cystathionine β-synthase, betaine-homocysteine methyltransferase, and phosphatidylethanolamine N-methyltransferase gene transcription occurring in response to maternal protein and folic acid intake during pregnancy and fat intake after weaning. Nutr. Res. 2011;31:572–577.
    1. Eussen S.J.P.M., Ueland P.M., Clarke R., Blom H.J., Hoefnagels W.H.L., van Staveren W., de Groot L.C.P.G.M. The association of betaine, homocysteine and related metabolites with cognitive function in Dutch elderly people. Br. J. Nutr. 2007;98:960–968. doi: 10.1017/S0007114507750912.
    1. Dominguez-Salas P., Moore S.E., Cole D., da Costa K.A., Cox S.E., Dyer R.A., Fulford A.J.C., Innis S.M., Waterland R.A., Zeisel S.H., et al. DNA methylation potential: dietary intake and blood concentrations of one-carbon metabolites and cofactors in rural African women. Am. J. Clin. Nutr. 2013;97:1217–1227. doi: 10.3945/ajcn.112.048462.
    1. Yancey P.H., Clark M.E., Hand S.C., Bowlus R.D., Somero G.N. Living with water stress: Evolution of osmolyte systems. Science. 1982;217:1214–1222. doi: 10.1126/science.7112124.
    1. Sheikh-Hamad D., García-Pérez A., Ferraris J.D., Peters E.M., Burg M.B. Induction of gene expression by heat shock versus osmotic stress. Am. J. Physiol. 1994;267:F28–F34.
    1. Feng Q., Kalari K., Fridley B.L., Jenkins G., Ji Y., Abo R., Hebbring S., Zhang J., Nye M.D., Leeder J.S., et al. Betaine-homocysteine methyltransferase: Human liver genotype-phenotype correlation. Mol. Genet. Metab. 2011;102:126–133. doi: 10.1016/j.ymgme.2010.10.010.
    1. Ganu R., Garrow T., Koutmos M., Rund L., Schook L.B. Splicing variants of the porcine betaine-homocysteine S-methyltransferase gene: Implications for mammalian metabolism. Gene. 2013;529:228–237. doi: 10.1016/j.gene.2013.07.103.
    1. Murphy M.M., Fernandez-Ballart J.D. Homocysteine in pregnancy. Adv. Clin. Chem. 2011;53:105–137.
    1. Murphy M.M., Fernandez-Ballart J.D., Molloy A.M., Canals J. Moderately elevated maternal homocysteine at preconception is inversely associated with cognitive performance in children 4 months and 6 years after birth. Matern. Child. Nutr. 2016 doi: 10.1111/mcn.12289.
    1. Collinsova M., Strakova J., Jiracek J., Garrow T.A. Inhibition of betaine-homocysteine S-methyltransferase causes hyperhomocysteinemia in mice. J. Nutr. 2006;136:1493–1497.
    1. Murphy M.M., Scott J.M., McPartlin J.M., Fernandez-Ballart J.D. The pregnancy-related decrease in fasting plasma homocysteine is not explained by folic acid supplementation, hemodilution, or a decrease in albumin in a longitudinal study. Am. J. Clin. Nutr. 2002;76:614–619.
    1. Lee J.E., Jacques P.F., Dougherty L., Selhub J., Giovannucci E., Zeisel S.H., Cho E. Are dietary choline and betaine intakes determinants of total homocysteine concentration? Am. J. Clin. Nutr. 2010;91:1303–1310. doi: 10.3945/ajcn.2009.28456.
    1. Fiskerstrand T., Refsum H., Kvalheim G., Ueland P.M. Homocysteine and other thiols in plasma and urine: Automated determination and sample stability. Clin. Chem. 1993;39:263–271.

Source: PubMed

3
Abonner