Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex

Martin J Gibala, Jenna B Gillen, Michael E Percival, Martin J Gibala, Jenna B Gillen, Michael E Percival

Abstract

Interval training refers to the basic concept of alternating periods of relatively intense exercise with periods of lower-intensity effort or complete rest for recovery. Low-volume interval training refers to sessions that involve a relatively small total amount of exercise (i.e. ≤10 min of intense exercise), compared with traditional moderate-intensity continuous training (MICT) protocols that are generally reflected in public health guidelines. In an effort to standardize terminology, a classification scheme was recently proposed in which the term 'high-intensity interval training' (HIIT) be used to describe protocols in which the training stimulus is 'near maximal' or the target intensity is between 80 and 100 % of maximal heart rate, and 'sprint interval training' (SIT) be used for protocols that involve 'all out' or 'supramaximal' efforts, in which target intensities correspond to workloads greater than what is required to elicit 100 % of maximal oxygen uptake (VO2max). Both low-volume SIT and HIIT constitute relatively time-efficient training strategies to rapidly enhance the capacity for aerobic energy metabolism and elicit physiological remodeling that resembles changes normally associated with high-volume MICT. Short-term SIT and HIIT protocols have also been shown to improve health-related indices, including cardiorespiratory fitness and markers of glycemic control in both healthy individuals and those at risk for, or afflicted by, cardiometabolic diseases. Recent evidence from a limited number of studies has highlighted potential sex-based differences in the adaptive response to SIT in particular. It has also been suggested that specific nutritional interventions, in particular those that can augment muscle buffering capacity, such as sodium bicarbonate, may enhance the adaptive response to low-volume interval training.

Figures

Fig. 1
Fig. 1
Examples of protocols employed in interval training studies, expressed relative to PPO that is required to elicit VO2max or VO2 peak. The figure shows typical MICT, e.g. 50 min at ~35 % of PPO, which elicits ~70 % of HRmax (hatched box); low-volume HIIT, e.g. 10 × 1 min at a constant workload corresponding to ~75 % of PPO, interspersed with 1 min of recovery, which elicits ~85–90 % of HRmax during the intervals (grey bars); and low-volume SIT, e.g. 4 × 30 s ‘all out’ effort at a variable power output corresponding to ~175 % of PPO (averaged over the course of the intervals), interspersed with 4 min of recovery, which elicits ~90–95 % of HRmax during the intervals (black bars). Power output and heart rate estimates are derived from Little et al. [31] and Skelly et al. [60]. PPO, peak power output, VO2max, maximal oxygen uptake, VO2peak, peak VO2, MICT, moderate-intensity continuous exercise, HRmax, maximum heart rate, HIIT, high-intensity interval training, SIT, sprint-interval training
Fig. 2
Fig. 2
Hypothesized acute signaling mechanism underpinning enhanced training adaptations in response to chronic NaHCO3 supplementation. a AMPK acts as an energy sensor that is activated by various signals generated during muscle contraction (e.g. increased AMP), which subsequently activates PGC-1α, leading to increased transcription of various genes involved in mitochondrial biogenesis. b Supplementation with NaHCO3 may alter muscle metabolism, resulting in greater increases in AMP, which could enhance AMPK activation through interaction with the γ-subunit. Glycogen utilization during exercise is also increased after NaHCO3 supplementation, and the AMPK β-subunit that is sequestered by glycogen may be liberated to a greater extent. Greater AMPK activation could result in greater downstream signaling, including activation of PGC-1α and increased gene expression. Red arrows depict potential mechanisms that are supported by experimental data, whereas question marks indicate areas that remain to be directly investigated. NaHCO3 sodium bicarbonate, AMPK adenosine monophosphate kinase, PGC-1α peroxisome proliferator-activated receptor γ co-activator

References

    1. Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand J Med Sci Sports. 2010;20(Suppl 2):11–23.
    1. Kubukeli ZN, Noakes TD, Dennis SC. Training techniques to improve endurance exercise performances. Sports Med. 2002;32:489–509.
    1. Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl 2):1–10.
    1. Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32:53–73.
    1. Ross A, Leveritt M. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sports Med. 2001;31:1063–1082.
    1. Gibala MJ, Little JP, MacDonald MJ, et al. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590:1077–1084.
    1. Gibala MJ, Jones AM. Physiological and performance adaptations to high-intensity interval training. Nestle Nutr Inst Workshop Ser. 2013;76:51–60.
    1. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48:1227–1234.
    1. Wisløff U, Ellingsen Ø, Kemi OJ. High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev. 2009;37:139–146.
    1. Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–1359.
    1. O’Donovan G, Blazevich AJ, Boreham C, et al. The ABC of Physical Activity for Health: a consensus statement from the British Association of Sport and Exercise Sciences. J Sports Sci. 2010;28:573–591.
    1. Tremblay MS, Warburton DE, Janssen I, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;26:36–58.
    1. Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab. 2014;39:409–412.
    1. Guiraud T, Nigam A, Gremeaux V, et al. High-intensity interval training in cardiac rehabilitation. Sports Med. 2012;42:587–605.
    1. Haykowsky MJ, Timmons MP, Kruger C, et al. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am J Cardiol. 2013;111:1466–1469.
    1. Hwang CL, Wu YT, Chou CH. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J Cardiopulm Rehabil Prev. 2011;31:378–385.
    1. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42:489–509.
    1. Meyer P, Gayda M, Juneau M, et al. High-intensity aerobic interval exercise in chronic heart failure. Curr Heart Fail Rep. 2013;10:130–138.
    1. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43:313–338.
    1. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43:927–954.
    1. Tschakert G, Hofmann P. High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform. 2013;8:600–610.
    1. Mann T, Lamberts RP, Lambert MI. Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 2013;43:613–625.
    1. Hood MS, Little JP, Tarnopolsky MA, et al. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43:1849–1856.
    1. Burgomaster KA, Hughes SC, Heigenhauser GJF, et al. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity. J Appl Physiol. 2005;98:1895–1900.
    1. MacDougall JD, Hicks AL, MacDonald JR, et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol. 1998;84:2138–2142.
    1. Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996;28:1327–1330.
    1. Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol. 2006;575:901–911.
    1. Little JP, Safdar AS, Wilkin GP, et al. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol. 2010;586:1011–1022.
    1. Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;586:151–160.
    1. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–184.
    1. Little JP, Safdar A, Bishop D, et al. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300:R1303–R1310.
    1. Bartlett JD, Hwa-Joo C, Jeong TS, et al. Matched work high-intensity interval and continuous running induces similar increases in PGC-1α mRNA, AMPK, p38 and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;11:1135–1143.
    1. Rakobowchuk M, Tanguay S, Burgomaster KA, et al. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295:R236–R242.
    1. Cocks M, Shaw CS, Shepherd SO, et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol. 2013;591:641–656.
    1. McKay BR, Paterson DH, Kowalchuk JM. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. J Appl Physiol. 2009;107:128–138.
    1. Bailey SJ, Wilkerson DP, Dimenna FJ, et al. Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics in humans. J Appl Physiol. 2009;106:1875–1887.
    1. Macpherson RE, Hazell TJ, Olver TD, et al. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc. 2011;43:115–122.
    1. Jacobs RA, Flück D, Bonne TC, et al. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol. 2013;115:785–793.
    1. Esfandiari S, Sasson Z, Goodman JM. Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise. Eur J Appl Physiol. 2014;114:331–343.
    1. Kaminsky LA, Arena R, Beckie TMS, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2011;127:652–662.
    1. Hazell TJ, Macpherson REK, Gravelle BMR, et al. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol. 2010;110:153–160.
    1. Astorino T, Allen R, Roberson D, et al. Effect of high-intensity interval training on cardiovascular function, VO2max and muscular force. J Strength Cond Res. 2012;26:138–145.
    1. Whyte LJ, Gill JMR, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism. 2010;59:1421–1428.
    1. Gist NH, Fedewa MV, Dishman RK, et al. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis. Sports Med. 2013;44:269–279.
    1. Lee D, Sui X, Artero EG, et al. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation. 2013;124:2483–2490.
    1. Sloth M, Sloth D, Overgaard K, et al. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand J Med Sci Sports. 2013;23:341–352.
    1. Ma JK, Scribbans TD, Edgett BA, et al. Extremely low-volume, high-intensity interval training improves exercise capacity and increases mitochondrial protein content in human skeletal muscle. J Mol Integr Physiol. 2013;3:202–210.
    1. Metcalfe RS, Babraj JA, Fawkner SG, et al. Towards the minimal amount of exercise for improving metabolic health: beneficial effects of reduced-exertion high-intensity interval training. Eur J Appl Physiol. 2011;112:2767–2775.
    1. Gillen JB, Percival ME, Ludzki A, et al. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity. 2013;21:2249–2255.
    1. Currie KD, Dubberley JB, McKelvie RS, et al. Low-volume, high-intensity interval training in patients with CAD. Med Sci Sports Exerc. 2013;45:1436–1442.
    1. Boyd JC, Simpson CA, Jung ME, et al. Reducing the intensity and volume of interval training diminishes cardiovascular adaptation but not mitochondrial biogenesis in overweight/obese men. PLoS One. 2013;8(7):e68091.
    1. Babraj JA, Vollaard NBJ, Keast C, et al. Extremely short duration high intensity interval training substantially improves insulin action in young healthy males. BMC Endocr Disord. 2009;9:3–10.
    1. Richards JC, Johnson TK, Kuzma JN, et al. Short-term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to beta-adrenergic stimulation. J Physiol. 2010;588:2961–2972.
    1. Little JP, Gillen JB, Percival M, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol. 2011;111:1554–1560.
    1. Macpherson REK, Hazell TJ, Olver TD, et al. Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc. 2010;43:115–122.
    1. Hazell TJ, Hamilton CD, Olver TD, et al. Running sprint interval training induces fat loss in women. Appl Physiol Nutr Metab. 2014;39:944–950.
    1. Trapp E, Heydari M, Freund J, et al. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes. 2008;32:684–691.
    1. Boutcher SH. High-intensity intermittent exercise and fat loss. J Obes. 2011;2011:1–10.
    1. Hazell TJ, Olver TD, Hamilton CD, et al. Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. Int J Sport Nutr Exerc Metab. 2012;22:276–283.
    1. Skelly LE, Andrews PA, Gillen JB, et al. High intensity interval exercise induces 24 hour energy expenditure similar to traditional endurance exercise despite reduced time commitment. Appl Physiol Nutr Metab. 2014;39:845–848.
    1. Williams CB, Zelt JG, Castellani LN, et al. Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise. Appl Physiol Nutr Metab. 2013;38:1236–1244.
    1. Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, et al. Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol. 1999;87:1326–1332.
    1. Gratas-Delamarche A, Le Cam R, Delamarche P, et al. Lactate and catecholamine responses in male and female sprinters during a Wingate test. Eur J Appl Physiol. 1994;68:362–366.
    1. Esbjörnsson-Liljedahl M, Bodin K, Jansson E. Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise. J Appl Physiol. 2002;93:1075–1083.
    1. Jaworowski A, Porter MM, Holmbäck AM, et al. Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition. Acta Physiol Scand. 2002;176:215–225.
    1. Esbjörnsson Liljedahl M, Holm I, Sylvén C, et al. Different responses of skeletal muscle following sprint training in men and women. Eur J Appl Physiol Occup Physiol. 1996;74:375–383.
    1. Hill DW, Smith JC, Texas N. Gender difference in anaerobic capacity: role of aerobic contribution. Br J Sports Med. 1993;27:45–48.
    1. Scalzo RL, Peltonen GL, Binns SE, et al. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J. 2014;28:1–10.
    1. Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. Med Sci Sports Exerc. 2008;40:648–654.
    1. Hawley JA, Burke LM, Phillips SM, et al. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol. 2011;110:834–845.
    1. Gibala MJ. Nutritional strategies to support adaptation to high-intensity interval training in team sports. Nestle Nutr Inst Workshop Ser. 2013;75:41–49.
    1. Bishop D. Dietary supplements and team-sport performance. Sports Med. 2010;40:995–1017.
    1. Mujika I, Burke LM. Nutrition in team sports. Ann Nutr Metab. 2010;57(Suppl 2):26–35.
    1. Stellingwerff T, Maughan RJ, Burke LM. Nutrition for power sports: Middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming. J Sports Sci. 2011;29(Suppl 1):S79–S89.
    1. Hawley JA, Burke LM. Carbohydrate availability and training adaptation: effects on cell metabolism. Exerc Sport Sci Rev. 2010;38:152–160.
    1. Hansen AK, Fischer CP, Plomgaard P, et al. Skeletal muscle adaptation: Training twice every second day vs. training once daily. J Appl Physiol. 2005;98:93–99.
    1. Hulston CJ, Venables MC, Mann CH, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42:2046–2055.
    1. Morton JP, Croft L, Bartlett JD, et al. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106:1513–1521.
    1. Yeo WK, Paton CD, Garnham AP, et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462–1470.
    1. Yeo WK, McGee SL, Carey AL, et al. Acute signaling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95:351–358.
    1. Cochran AJ, Little JP, Tarnopolsky MA, et al. Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. J Appl Physiol. 2010;108:628–636.
    1. Bartlett JD, Louhelainen J, Iqbal Z, et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: Implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450–R458.
    1. Polekhina G, Gupta A, Michell BJ, et al. AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol. 2003;13:867–871.
    1. Polekhina G, Gupta A, van Denderen BJ, et al. Structural basis for glycogen recognition by AMP-activated protein kinase. Structure. 2005;13:1453–1462.
    1. McBride A, Ghilagaber S, Nikolaev A, et al. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009;9:23–34.
    1. Bogdanis GC, Nevill ME, Boobis LH, et al. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol. 1996;80:876–884.
    1. Parolin ML, Chesley A, Matsos MP, et al. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277:E890–E900.
    1. Spriet LL, Lindinger MI, McKelvie RS, et al. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol. 1989;66:8–13.
    1. Mendez-Villanueva A, Edge J, Suriano R, et al. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS One. 2012;7:e51977.
    1. Chin ER, Allen DG. The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol. 1998;512:831–840.
    1. Fabiato A, Fabiato F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiace and skeletal muscles. J Physiol. 1978;276:233–255.
    1. Bangsbo J, Madsen K, Kiens B, et al. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol. 1996;495:587–596.
    1. Westerblad H, Bruton JD, Lannergren J. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol. 1997;500:193–204.
    1. Bishop D, Edge J, Goodman C. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol. 2004;92:540–547.
    1. Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1997;75:7–13.
    1. Hollidge-Horvat MG, Parolin ML, Wong D, et al. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab. 2000;278:E316–E329.
    1. Bishop D, Edge J, Davis C, et al. Induced metabolic alkalosis affects muscle metabolism and repeated-sprint ability. Med Sci Sports Exerc. 2004;36:807–813.
    1. Sostaric SM, Skinner SL, Brown MJ, et al. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. J Physiol. 2006;570:185–205.
    1. Raymer GH, Marsh GD, Kowalchuk JM, et al. Metabolic effects of induced alkalosis during progressive forearm exercise to fatigue. J Appl Physiol. 2004;96:2050–2056.
    1. Street D, Nielsen JJ, Bangsbo J, et al. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. J Physiol. 2005;566:481–489.
    1. Carr AJ, Hopkins WG, Gore CJ. Effects of alkalosis and acidosis on performance: a meta-analysis. Sports Med. 2011;41:801–814.
    1. Saunders B, Sale C, Harris RC, et al. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses. Int J Sports Physiol Perform. 2014;9:627–632.
    1. Edge J, Bishop D, Goodman C. Effects of chronic NaHCO3 ingestion during interval training on changes to muscle buffer capacity, metabolism, and short-term endurance performance. J Appl Physiol. 2006;101:918–925.
    1. Thomas C, Bishop D, Moore-Morris T, et al. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: Influence of chronic metabolic alkalosis. Am J Physiol Endocrinol Metab. 2007;293:E916–E922.
    1. Bishop DJ, Thomas C, Moore-Morris T, et al. Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats. Am J Physiol Endocrinol Metab. 2010;299:E225–E233.
    1. Sutton JR, Jones NL, Toews CJ. Effect of pH on muscle glycolysis during exercise. Clin Sci. 1981;61:331–338.
    1. Stephens TJ, McKenna MJ, Canny BJ, et al. Effect of sodium bicarbonate on muscle metabolism during intense endurance cycling. Med Sci Sports Exerc. 2002;34:614–621.
    1. Bouissou P, Defer G, Guezennec CY, et al. Metabolic and blood catecholamine responses to exercise during alkalosis. Med Sci Sports Exerc. 1988;20:228–232.
    1. Bezaire V, Heigenhauser GJ, Spriet LL. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle. Am J Physiol Endocrinol Metab. 2004;286:E85–E91.
    1. Starritt EC, Howlett RA, Heigenhauser GJ, et al. Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. Am J Physiol Endocrinol Metab. 2000;278:462–468.
    1. van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, et al. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001;536:295–304.
    1. Jeppesen J, Kiens B. Regulation and limitations to fatty acid oxidation during exercise. J Physiol. 2012;590:1059–1068.
    1. Hill CA, Harris RC, Kim HJ, et al. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32:225–233.
    1. Hobson RM, Saunders B, Ball G, et al. Effects of beta-alanine supplementation on exercise performance: a meta-analysis. Amino Acids. 2012;43:25–37.
    1. Gross M, Boesch C, Bolliger CS, et al. Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance. Eur J Appl Physiol. 2014;114:221–234.
    1. Smith AE, Walter AA, Graef JL, et al. Effects of beta-alanine supplementation and high-intensity interval training on endurance performance and body composition in men; a double-blind trial. J Int Soc Sports Nutr. 2009;6:18.
    1. Walter AA, Smith AE, Kendall KL, et al. Six weeks of high-intensity interval training with and without beta-alanine supplementation for improving cardiovascular fitness in women. J Strength Cond Res. 2010;24:1199–1207.
    1. Trost SG, Owen N, Bauman AE, et al. Correlates of adults’ participation in physical activity: review and update. Med Sci Sports Exerc. 2002;34:1996–2001.
    1. Bartlett JD, Close GL, MacLaren DP, et al. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci. 2011;29:547–553.
    1. van Loon LJ, Tipton KD. Concluding remarks: nutritional strategies to support the adaptive response to prolonged exercise training. Nestle Nutr Inst Workshop Ser. 2013;75:135–141.

Source: PubMed

3
Abonner