A Review on the Relationship Between Sound and Movement in Sports and Rehabilitation

Nina Schaffert, Thenille Braun Janzen, Klaus Mattes, Michael H Thaut, Nina Schaffert, Thenille Braun Janzen, Klaus Mattes, Michael H Thaut

Abstract

The role of auditory information on perceptual-motor processes has gained increased interest in sports and psychology research in recent years. Numerous neurobiological and behavioral studies have demonstrated the close interaction between auditory and motor areas of the brain, and the importance of auditory information for movement execution, control, and learning. In applied research, artificially produced acoustic information and real-time auditory information have been implemented in sports and rehabilitation to improve motor performance in athletes, healthy individuals, and patients affected by neurological or movement disorders. However, this research is scattered both across time and scientific disciplines. The aim of this paper is to provide an overview about the interaction between movement and sound and review the current literature regarding the effect of natural movement sounds, movement sonification, and rhythmic auditory information in sports and motor rehabilitation. The focus here is threefold: firstly, we provide an overview of empirical studies using natural movement sounds and movement sonification in sports. Secondly, we review recent clinical and applied studies using rhythmic auditory information and sonification in rehabilitation, addressing in particular studies on Parkinson's disease and stroke. Thirdly, we summarize current evidence regarding the cognitive mechanisms and neural correlates underlying the processing of auditory information during movement execution and its mental representation. The current state of knowledge here reviewed provides evidence of the feasibility and effectiveness of the application of auditory information to improve movement execution, control, and (re)learning in sports and motor rehabilitation. Findings also corroborate the critical role of auditory information in auditory-motor coupling during motor (re)learning and performance, suggesting that this area of clinical and applied research has a large potential that is yet to be fully explored.

Keywords: Parkinson’s disease; acoustic feedback; motor rehabilitation; movement sonification; rhythmic auditory stimulation; sports; stroke.

Figures

FIGURE 1
FIGURE 1
Overview of the search and screening process for the relevant literature.

References

    1. Aglioti S. M., Pazzaglia M. (2010). Representing actions through their sound. Exp. Brain Res. 206 141–151. 10.1007/s00221-010-2344-x
    1. Agostini T., Righi G., Galmonte A., Bruno P. (2004). “The relevance of auditory information in optimizing hammer throwers performance,” in Biomechanics and Sports. CISM Courses and Lectures Vol. 473 ed. Pascolo P. B. (Vienna: Springer; ), 10.1007/978-3-7091-2760-5_9
    1. Alaerts K., Swinnen S. P., Wenderoth N. (2009). Interaction of sound and sight during action perception: evidence for shared modality-dependent action representations. Neuropsychologia 47 2593–2599. 10.1016/j.neuropsychologia.2009.05.006
    1. Allerdissen M., Güldenpenning I., Schack T., Bläsing B. (2017). Recognizing fencing attacks from auditory and visual information: a comparison between expert fencers and novices. Psychol. Sport Exerc. 31 123–130. 10.1016/j.psychsport.2017.04.009
    1. Almqvist Gref A., Elblaus L., Falkenberg Hansen K. (2016). “Sonification as catalyst in training manual wheelchair operation for sports and everyday life,” in Proceedings of the Sound and Music Computing Conference, Stockholm, 9–14.
    1. Altenmüller E., Marco-Pallares J., Münte T. F., Schneider S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Ann. N. Y. Acad. Sci. 1169 395–405. 10.1111/j.1749-6632.2009.04580.x
    1. Altenmüller E., Schlaug G. (2013). Neurologic music therapy: the beneficial effects of music making on neurorehabilitation. Acoust. Sci. Technol. 34 5–12. 10.1250/ast.34.5
    1. Altenmüller E., Schlaug G. (2015). Apollo’s gift: new aspects of neurologic music therapy. Prog. Brain Res. 217 237–252. 10.1016/bs.pbr.2014.11.029
    1. Amengual J. L., Rojo N., de Las Heras M. V., Marco-Pallarés J., Grau-Sánchez J., Schneider S., et al. (2013). Sensorimotor plasticity after music-supported therapy in chronic stroke patients revealed by transcranial magnetic stimulation. PLoS One 8:e61883. 10.1371/journal.pone.0061883
    1. Ammirante P., Patel A. D., Russo F. A. (2016). Synchronizing to auditory and tactile metronomes: a test of the auditory-motor enhancement hypothesis. Psychon. Bull. Rev. 23 1882–1890. 10.3758/s13423-016-1067-9
    1. Anlauff J., Cooperstock J. R., Fung J. (2013). “Augmented feedback for learning single-legged stance on a slackline,” in Proceedings of the International Conference on Virtual Rehabilitation (ICVR) (Philadelphia, PA: IEEE), 162–163. 10.1109/ICVR.2013.6662104
    1. Arias P., Cudeiro J. (2008). Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s disease patients. Exp. Brain Res. 186 589–601. 10.1007/s00221-007-1263-y
    1. Arias P., Cudeiro J. (2010). Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait. PLoS One 5:e9675. 10.1371/journal.pone.0009675
    1. Ashoori A., Eagleman D. M., Jankovic J. (2015). Effects of auditory rhythm and music on gait disturbances in Parkinson’s disease. Front. Neurol. 6:234. 10.3389/fneur.2015.00234
    1. Avissar D., Leider C. N., Bennett C., Gailey R. (2013). “An audio game app using interactive movement sonification for targeted posture control,” in Proceedings of the International Conference on Auditory Display, Łódź, 45–48.
    1. Aziz-Zadeh L., Iacoboni M., Zaidel E., Wilson S., Mazziotta J. (2004). Left hemisphere motor facilitation in response to manual action sounds. Eur. J. Neurosci. 19 2609–2612. 10.1111/j.0953-816X.2004.03348.x
    1. Aziz-Zadeh L., Wilson S. M., Rizzolatti G., Iacoboni M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Curr. Biol. 16 1818–1823. 10.1016/j.cub.2006.07.060
    1. Bailey C. A., Corona F., Murgia M., Pili R., Pau M., Côté J. N. (2018). Electromyographical gait characteristics in Parkinson’s disease: effects of combined physical therapy and rhythmic auditory stimulation. Front. Neurol. 9:211 10.3389/fneur.2018.00211
    1. Baker K., Rochester L., Nieuwboer A. (2008). The effect of cues on gait variability-reducing the attentional cost of walking in people with Parkinson’s disease. Parkinsonism. Relat. Disord. 14 314–320. 10.1016/j.parkreldis.2007.09.008
    1. Bangert M., Altenmüller E. O. (2003). Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci. 4:26. 10.1186/1471-2202-4-26
    1. Bangert M., Peschel T., Schlaug G., Rotte M., Drescher D., Hinrichs H., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage 30 917–926. 10.1016/j.neuroimage.2005.10.044
    1. Baram Y., Aharon-Peretz J., Badarny S., Susel Z., Schlesinger I. (2016). Closed-loop auditory feedback for the improvement of gait in patients with Parkinson’s disease. J. Neurol. Sci. 363 104–106. 10.1016/j.jns.2016.02.021
    1. Baram Y., Lenger R. (2012). Gait improvement in patients with cerebral palsy by visual and auditory feedback. Neuromodulation 15 48–52. 10.1111/j.1525-1403.2011.00412.x
    1. Barrass S., Schaffert N., Barrass T. (2010). “Probing preferences between six designs of interactive sonifications for recreational sports, health and fitness,” in Proceedings of the ISon 2010, 3rd Interactive Sonification Workshop (Stockholm: Interactive-Sonification; ), 23–29.
    1. Batavia M., Gianutsos J. G., Vaccaro A., Gold J. T. (2001). A do-it-yourself membrane-activated auditory feedback device for weight bearing and gait training: a case report. Arch. Phys. Med. Rehabil. 82 541–545. 10.1053/apmr.2001.21931
    1. Baudry L., Leroy D., Thouvarecq R., Chollet D. (2006). Auditory concurrent feedback benefits on the circle performed in gymnastics. J. Sports Sci. 24 149–156. 10.1080/02640410500130979
    1. Baumann O., Greenlee M. W. (2006). Neural correlates of coherent audiovisual motion perception. Cereb. Cortex 17 1433–1443. 10.1093/cercor/bhl055
    1. Baumann S., Koeneke S., Schmidt C. F., Meyer M., Lutz K., Jancke L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res. 1161 65–78. 10.1016/j.brainres.2007.05.045
    1. Benoit C. E., Dalla Bella S., Farrugia N., Obrig H., Kotz S. A. (2014). Non-gait related benefits of auditory cueing in Parkinson’s disease. Procedia Soc. Behav. Sci. 126 210–211. 10.1016/j.sbspro.2014.02.378
    1. Bevilacqua F., Boyer E. O., Françoise J., Houix O., Susini P., Roby-Brami A., et al. (2016). Sensori-motor learning with movement sonification: perspectives from recent interdisciplinary studies. Front. Neurosci. 10:385. 10.3389/fnins.2016.00385
    1. Bianco R., Novembre G., Keller P. E. E., Kim S.-G. G., Scharf F., Friederici A. D. D., et al. (2016). Neural networks for harmonic structure in music perception and action. Neuroimage 142 454–464. 10.1016/j.neuroimage.2016.08.025
    1. Bidet-Caulet A., Voisin J., Bertrand O., Fonlupt P. (2005). Listening to a walking human activates the temporal biological motion area. Neuroimage 28 132–139. 10.1016/j.neuroimage.2005.06.018
    1. Bieńkiewicz M., Craig C. (2016). Sound, music, and movement in Parkinson’s disease. Front. Neurol. 7:216 10.3389/fneur.2016.00216
    1. Bieńkiewicz M., Craig C. M. (2015). Parkinson’s is time on your side? Evidence for difficulties with sensorimotor synchronization. Front. Neurol. 6:249 10.3389/fneur.2015.00249
    1. Bizley J. K. (2017). “Chapter 26 – Audition,” in Conn’s Translational Neuroscience, ed. Conn P. M. (New York, NY: Elsevier; ), 579–598. 10.1016/B978-0-12-802381-5.00042-7
    1. Bloem B., Hausdorff J., Visser J., Gilaldi N. (2004). Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19 871–884. 10.1002/mds.20115
    1. Bolíbar J., Bresin R. (2012). “Sound feedback for the optimization of performance in running,” in Proceedings of the Sound and Music Computing, Stockholm, 39–41.
    1. Bood R. J., Nijssen M., Van Der Kamp J., Roerdink M. (2013). The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats. PLoS One 8:e70758. 10.1371/journal.pone.0070758
    1. Bovermann T., Groten J., de Campo A., Eckel G. (2007). “Juggling sounds,” in Proceedings of the 2nd International Workshop on Interactive Sonification (ISon), New York, NY, 1–6.
    1. Boyd J. E., Godbout A. (2012). “Multi-dimensional synchronization for rhythmic sonification,” in Proceedings of the 18th International Conference on Auditory Display. Atlanta, 68–74.
    1. Boyd J. E., Godbout A., Thornton C. (2012). “In situ motion capture of speed skating: escaping the treadmill,” in Proceedings of the 9th Conference on Computer and Robot Vision, Toronto, 460–467. 10.1109/CRV.2012.68
    1. Braun Janzen T., Thaut M. H. (2018). “Cerebral organization of music processing,” in The Oxford Handbook on Music and Neuroscience, eds Thaut M., Hodges D. (Oxford: Oxford University Press; ).
    1. Braunlich K., Seger C. A., Jentink K. G., Buard I., Kluger B. M., Thaut M. H. (2018). Rhythmic auditory cues shape neural network recruitment in Parkinson’s disease during repetitive motor behavior. Eur. J. Neurosci. 10.1111/ejn.14227 [Epub ahead of print].
    1. Bresin R., de Witt A., Papetti S., Civolani M., Fontana F. (2010). “Expressive sonification of footstep sounds,” in Proceedings of the Interaction Sonification workshop (ISon) 2010, Stockholm, 51–54.
    1. Brown S., Martinez M. J., Parsons L. M. (2006). The neural basis of human dance. Cereb. Cortex 16 1157–1167. 10.1093/cercor/bhj057
    1. Bruckner H. P., Theimer W., Blume H. (2014). “Real-time low latency movement sonification in stroke rehabilitation based on a mobile platform,” in Proceedings of the 2014 IEEE International Conference on Consumer Electronics, Las Vegas, NV, 264–265. 10.1109/ICCE.2014.6775997
    1. Buhusi C. V., Meck W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6 755–765. 10.1038/nrn1764
    1. Caetano G., Jousmäki V., Hari R. (2007). Actor’s and observer’s primary motor cortices stabilize similarly after seen or heard motor actions. Proc. Natl. Acad. Sci. U.S.A. 104 9058–9062. 10.1073/pnas.0702453104
    1. Camponogara I., Rodger M., Craig C., Cesari P. (2017). Expert players accurately detect an opponent’s movement intentions through sound alone. J. Exp. Psychol. Hum. Percept. Perform. 43 348–359. 10.1037/xhp0000316
    1. Cañal-Bruland R., Müller F., Lach B., Spence C. (2018). Auditory contributions to visual anticipation in tennis. Psychol. Sport Exerc. 36 100–103. 10.1016/j.psychsport.2018.02.001
    1. Cesari P., Camponogara I., Papetti S., Rocchesso D., Fontana F. (2014). Might as well jump: sound affects muscle activation in skateboarding. PLoS One 9:e90156. 10.1371/journal.pone.0090156
    1. Cesarini D., Hermann T., Ungerechts B. (2014a). “A real-time auditory biofeedback system for sports swimming,” in Proceedings of the 20th International Conference on Auditory Display, New York, NY, 1–3.
    1. Cesarini D., Schaffert N., Manganiello C., Mattes K. (2014b). AccrowLive: a multiplatform telemetry and sonification solution for rowing. Procedia Eng. 72 273–278. 10.1016/j.proeng.2014.06.049
    1. Cha Y., Kim Y., Chung Y. (2014). Immediate effects of rhythmic auditory stimulation with tempo changes on gait in stroke patients. J. Phys. Ther. Sci. 26 479–482. 10.1589/jpts.26.479
    1. Chauvigné L. A., Gitau K. M., Brown S. (2014). The neural basis of audiomotor entrainment: an ALE meta-analysis. Front. Hum. Neurosci. 8:776. 10.3389/fnhum.2014.00776
    1. Chen J. L., Fujii S., Schlaug G. (2016). The use of augmented auditory feedback to improve arm reaching in stroke: a case series. Disabil. Rehabil. 38 1115–1124. 10.3109/09638288.2015.1076530
    1. Chen Y., Huang H., Xu W., Wallis R. I., Sundaram H., Rikakis T., et al. (2006). “The design of a real-time, multimodal biofeedback system for stroke patient rehabilitation,” in Proceedings of the 14th ACM International Conference on Multimedia, Santa Barbara, CA, 763–772. 10.1145/1180639.1180804
    1. Chiari L., Dozza M., Cappello A., Horak F. B., Macellari V., Giansanti D. (2005). Audio-biofeedback for balance improvement: an accelerometry-based system. IEEE Trans. Biomed. Eng. 52 2108–2111. 10.1109/TBME.2005.857673
    1. Chollet D., Madani M., Micallef J. P. (1992). “Effects of two types of biomechanical bio-feedback on crawl performance,” in Biomechanics and Medicine in Swimming, eds MacLaren D., Reilly T., Lees A. (London: E & FN SPon Press; ), 57–62.
    1. Chollet D., Micallef J. P., Rabischong P. (1988). “Biomechanical signals for external biofeedback to improve swimming techniques,” in Swimming Science V. International Series of Sport Sciences Vol. 18 eds Ungerechts B., Wilke K., Reischle K. (Champaign, IL: Human Kinetics Books; ), 389–396.
    1. Choo P. L., Gallagher H. L., Morris J., Pomeroy V. M., Van Wijck F. (2015). Correlations between arm motor behavior and brain function following bilateral arm training after stroke: a systematic review. Brain Behav. 5:e00411. 10.1002/brb3.411
    1. Conklyn D., Stough D., Novak E., Paczak S., Chemali K., Bethoux F. (2010). A home-based walking program using rhythmic auditory stimulation improves gait performance in patients with multiple sclerosis: a pilot study. Neurorehabil. Neural Repair 24 835–842. 10.1177/1545968310372139
    1. Contreras Lopez W. O., Higuera C. A. E., Fonoff E. T., de Oliveira Souza C., Albicker U., Martinez J. A. E. (2014). Listenmee® and Listenmee® smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson’s disease. Hum. Mov. Sci. 37 147–156. 10.1016/j.humov.2014.08.001
    1. Crasta J. E., Thaut M. H., Anderson C. W., Davies P. L., Gavin W. J. (2018). Auditory priming improves neural synchronization in auditory-motor entrainment. Neuropsychologia 117 102–112. 10.1016/j.neuropsychologia.2018.05.017
    1. Cunnington R., Bradshaw J. L., Iansek R. (1996). The role of the supplementary motor area in the control of voluntary movement. Hum. Mov. Sci. 15 627–647. 10.1016/0167-9457(96)00018-8
    1. Dailly A. I., Sigrist R., Kim Y., Wolf P., Erckens H., Cerny J., et al. (2012). “Can simple error sonification in combination with music help improve accuracy in upper limb movements?” in Proceedings of the Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, 1423–1427. 10.1109/BioRob.2012.6290908
    1. Dalla Bella S., Benoit C. E., Farrugia N., Keller P. E., Obrig H., Mainka S., et al. (2017). Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci. Rep. 7:42005. 10.1038/srep42005
    1. Dalla Bella S., Benoit C. E., Farrugia N., Schwartze M., Kotz S. A. (2015). Effects of musically cued gait training in Parkinson’s disease: beyond a motor benefit. Ann. N. Y. Acad. Sci. 1337 77–85. 10.1111/nyas.12651
    1. Danna J., Velay J. L. (2017). On the auditory-proprioception substitution hypothesis: movement sonification in two deafferented subjects learning to write new characters. Front. Neurosci. 11:137. 10.3389/fnins.2017.00137
    1. D’Ausilio A., Altenmüller E., Olivetti Belardinelli M., Lotze M. (2006). Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece. Eur. J. Neurosci. 24 955–958. 10.1111/j.1460-9568.2006.04960.x
    1. De Dreu M. J., Van Der Wilk A. S. D., Poppe E., Kwakkel G., van Wegen E. E. (2012). Rehabilitation, exercise therapy and music in patients with Parkinson’s disease: a meta-analysis of the effects of music-based movement therapy on walking ability, balance and quality of life. Parkinsonism Relat. Disord. 18 114–119. 10.1016/S1353-8020(11)70036-0
    1. Del Olmo M. F., Arias P., Furio M. C., Pozo M. A., Cudeiro J. (2006). Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients - a combined motor and [18F]-FDG PET study. Parkinsonism Relat. Disord. 12 155–164. 10.1016/j.parkreldis.2005.11.002
    1. Del Olmo M. F., Cheeran B., Koch G., Rothwell J. C. (2007). Role of the cerebellum in externally paced rhythmic finger movements. J. Neurophysiol. 98 145–152. 10.1152/jn.01088.2006
    1. Del Olmo M. F., Cudeiro J. (2005). Temporal variability of gait in Parkinson disease: effects of a rehabilitation programme based on rhythmic sound cues. Parkinsonism Relat. Disord. 11 25–33. 10.1016/j.parkreldis.2004.09.002
    1. Delval A., Moreau C., Bleuse S., Tard C., Ryckewaert G., Devos D., et al. (2014). Auditory cueing of gait initiation in Parkinson’s disease patients with freezing of gait. Clin. Neurophysiol. 125 1675–1681. 10.1016/j.clinph.2013.12.101
    1. Delwaide P. J., Schepens B. (1995). Auditory startle (audio-spinal) reaction in normal man: EMG responses and H reflex changes in antagonistic lower limb muscles. Electroencephalogr. Clin. Neurophysiol. 97 416–423. 10.1016/0924-980X(95)00136-9
    1. Dotov D. G., Bayard S., de Cock V. C., Geny C., Driss V., Garrigue G., et al. (2017). Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson’s disease. Gait Posture 51 64–69. 10.1016/j.gaitpost.2016.09.020
    1. Dozza M., Chiari L., Chan B., Rocchi L., Horak F. B., Cappello A. (2005). Influence of a portable audio-biofeedback device on structural properties of postural sway. J. Neuroeng. Rehabil. 2:13.
    1. Dozza M., Horak F. B., Chiari L. (2007). Auditory biofeedback substitutes for loss of sensory information in maintaining stance. Exp. Brain Res. 178 37–48. 10.1007/s00221-006-0709-y
    1. Dubus G., Bresin R. (2010). “Sonification of sculler movements, development of preliminary methods,” in Proceedings of the ISon 2010 Conference, 3rd Interactive Sonification Workshop, Stockholm, 39–43.
    1. Dubus G., Bresin R. (2013). A systematic review of mapping strategies for the sonification of physical quantities. PLoS One 8:e82491. 10.1371/journal.pone.0082491
    1. Dyer J. F., Stapleton P., Rodger M. (2015). Sonification as concurrent augmented feedback for motor skill learning and the importance of mapping design. Open Psychol. J. 8 192–202. 10.2174/1874350101508010192
    1. Dyer J. F., Stapleton P., Rodger M. (2017a). Mapping sonification for perception and action in motor skill learning. Front. Neurosci. 11:463. 10.3389/fnins.2017.00463
    1. Dyer J. F., Stapleton P., Rodger M. (2017b). Transposing musical skill: sonification of movement as concurrent augmented feedback enhances learning in a bimanual task. Psychol. Res. 81 850–862. 10.1007/s00426-016-0775-0
    1. Ebersbach G., Heijmenberg M., Kindermann L., Trottenberg T., Wissel J., Poewe W. (1999). Interference of rhythmic constraint on gait in healthy subjects and patients with early Parkinson’s disease: evidence for impaired locomotor pattern generation in early Parkinson’s disease. Mov. Disord. 14 619–625. 10.1002/1531-8257(199907)14:4<619::AID-MDS1011>;2-X
    1. Effenberg A. O. (2005). Movement sonification: Effects on perception and action. IEEE Multimed. 12 53–59. 10.1109/MMUL.2005.31
    1. Effenberg A. O., Fehse U., Schmitz G., Krueger B., Mechling H. (2016). Movement sonification: effects on motor learning beyond rhythmic adjustments. Front. Neurosci. 10:219. 10.3389/fnins.2016.00219
    1. Effenberg A. O., Fehse U., Weber A. (2011). Movement Sonification: audiovisual benefits on motor learning. BIO Web Conf. 1:00022 10.1051/bioconf/20110100022
    1. Effenberg A. O., Schmitz G. (2018). Acceleration and deceleration at constant speed: systematic modulation of motion perception by kinematic sonification. Ann. N. Y. Acad. Sci. 1425 52–69. 10.1111/nyas.13693
    1. Engel L. R., Frum C., Puce A., Walker N. A., Lewis J. W. (2009). Different categories of living and non-living sound-sources activate distinct cortical networks. Neuroimage 47 1778–1791. 10.1016/j.neuroimage.2009.05.041
    1. Eriksson M., Bresin R. (2010). “Improving running mechanics by use of interactive sonification,” in Proceedings of the ISon 2010, 3rd Interactive Sonification Workshop, Stockholm, 95–98.
    1. Fadiga L., Fogassi L., Pavesi G., Rizzolatti G. (1995). Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73 2608–2611. 10.1152/jn.1995.73.6.2608
    1. Fernández-Miranda J. C., Wang Y., Pathak S., Stefaneau L., Verstynen T., Yeh F. C. (2015). Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct. Funct. 220 1665–1680. 10.1007/s00429-014-0751-7
    1. Fischer T., Kiselka A., Dlapka R., Doppler J., Iber M., Gradl C., et al. (2017). “An auditory feedback system in use with people aged +50 Years: compliance and modifications in gait pattern,” in Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems & Biorobotics Vol. 15 eds Ibáñez J., González-Vargas J., Azorín J., Akay M., Pons J. (Cham: Springer; ), 881–885.
    1. Franco C., Fleury A., Guméry P. Y., Diot B., Demongeot J., Vuillerme N. (2013). iBalance-ABF: a smartphone-based audio-biofeedback balance system. IEEE Trans. Biomed. Eng. 60 211–215. 10.1109/TBME.2012.2222640
    1. Freedland R. L., Festa C., Sealy M., McBean A., Elghazaly P., Capan A., et al. (2002). The effects of pulsed auditory stimulation on various gait measurements in persons with Parkinson’s Disease. NeuroRehabilitation 17 81–87.
    1. Fujii S., Lulic T., Chen J. L. (2016). More feedback is better than less: learning a novel upper limb joint coordination pattern with augmented auditory feedback. Front. Neurosci. 10:251. 10.3389/fnins.2016.00251
    1. Fujioka T., Trainor L. J., Large E. W., Ross B. (2012). Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J. Neurosci. 32 1791–1802. 10.1523/JNEUROSCI.4107-11.2012
    1. Gaver W. W. (1993a). How do we hear in the world? Explorations in ecological acoustics. Ecol. Psychol. 5 285–313. 10.1207/s15326969eco0504_2
    1. Gaver W. W. (1993b). What in the world do we hear?: an ecological approach to auditory event perception. Ecol. Psychol. 5 1–29. 10.1207/s15326969eco0501_1
    1. Gazzola V., Aziz-Zadeh L., Keysers C. (2006). Empathy and the somatotopic auditory mirror system in humans. Curr. Biol. 16 1824–1829. 10.1016/j.cub.2006.07.072
    1. Ghai S. (2018). Effects of real-time (sonification) and rhythmic auditory stimuli on recovering arm function post stroke: a systematic review and meta-analysis. Front. Neurol. 9:488. 10.3389/fneur.2018.00488
    1. Ghai S., Ghai I. (2018). Effects of rhythmic auditory cueing in gait rehabilitation for multiple sclerosis: a mini systematic review and meta-analysis. Front. Neurol. 9:386. 10.3389/fneur.2018.00386
    1. Ghai S., Ghai I., Effenberg A. O. (2018a). Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis. Neuropsychiatr. Dis. Treat. 14 43–59. 10.2147/NDT.S148053
    1. Ghai S., Ghai I., Schmitz G., Effenberg A. O. (2018b). Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Sci. Rep. 8:506. 10.1038/s41598-017-16232-5
    1. Ghai S., Schmitz G., Hwang T. H., Effenberg A. O. (2018c). Auditory proprioceptive integration: effects of real-time kinematic auditory feedback on knee proprioception. Front. Neurosci. 12:142. 10.3389/fnins.2018.00142
    1. Gilat M., de Lima A. L. S., Bloem B. R., Shine J. M., Nonnekes J., Lewis S. J. (2018). Freezing of gait: promising avenues for future treatment. Parkinsonism Relat. Disord. 52 7–16. 10.1016/j.parkreldis.2018.03.009
    1. Ginis P., Nackaerts E., Nieuwboer A., Heremans E. (2017). Cueing for people with Parkinson’s disease with freezing of gait: a narrative review of the state-of-the-art and novel perspectives. Ann. Phys. Rehabil. Med. 61 407–413. 10.1016/j.rehab.2017.08.002
    1. Godbout A., Boyd J. E. (2010). “Corrective sonic feedback for speed skating: a case study,” in Proceedings of the 16th International Conference on Auditory Display, Washington, DC, 23–30.
    1. Godbout A., Thornton C., Boyd J. E. (2014). “Mobile sonification for athletes: a case study in commercialization of sonification,” in Proceedings of the 20th International Conference on Auditory Display, New York, NY, 1–8.
    1. Gorgas A. M., Schön L., Dlapka R., Doppler J., Iber M., Gradl C., et al. (2017). “Short-term effects of real-time auditory display (sonification) on gait parameters in people with Parkinson’s disease - a pilot study,” in Converging Clinical and Engineering Research on Neurorehabilitation II. Biosystems & Biorobotics Vol. 15 eds Ibáñez J., González-Vargas J., Azorín J., Akay M., Pons J. (Cham: Springer; ), 855–859.
    1. Grahn J. A., Henry M. J., McAuley J. D. (2011). FMRI investigation of cross-modal interactions in beat perception: audition primes vision, but not vice versa. Neuroimage 54 1231–1243. 10.1016/j.neuroimage.2010.09.033
    1. Grahn J. A., Rowe J. B. (2009). Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J. Neurosci. 29 7540–7548. 10.1523/JNEUROSCI.2018-08.2009
    1. Grahn J. A., Rowe J. B. (2013). Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb. Cortex 23 913–921. 10.1093/cercor/bhs083
    1. Grondin S., McAuley J. D. (2009). Duration discrimination in crossmodal sequences. Perception 38 1542–1559. 10.1068/p6359
    1. Halsband U., Ito N., Tanji J., Freund H. J. (1993). The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116 243–266. 10.1093/brain/116.1.243
    1. Harris R., De Jong B. M. (2014). Cerebral activations related to audition-driven performance imagery in professional musicians. PLoS One 9:e93681. 10.1371/journal.pone.0093681
    1. Hasegawa S., Ishijima S., Kato F., Mitake H., Sato M. (2012). “Realtime sonification of the center of gravity for skiing,” in Proceedings of the 3rd Augmented Human International Conference, Megève, 11–14. 10.1145/2160125.2160136
    1. Hasegawa T., Matsuki K. I., Ueno T., Maeda Y., Matsue Y., Konishi Y., et al. (2004). Learned audio-visual cross-modal associations in observed piano playing activate the left planum temporale. An fMRI study. Cogn. Brain Res. 20 510–518. 10.1016/j.cogbrainres.2004.04.005
    1. Haueisen J., Knösche T. R. (2001). Involuntary motor activity in pianists evoked by music perception. J. Cogn. Neurosci. 13 786–792. 10.1162/08989290152541449
    1. Hausdorff J. M., Lowenthal J., Herman T., Gruendlinger L., Peretz C., Giladi N. (2007). Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur. J. Neurosci. 26 2369–2375. 10.1111/j.1460-9568.2007.05810.x
    1. Hayden R., Clair A. A., Johnson G., Otto D. (2009). The effect of rhythmic auditory stimulation (RAS) on physical therapy outcomes for patients in gait training following stroke: a feasibility study. Int. J. Neurosci. 119 2183–2195. 10.3109/00207450903152609
    1. Hermann T., Ungerechts B., Toussaint H., Grote M. (2012). “Sonification of pressure changes in swimming for analysis and optimization,” in Proceedings of the 18th International Conference on Auditory Display, Atlanta, 60–67.
    1. Hermann T., Zehe S. (2011). “Sonified aerobics - interactive sonification of coordinated body movements,” in Proceedings of the 17th Annual Conference on Auditory Display, Budapest, 1–6.
    1. Hoemberg V. (2005). “Evidence based medicine in neurological rehabilitation - a critical review,” in Re- Engineering of the Damaged Brain and Spinal Cord, ed. von Wild K. (New York, NY: Springer; ), 3–14.
    1. Hohmann T., Troje N. F., Olmos A., Munzert J. (2011). The influence of motor expertise and motor experience on action and actor recognition. J. Cogn. Psychol. 23 403–415. 10.1080/20445911.2011.525504
    1. Hollands K. L., Pelton T. A., Tyson S. F., Hollands M. A., van Vliet P. M. (2012). Interventions for coordination of walking following stroke: systematic review. Gait Posture 35 349–359. 10.1016/j.gaitpost.2011.10.355
    1. Höner O., Hermann T., Grunow C. (2004). “Sonification of group behavior for analysis and training of sports tactics,” in Proceedings of the International Workshop on Interactive Sonification, Bielefeld, 1–5.
    1. Horsak B., Dlapka R., Iber M., Gorgas A. M., Kiselka A., Gradl C., et al. (2016). SONIGait: a wireless instrumented insole device for real-time sonification of gait. J. Multimodal User Interfaces 10 195–206. 10.3390/s140101073
    1. Hossner E. J., Schiebl F., Göhner U. (2015). A functional approach to movement analysis and error identification in sports and physical education. Front. Psychol. 6:1339. 10.3389/fpsyg.2015.01339
    1. Hove M. J., Keller P. E. (2015). Impaired movement timing in neurological disorders: rehabilitation and treatment strategies. Ann. N. Y. Acad. Sci. 1337 111–117. 10.1111/nyas.12615
    1. Hove M. J., Suzuki K., Uchitomi H., Orimo S., Miyake Y. (2012). Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS One 7:e32600. 10.1371/journal.pone.0032600
    1. Huang H., Wolf S. L., He J. (2006). Recent developments in biofeedback for neuromotor rehabilitation. J. Neuroeng. Rehabil. 3:11.
    1. Huffman R. F., Henson O. W. (1990). The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res. Rev. 15 295–323. 10.1016/0165-0173(90)90005-9
    1. Hummel J., Hermann T., Frauenberger C., Stockman T. (2010). “Interactive sonification of German wheel sports,” in Proceedings of the ISon 2010, 3rd Interactive Sonification Workshop, Stockholm, 17–22.
    1. Hurt C. P., Rice R. R., McIntosh G. C., Thaut M. H. (1998). Rhythmic auditory stimulation in gait training for patients with traumatic brain injury. J. Music Ther. 35 228–241. 10.1093/jmt/35.4.228
    1. Hurt-Thaut C. P. (2014). Rhythmic Auditory Stimulation to Reduce Falls in Healthy Elderly and Patients with Parkinson’s Disease: A Randomized Control Trial. Doctoral dissertation, Colorado State University, Fort Collins, CO.
    1. Immoos A., Cerny J., Hertler B., Sigrist R., Wolf P., Kim Y., et al. (2013). “Repetitive arm training with music and error sonification for therapy following stroke,” in Proceedings of the International Conference on Multisensory Motor Behavior: Impact of Sound, Hannover.
    1. Jeong S., Kim M. T. (2007). Effects of a theory-driven music and movement program for stroke survivors in a community setting. Appl. Nurs. Res. 20 125–131. 10.1016/j.apnr.2007.04.005
    1. Kennel C., Hohmann T., Raab M. (2014a). Action perception via auditory information: agent identification and discrimination with complex movement sounds. J. Cogn. Psychol. 26 157–165. 10.1080/20445911.2013.869226
    1. Kennel C., Pizzera A., Hohmann T., Schubotz R. I., Murgia M., Agostini T., et al. (2014b). The perception of natural and modulated movement sounds. Perception 43 796–804. 10.1068/p7643
    1. Kennel C., Streese L., Pizzera A., Justen C., Hohmann T., Raab M. (2015). Auditory reafferences: the influence of real-time feedback on movement control. Front. Psychol. 6:69. 10.3389/fpsyg.2015.00069
    1. Kim S. J., Kwak E. E., Park E. S., Lee D. S., Kim K. J., Song J. E., et al. (2011). Changes in gait patterns with rhythmic auditory stimulation in adults with cerebral palsy. NeuroRehabilitation 29 233–241. 10.3233/NRE-2011-0698
    1. Kirby R. (2009). Development of a real-time performance measurement and feedback system for alpine skiers. Sports Technol. 2 43–52. 10.1080/19346182.2009.9648498
    1. Kleiman-Weiner M., Berger J. (2006). “The sound of one arm swinging: a model for multidimensional auditory display of physical motion,” in Proceedings of the 12th International Conference on Auditory Display, London, 278–280.
    1. Knutsson E. (1972). An analysis of Parkinsonian gait. Brain 95 475–486. 10.1093/brain/95.3.475
    1. Ko B. W., Lee H. Y., Song W. K. (2016). Rhythmic auditory stimulation using a portable smart device: short-term effects on gait in chronic hemiplegic stroke patients. J. Phys. Ther. Sci. 28 1538–1543. 10.1589/jpts.28.1538
    1. Kobinata N., Ueno M., Imanishi Y., Yoshikawa H. (2016). Immediate effects of rhythmic auditory stimulation on gait in stroke patients in relation to the lesion site. J. Phys. Ther. Sci. 28 2441–2444. 10.1589/jpts.28.2441
    1. Kohler E., Keysers C., Umilta M. A., Fogassi L., Gallese V., Rizzolatti G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science 297 846–848. 10.1126/science.1070311
    1. Konttinen N., Mononen K., Viitasalo J., Mets T. (2004). The effects of augmented auditory feedback on psychomotor skill learning in precision shooting. J. Sport Exerc. Psychol. 26 306–316. 10.1123/jsep.26.2.306
    1. Kos A., Umek A., Tomazic S. (2015). “Biofeedback in sport: challenges in real-time motion tracking and processing,” in Proceedings of the IEEE 15th International Conference on Bioinformatics and Bioengineering, Belgrade, 1–4. 10.1109/BIBE.2015.7367681
    1. Koshimori Y., Thaut M. H. (2018). Future perspectives on neural mechanisms underlying rhythm and music based neurorehabilitation in Parkinson’s disease. Ageing Res. Rev. 47 133–139. 10.1016/J.ARR.2018.07.001
    1. Kwak E. E. (2007). Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy. J. Music Ther. 44 198–216. 10.1093/jmt/44.3.198
    1. Kwak E. E., Kim S. J. (2013). The use of rhythmic auditory stimulation in gait habilitation for children with cerebral palsy. Music Ther. Perspect. 31 78–83. 10.1093/mtp/31.1.78
    1. Kwakkel G., Kollen B. J., Krebs H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Repair 22 111–121. 10.1177/1545968307305457
    1. Lahav A., Saltzman E., Schlaug G. (2007). Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J. Neurosci. 27 308–314. 10.1523/JNEUROSCI.4822-06.2007
    1. Langhorne P., Coupar F., Pollock A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8 741–754. 10.1016/S1474-4422(09)70150-4
    1. Large E. W., Herrera J. A., Velasco M. J. (2015). Neural networks for beat perception in musical rhythm. Front. Syst. Neurosci. 9:159 10.3389/fnsys.2015.00159
    1. Large E. W., Snyder J. S. (2009). Pulse and meter as neural resonance. Ann. N. Y. Acad. Sci. 1169 46–57. 10.1111/j.1749-6632.2009.04550.x
    1. Lécuyer A., Marchal M., Hamelin A., Wolinski D., Fontana F., Civolani M., et al. (2011). “Shoes-your-style: changing sound of footsteps to create new walking experiences,” in Proceedings of Workshop on Sound and Music Computing for Human-Computer Interaction (CHItaly), Alghero, 13–16.
    1. Lee S. H., Lee K. J., Song C. H. (2012). Effects of rhythmic auditory stimulation (RAS) on gait ability and symmetry after stroke. J. Phys. Ther. Sci. 24 311–314. 10.1589/jpts.24.311
    1. Lewis J. W., Brefczynski J. A., Phinney R. E., Janik J. J., DeYoe E. A. (2005). Distinct cortical pathways for processing tool versus animal sounds. J. Neurosci. 25 5148–5158. 10.1523/JNEUROSCI.0419-05.2005
    1. Lewis J. W., Talkington W. J., Puce A., Engel L. R., Frum C. (2011). Cortical networks representing object categories and high-level attributes of familiar real-world action sounds. J. Cogn. Neurosci. 23 2079–2101. 10.1162/jocn.2010.21570
    1. Lim I., van Wegen E., de Goede C., Deutekom M., Nieuwboer A., Willems A., et al. (2005). Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin. Rehabil. 19 695–713. 10.1191/0269215505cr906oa
    1. Lotze M., Scheler G., Tan H. R., Braun C., Birbaumer N. (2003). The musician’s brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20 1817–1829. 10.1016/j.neuroimage.2003.07.018
    1. Luft A. R., McCombe-Waller S., Whitall J., Forrester L. W., Macko R., Sorkin J. D., et al. (2004). Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 292 1853–1861. 10.1001/jama.292.15.1853
    1. Lum P. S., Burgar C. G., Shor P. C., Majmundar M., Van der Loos M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 83 952–959. 10.1053/apmr.2001.33101
    1. Lusk N. A., Petter E. A., Macdonald C. J., Meck W. H. (2016). Cerebellar, hippocampal, and striatal time cells. Curr. Opin. Behav. Sci. 8 186–192. 10.1016/j.cobeha.2016.02.020
    1. Maculewicz J., Erkut C., Serafin S. (2016). An investigation on the impact of auditory and haptic feedback on rhythmic walking interactions. Int. J. Hum. Comput. Stud. 85 40–46. 10.1016/j.ijhcs.2015.07.003
    1. Maes P. J., Leman M., Palmer C., Wanderley M. M. (2014). Action-based effects on music perception. Front. Psychol. 4:1008. 10.3389/fpsyg.2013.01008
    1. Mainka S., Wissel J., Völler H., Evers S. (2018). The use of rhythmic auditory stimulation to optimize treadmill training for stroke patients: a randomized controlled trial. Front. Neurol. 9:755. 10.3389/fneur.2018.00755
    1. Malcolm M. P., Massie C., Thaut M. (2009). Rhythmic auditory-motor entrainment improves hemiparetic arm kinematics during reaching movements: a pilot study. Top. Stroke Rehabil. 16 69–79. 10.1310/tsr1601-69
    1. Manto M., Bower J. M., Conforto A. B., Delgado-García J. M., Da Guarda S. N. F., Gerwig M., et al. (2012). Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum 11 457–487. 10.1007/s12311-011-0331-9
    1. Marchal-Crespo L., Reinkensmeyer D. J. (2009). Review of control strategies for robotic movement training after neurologic injury. J. Neuroeng. Rehabil. 6:20. 10.1186/1743-0003-6-20
    1. Marinovic W., Tresilian J. R. (2016). Triggering prepared actions by sudden sounds: reassessing the evidence for a single mechanism. Acta Physiol. 217 13–32. 10.1111/apha.12627
    1. Marinovic W., Tresilian J. R., de Rugy A., Sidhu S., Riek S. (2014). Corticospinal modulation induced by sounds depends on action preparedness. J. Physiol. 592 153–169. 10.1113/jphysiol.2013.254581
    1. Matsubara M., Terasawa H., Kadone H., Suzuki K., Makino S. (2012). “Sonification of muscular activity in human movements using the temporal patterns in EMG,” in Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, Hollywood, CA, 1–5.
    1. Maulucci R. A., Eckhouse R. H. (2001). Retraining reaching in chronic stroke with real-time auditory feedback. NeuroRehabilitation 16 171–182.
    1. McIntosh G. C., Brown S. H., Rice R. R., Thaut M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 62 22–26. 10.1136/jnnp.62.1.22
    1. McIntosh G. C., Rice R. R., Hurt C. P., Thaut M. H. (1998). Long-term training effects of rhythmic auditory stimulation on gait in patients with Parkinson’s disease. Mov. Disord. 13:212.
    1. Merchant H., Grahn J., Trainor L., Rohrmeier M., Fitch W. T. (2015). Finding the beat: a neural perspective across humans and non-human primates. Philos. Trans. R. Soc. B Biol. Sci. 370:20140093. 10.1098/rstb.2014.0093
    1. Mezzarobba S., Grassi M., Pellegrini L., Catalan M., Kruger B., Furlanis G., et al. (2018). Action observation plus sonification. A novel therapeutic protocol for Parkinson’s patient with freezing of gait. Front. Neurol. 8:723 10.3389/fneur.2017.00723
    1. Michael K. M., Allen J. K., Macko R. F. (2005). Reduced ambulatory activity after stroke: the role of balance, gait, and cardiovascular fitness. Arch. Phys. Med. Rehabil. 6 1552–1556. 10.1016/j.apmr.2004.12.026
    1. Miller R. A., Thaut M. H., McIntosh G. C., Rice R. R. (1996). Components of EMG symmetry and variability in parkinsonian and healthy elderly gait. Electroencephalogr. Clin. Neurophysiol. 101 1–7.
    1. Miyake Y. (2009). Interpersonal synchronization of body motion and the Walk-Mate walking support robot. IEEE Trans. Robot. 25 638–644. 10.1109/TRO.2009.2020350
    1. Morillon B., Baillet S. (2017). Motor origin of temporal predictions in auditory attention. Proc. Natl. Acad. Sci. U.S.A. 114 E8913–E8921. 10.1073/pnas.1705373114
    1. Morris M. E., Iansek R., Matyas T. A., Summers J. J. (1996). Stride length regulation in Parkinson’s disease: normalization strategies and underlying mechanisms. Brain 119 551–568. 10.1093/brain/119.2.551
    1. Murgia M., Corona F., Pili R., Sors F., Agostini T., Casula C. (2015). Rhythmic auditory stimulation (RAS) and motor rehabilitation in Parkinson’s disease: new frontiers in assessment and intervention protocols. Open Psychol. J. 8 220–229. 10.2174/1874350101508010220
    1. Murgia M., Hohmann T., Galmonte A., Raab M., Agostini T. (2012a). Recognising one’s own motor actions through sound: the role of temporal factors. Perception 41 976–987. 10.1068/p7227
    1. Murgia M., Pili R., Corona F., Sors F., Agostini T. A., Bernardis P., et al. (2018). The use of footstep sounds as rhythmic auditory stimulation for gait rehabilitation in Parkinson’s disease: a randomized controlled trial. Front. Neurol. 9:348. 10.3389/fneur.2018.00348
    1. Murgia M., Prpic V., McCullagh P., Santoro I., Galmonte A., Agostini T. (2017). Modality and perceptual-motor experience influence the detection of temporal deviations in tap dance sequences. Front. Psychol. 8:1340. 10.3389/fpsyg.2017.01340
    1. Murgia M., Sors F., Vono R., Muroni A. F., Delitalia L., Di Corrado D., et al. (2012b). Using auditory stimulation to enhance athletes’ strength: An experimental study in weightlifting. Rev. Psychol. 19 13–16.
    1. Nascimento L. R., de Oliveira C. Q., Ada L., Michaelsen S. M., Teixeira-Salmela L. F. (2015). Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review. J. Physiother. 61 10–15. 10.1016/j.jphys.2014.11.015
    1. Nayagam B. A., Muniak M. A., Ryugo D. K. (2011). The spiral ganglion: connecting the peripheral and central auditory systems. Hear. Res. 278 2–20. 10.1016/j.heares.2011.04.003
    1. Newbold J. W., Bianchi-Berthouze N., Gold N. E. (2017). “Musical expectancy in squat sonification for people who struggle with physical activity,” in Proceedings of the 23rd International Conference on Auditory Display (State College, PA: Pennsylvania State University), 65–72. 10.21785/icad2017.008
    1. Nieuwboer A., Baker K., Willems A. M., Jones D., Spildooren J., Lim I., et al. (2009). The short-term effects of different cueing modalities on turn speed in people with Parkinson’s disease. Neurorehabil. Neural Repair 23 831–836. 10.1177/1545968309337136
    1. Nieuwboer A., Kwakkel G., Rochester L., Jones D., van Wegen E., Willems A. M., et al. (2007). Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J. Neurol. Neurosurg. Psychiatry 78 134–140. 10.1136/jnnp.200X.097923
    1. Nombela C., Hughes L. E., Owen A. M., Grahn J. A. (2013). Into the groove: can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 37 2564–2570. 10.1016/j.neubiorev.2013.08.003
    1. Novembre G., Keller P. E. (2014). A conceptual review on action-perception coupling in the musicians brain: what is it good for? Front. Hum. Neurosci. 8:603. 10.3389/fnhum.2014.00603
    1. Nozaradan S. (2014). Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philos. Trans. R. Soc. B Biol. Sci. 369:20130393. 10.1098/rstb.2013.0393
    1. Nylander S., Kent A., Tholander J. (2014). “Swing sound: experiencing the golf swing through sound,” in Proceedings of the CHI’14 Extended Abstracts on Human Factors in Computing Systems, Toronto, 443–446. 10.1145/2559206.2574789
    1. Park J., Park S. Y., Kim Y. W., Woo Y. (2015). Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: a pilot study. NeuroRehabilitation 37 193–202. 10.3233/NRE-151252
    1. Parmentier F. B. (2014). The cognitive determinants of behavioral distraction by deviant auditory stimuli: a review. Psychol. Res. 78 321–338. 10.1007/s00426-013-0534-4
    1. Pau M., Corona F., Pili R., Casula C., Sors F., Agostini T., et al. (2016). Effects of physical rehabilitation integrated with rhythmic auditory stimulation on spatio-temporal and kinematic parameters of gait in Parkinson’s disease. Front. Neurol. 7:126. 10.3389/fneur.2016.00126
    1. Pauletto S., Hunt A. (2006). “The sonification of EMG data,” in Proceedings of the 12th International Conference on Auditory Display, London, 152–157.
    1. Pauletto S., Hunt A. (2009). Interactive sonification of complex data. Int. J. Hum. Comput. Stud. 67 923–933. 10.2196/jmir.6955
    1. Pazzaglia M., Pizzamiglio L., Pes E., Aglioti S. M. (2008). The sound of actions in apraxia. Curr. Biol. 18 1766–1772. 10.1016/j.cub.2008.09.061
    1. Pennycott A., Wyss D., Vallery H., Klamroth-Marganska V., Riener R. (2012). Towards more effective robotic gait training for stroke rehabilitation: a review. J. Neuroeng. Rehabil. 9:65. 10.1186/1743-0003-9-65
    1. Petter E. A., Lusk N. A., Hesslow G., Meck W. H. (2016). Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci. Biobehav. Rev. 71 739–755. 10.1016/j.neubiorev.2016.10.015
    1. Pizzamiglio L., Aprile T., Spitoni G., Pitzalis S., Bates E., D’amico S., et al. (2005). Separate neural systems for processing action-or non-action-related sounds. Neuroimage 24 852–861. 10.1016/j.neuroimage.2004.09.025
    1. Pizzera A., Hohmann T. (2015). Acoustic information during motor control and action perception: a review. Open Psychol. J. 8 183–191. 10.2174/1874350101508010183
    1. Pizzera A., Hohmann T., Streese L., Habbig A., Raab M. (2017). Long-term effects of acoustic reafference training (ART). Eur. J. Sport Sci. 17 1279–1288. 10.1080/17461391.2017.1381767
    1. Plotnik M., Shema S., Dorfman M., Gazit E., Brozgol M., Giladi N., et al. (2014). A motor learning-based intervention to ameliorate freezing of gait in subjects with Parkinson’s disease. J. Neurol. 261 1329–1339. 10.1007/s00415-014-7347-2
    1. Powell N., Lumsden J. (2015). “Exploring novel auditory displays for supporting accelerated skills acquisition and enhanced performance in motorsport,” in Proceedings of the 21st International Conference on Auditory Display, Graz, 173–180.
    1. Prange G. B., Jannink M. J., Groothuis-Oudshoorn C. G., Hermens H. J., IJzerman M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Dev. 43 171–184. 10.1682/JRRD.2005.04.0076
    1. Prassas S., Thaut M., McIntosh G., Rice R. (1997). Effect of auditory rhythmic cueing on gait kinematic parameters of stroke patients. Gait Posture 6 218–223. 10.1016/S0966-6362(97)00010-6
    1. Proverbio A. M., Calbi M., Manfredi M., Zani A. (2014). Audio-visuomotor processing in the Musician’s brain: an ERP study on professional violinists and clarinetists. Sci. Rep. 4:5866. 10.1038/srep05866
    1. Pugliese R., Takala T. (2015). Sonic trampoline: the effect of audio feedback on the user experience during an exercise of jumping. IEEE MultiMed. 22 74–79. 10.1109/MMUL.2015.29
    1. Ramezanzade H., Abdoli B., Farsi A., Sanjari M. A. (2014). The effect of sonification modelling on perception and accuracy of performing jump shot basketball. Int. J. Sport Stud. 4 1388–1392.
    1. Rao S. M., Harrington D. L., Haaland K. Y., Bobholz J. A., Cox R. W., Binder J. R. (1997). Distributed neural systems underlying the timing of movements. J. Neurosci. 17 5528–5535. 10.1523/JNEUROSCI.17-14-05528.1997
    1. Repp B. H., Knoblich G. (2004). Perceiving action identity: how pianists recognize their own performances. Psychol. Sci. 15 604–609. 10.1111/j.0956-7976.2004.00727.x
    1. Repp B. H., Penel A. (2002). Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. J. Exp. Psychol. 28 1085–1099. 10.1037/0096-1523.28.5.1085
    1. Repp B. H., Penel A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychol. Res. 68 252–270. 10.1007/s00426-003-0143-8
    1. Rizzolatti G., Craighero L. (2004). The mirror-neuron system. Annu. Rev. Neurosci. 27 169–192. 10.1146/annurev.neuro.27.070203.144230
    1. Rizzolatti G., Sinigaglia C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nat. Rev. Neurosci. 11 264–274. 10.1038/nrn2805
    1. Roberts J. R., Jones R., Mansfield N. J., Rothberg S. J. (2005). Evaluation of impact sound on the ‘feel’ of a golf shot. J. Sound Vib. 287 651–666. 10.1016/j.jsv.2004.11.026
    1. Roberts S., Eyckholt R., Thaut M. H. (2000). Search for correlations and evidence for deterministic chaos in rhythmic motor control of the human brain. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62 2597–2606.
    1. Robertson J. V. G., Hoellinger T., Lindberg P., Bensmail D., Hanneton S., Roby-Brami A. (2009). Effect of auditory feedback differs according to side of hemiparesis: a comparative pilot study. J. Neuroeng. Rehabil. 6:45. 10.1186/1743-0003-6-45
    1. Rocha P. A., Porfírio G. M., Ferraz H. B., Trevisani V. F. (2014). Effects of external cues on gait parameters of Parkinson’s disease patients: a systematic review. Clin. Neurol. Neurosurg 124 127–134. 10.1016/j.clineuro.2014.06.026
    1. Rochester L., Baker K., Hetherington V., Jones D., Willems A. M., Kwakkel G., et al. (2010). Evidence for motor learning in Parkinson’s disease: acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Res. 1319 103–111. 10.1016/j.brainres.2010.01.001
    1. Rodger M. W., Craig C. M. (2016). Beyond the metronome: auditory events and music may afford more than just interval durations as gait cues in Parkinson’s disease. Front. Neurosci. 10:272. 10.3389/fnins.2016.00272
    1. Rodger M. W., Young W. R., Craig C. M. (2014). Synthesis of walking sounds for alleviating gait disturbances in Parkinson’s disease. IEEE Trans. Neural Syst. Rehabil. Eng. 22 543–548. 10.1109/TNSRE.2013.2285410
    1. Rodríguez-Fornells A., Rojo N., Amengual J. L., Ripollés P., Altenmüller E., Münte T. F. (2012). The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Ann. N. Y. Acad. Sci. 1252 282–293. 10.1111/j.1749-6632.2011.06425.x
    1. Roerdink M., Bank P. J., Peper C. L. E., Beek P. J. (2011). Walking to the beat of different drums: Practical implications for the use of acoustic rhythms in gait rehabilitation. Gait Posture 33 690–694. 10.1016/j.gaitpost.2011.03.001
    1. Roerdink M., Lamoth C. J., Kwakkel G., Van Wieringen P. C., Beek P. J. (2007). Gait coordination after stroke: benefits of acoustically paced treadmill walking. Phys. Ther. 87 1009–1022. 10.2522/ptj.20050394
    1. Rosati G., Rodà A., Avanzini F., Masiero S. (2013). On the role of auditory feedback in robot-assisted movement training after stroke: review of the literature. Comput. Intell. Neurosci. 2013:586138. 10.1155/2013/586138
    1. Ross B., Barat M., Fujioka T. (2017). Sound-making actions lead to immediate plastic changes of neuromagnetic evoked responses and induced β-band oscillations during perception. J. Neurosci. 37 5948–5959. 10.1523/JNEUROSCI.3613-16.2017
    1. Ross J. M., Iversen J. R., Balasubramaniam R. (2016). Motor simulation theories of musical beat perception. Neurocase 22 558–565. 10.1080/13554794.2016.1242756
    1. Rossignol S., Melvill Jones G. (1976). Audio-spinal influence in man studied by the H-reflex and its possible role on rhythmic movements synchronized to sound. Clin. Neurophysiol. 41 83–92. 10.1016/0013-4694(76)90217-0
    1. Rubinstein T. C., Giladi N., Hausdorff J. M. (2002). The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson’s disease. Mov. Disord. 17 1148–1160. 10.1002/mds.10259
    1. Saarela M. V., Hari R. (2008). Listening to humans walking together activates the social brain circuitry. Soc. Neurosci. 3 401–409. 10.1080/17470910801897633
    1. Sanderson J., Hunt A. (2016). “Using real-time sonification of heart rate data to provide a mobile based training aid for runners,” in Proceedings of the Interactive Audio Systems Symposium (Heslington: University of York: ), 1–8.
    1. Schaefer R. S. (2014). Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369 20130402. 10.1098/rstb.2013.0402
    1. Schaffert N., Godbout A., Schlueter S., Mattes K. (2017). Towards an application of interactive sonification for the forces applied on the pedals during cycling on the Wattbike ergometer. Displays 50 41–48. 10.1016/j.displa.2017.09.004
    1. Schaffert N., Mattes K., Effenberg A. O. (2010). “Listen to the boat motion: acoustic information for elite rowers,” in Proceedings of the ISon 2010, 3rd Interactive Sonification Workshop, Stockholm, 31–38.
    1. Schaffert N., Mattes K. (2011). Designing an acoustic feedback system for on-water rowing training. Int. J. Comput. Sci. Sport 10 71–76.
    1. Schaffert N., Mattes K. (2014). Testing immediate and retention effects of acoustic feedback on the boat motion in high-performance rowing. J. Hum. Sport Exerc. 9 616–628. 10.14198/jhse.2014.92.02
    1. Schaffert N., Mattes K. (2015a). Effects of acoustic feedback training in elite-standard para-rowing. J. Sport Sci. 33 411–418. 10.1080/02640414.2014.946438
    1. Schaffert N., Mattes K. (2015b). Interactive sonification in rowing: an application of acoustic feedback for on-water training. IEEE Multimed. 22 58–67. 10.1109/MMUL.2015.25
    1. Schaffert N., Mattes K. (2016). Influence of acoustic feedback on boat speed and crew synchronization in elite junior rowing. Int. J. Sports Coach. 11 832–845. 10.1177/1747954116676110
    1. Schaffert N., Mattes K., Effenberg A. O. (2011). An investigation of online acoustic information for elite rowers in on-water training conditions. J. Hum. Sport Exerc. 6 392–405. 10.4100/jhse.2011.62.20
    1. Schedel M., Weymouth D., Pinkhasov T., Loomis J., Morris I. B., Vasudevan E., et al. (2016). “Interactive sonification of gait: realtime biofeedback for people with Parkinson’s disease,” in Proceedings of the ISon 2016 Fifth Interactive Sonification Workshop, Bielefeld.
    1. Scheef L., Boecker H., Daamen M., Fehse U., Landsberg M. W., Granath D. O., et al. (2009). Multimodal motion processing in area V5/MT: evidence from an artificial class of audio-visual events. Brain Res. 1252 94–104. 10.1016/j.brainres.2008.10.067
    1. Schmitz G., Bergmann J., Effenberg A. O., Krewer C., Hwang T. H., Müller F. (2018). Movement sonification in stroke rehabilitation. Front. Neurol. 9:389 10.3389/fneur.2018.00389
    1. Schmitz G., Kroeger D., Effenberg A. O. (2014). “A mobile sonification system for stroke rehabilitation,” in Proceedings of the 20th International Conference on Auditory Display, New York, NY, 1–7.
    1. Schmitz G., Mohammadi B., Hammer A., Heldmann M., Samii A., Münte T. F., et al. (2013). Observation of sonified movements engages a basal ganglia frontocortical network. BMC Neurosci. 14:32. 10.1186/1471-2202-14-32
    1. Schneider S., Münte T., Rodriguez-Fornells A., Sailer M., Altenmüller E. (2010). Music-supported training is more efficient than functional motor training for recovery of fine motor skills in stroke patients. Music Percept. 27 271–280. 10.1525/mp.2010.27.4.271
    1. Schneider S., Schönle P. W., Altenmüller E., Münte T. F. (2007). Using musical instruments to improve motor skill recovery following a stroke. J. Neurol. 254 1339–1346. 10.1007/s00415-006-0523-2
    1. Scholz D. S., Rhode S., Großbach M., Rollnik J., Altenmüller E. (2015). Moving with music for stroke rehabilitation: a sonification feasibility study. Ann. N. Y. Acad. Sci. 1337 69–76. 10.1111/nyas.12691
    1. Scholz D. S., Rohde S., Nikmaram N., Brückner H. P., Großbach M., Rollnik J. D., et al. (2016). Sonification of arm movements in stroke rehabilitation–a novel approach in neurologic music therapy. Front. Neurol. 7:106 10.3389/fneur.2016.00106
    1. Schütz-Bosbach S., Prinz W. (2007). Perceptual resonance: action-induced modulation of perception. Trends Cogn. Sci. 11 349–355. 10.1016/j.tics.2007.06.005
    1. Secoli R., Milot M.-H., Rosati G., Reinkensmeyer D. J. (2011). Effect of visual distraction and auditory feedback on patient effort during robot assisted movement training after stroke. J. Neuroeng. Rehabil. 8:21. 10.1186/1743-0003-8-21
    1. Sevdalis V., Keller P. E. (2014). Know thy sound: perceiving self and others in musical contexts. Acta Psychol. 152 67–74. 10.1016/j.actpsy.2014.07.002
    1. Shahraki M., Sohrabi M., Torbati H. T., Nikkhah K., NaeimiKia M. (2017). Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. J. Med. Life 10 33–37.
    1. Shams L., Seitz A. R. (2008). Benefits of multisensory learning. Trends Cogn. Sci. 12 411–417. 10.1016/j.tics.2008.07.006
    1. Shelton J., Kumar G. P. (2010). Comparison between auditory and visual simple reaction times. Neurosci. Med. 1 30–32. 10.4236/nm.2010.11004
    1. Shin Y. K., Chong H. J., Kim S. J., Cho S. R. (2015). Effect of rhythmic auditory stimulation on hemiplegic gait patterns. Yonsei Med. J. 56 1703–1713. 10.3349/ymj.2015.56.6.1703
    1. Sigrist R., Fox S., Riener R., Wolf P. (2016). Benefits of crank moment sonification in cycling. Procedia Eng. 147 513–518. 10.1016/j.proeng.2016.06.230
    1. Sigrist R., Rauter G., Marchal-Crespo L., Riener R., Wolf P. (2015). Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Exp. Brain Res. 233 909–925. 10.1007/s00221-014-4167-7
    1. Sigrist R., Rauter G., Riener R., Wolf P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon. Bull. Rev. 20 21–53. 10.3758/s13423-012-0333-8
    1. Sihvonen A. J., Särkämö T., Leo V., Tervaniemi M., Altenmüller E., Soinila S. (2017). Music-based interventions in neurological rehabilitation. Lancet Neurol. 16 648–660. 10.1016/S1474-4422(17)30168-0
    1. Skodda S., Flasskamp A., Schlegel U. (2010). Instability of syllable repetition as a model for impaired motor processing: is Parkinson’s disease a “rhythm disorder”? J. Neural Transm. 117 605–612. 10.1007/s00702-010-0390-y
    1. Song J. H., Zhou P. Y., Cao Z. H., Ding Z. G., Chen H. X., Zhang G. B. (2015). Rhythmic auditory stimulation with visual stimuli on motor and balance function of patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 19 2001–2007.
    1. Sors F., Murgia M., Santoro I., Agostini T. (2015). Audio-based interventions in sport. Open Psychol. J. 8 212–219. 10.2174/1874350101508010212
    1. Sors F., Murgia M., Santoro I., Prpic V., Galmonte A., Agostini T. (2017). The contribution of early auditory and visual information to the discrimination of shot power in ball sports. Psychol. Sport Exerc. 31 44–51. 10.1016/j.psychsport.2017.04.005
    1. Sors F., Prpic V., Santoro I., Galmonte A., Agostini T., Murgia M. (2018a). Loudness, but not shot power, influences simple reaction times to soccer penalty sounds. Psihologija 51 127–141. 10.2298/PSI170926016S
    1. Sors F., Lath F., Bader A., Santoro I., Galmonte A., Agostini T., et al. (2018b). Predicting the length of volleyball serves: the role of early auditory and visual information. PLoS One 13:e0208174. 10.1371/journal.pone.0208174
    1. Spaulding S. J., Barber B., Colby M., Cormack B., Mick T., Jenkins M. E. (2013). Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis. Arch. Phys. Med. Rehabil. 94 562–570. 10.1016/j.apmr.2012.10.026
    1. Stauffer C. C., Haldemann J., Troche S. J., Rammsayer T. H. (2012). Auditory and visual temporal sensitivity: evidence for a hierarchical structure of modality-specific and modality-independent levels of temporal information processing. Psychol. Res. 76 20–31. 10.1007/s00426-011-0333-8
    1. Stienstra J., Overbeeke K., Wensveen S. (2011). “Embodying complexity through movement sonification: case study on empowering the speed-skater,” in Proceedings of the 9th ACM SIGCHI Italian Chapter International Conference on Computer-Human Interaction: Facing Complexity, Alghero, 39–44. 10.1145/2037296.2037310
    1. Stupacher J., Hove M. J., Novembre G., Schütz-Bosbach S., Keller P. E. (2013). Musical groove modulates motor cortex excitability: a TMS investigation. Brain Cogn. 82 127–136. 10.1016/j.bandc.2013.03.003
    1. Suh J. H., Han S. J., Jeon S. Y., Kim H. J., Lee J. E., Yoon T. S., et al. (2014). Effect of rhythmic auditory stimulation on gait and balance in hemiplegic stroke patients. NeuroRehabilitation 34 193–199. 10.3233/NRE-131008
    1. Takeuchi T. (1993). Auditory information in playing tennis. Percept. Mot. Skills 76 1323–1328. 10.2466/pms.1993.76.3c.1323
    1. Tarnas J., Schaffert N. (2017). “Sonifikacja w żeglarstwie regatowym, Sonification in sailing regatta,” in Diagnostics in Sport, Handbook for Modern Coaches, eds Kusego K., Zienlinskiego J. (Poznań: Akademia Wychowania Fizycznego w Poznaniu; ), 213–227.
    1. Teki S., Grube M., Griffiths T. D. (2012). A unified model of time perception accounts for duration-based and beat-based timing mechanisms. Front. Integr. Neurosci. 5:90. 10.3389/fnint.2011.00090
    1. Thaut M. H. (2005). Rhythm, Music, and the Brain: Scientific Foundations and Clinical Applications. New York, NY: Routledge.
    1. Thaut M. H., Abiru M. (2010). Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Percept. 27 263–269. 10.3109/09638288.2012.690495
    1. Thaut M. H., Bin T., Azimi-Sadjadi M. (1998a). Rhythmic finger-tapping sequences to cosine-wave modulated metronome sequences. Hum. Mov. Sci. 17 839–863. 10.1016/S0167-9457(98)00031-1
    1. Thaut M. H., Miller R. A., Schauer L. M. (1998b). Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs period correction. Biol. Cybern. 79 241–250. 10.1007/s004220050474
    1. Thaut M. H., Demartin M., Sanes J. N. (2008). Brain networks for integrative rhythm formation. PLoS One 3:e2312. 10.1371/journal.pone.0002312
    1. Thaut M. H., Hoemberg V. (2014). Handbook of Neurologic Music Therapy. Oxford: Oxford University Press.
    1. Thaut M. H., Kenyon G. P. (2003). Rapid motor adaptations to subliminal frequency shifts in syncopated rhythmic sensorimotor synchronization. Hum. Mov. Sci. 22 321–338. 10.1016/S0167-9457(03)00048-4
    1. Thaut M. H., Kenyon G. P., Hurt C. P., McIntosh G. C., Hoemberg V. (2002a). Kinematic optimization of spatiotemporal patterns in paretic arm training with stroke patients. Neuropsychologia 40 1073–1081.
    1. Thaut M. H., Kenyon G. P., Schauer M. L., McIntosh G. C. (1999). The connection between rhythmicity and brain function. IEEE Eng. Med. Biol. Mag. 18 101–108. 10.1109/51.752991
    1. Thaut M. H., Leins A. K., Rice R. R., Argstatter H., Kenyon G. P., McIntosh G. C., et al. (2007). Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial. Neurorehabil. Neural Repair 21 455–459. 10.1177/1545968307300523
    1. Thaut M. H., McIntosh G. C. (2014). Neurologic music therapy in stroke rehabilitation. Curr. Phys. Med. Rehabil. Rep. 2 106–113. 10.1007/s40141-014-0049-y
    1. Thaut M. H., McIntosh G. C., Hoemberg V. (2015). Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front. Psychol. 6:1185. 10.3389/fpsyg.2015.01185
    1. Thaut M. H., McIntosh G. C., Prassas S. G., Rice R. R. (1992). Effect of rhythmic auditory cuing on temporal stride parameters and EMG patterns in normal gait. J. Neurol. Rehabil. 6 185–190. 10.1177/136140969200600403
    1. Thaut M. H., McIntosh G. C., Prassas S. G., Rice R. R. (1993). Effect of rhythmic auditory cuing on temporal stride parameters and EMG. Patterns in hemiparetic gait of stroke patients. J. Neurol. Rehabil. 7 9–16. 10.1177/136140969300700103
    1. Thaut M. H., McIntosh G. C., Rice R. R. (1997). Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J. Neurol. Sci. 151 207–212. 10.1016/S0022-510X(97)00146-9
    1. Thaut M. H., McIntosh G. C., Rice R. R., Miller R. A., Rathbun J., Brault J. M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 11 193–200. 10.1002/mds.870110213
    1. Thaut M. H., McIntosh K. W., McIntosh G. C., Hoemberg V. (2001). Auditory rhythmicity enhances movement and speech motor control in patients with Parkinson’s disease. Funct. Neurol. 16 163–172.
    1. Thaut M. H., Rice R. R., Braun Janzen T., Hurt-Thaut C., McIntosh G. C. (2018). Rhythmic auditory stimulation for reduction of falls in Parkinson’s disease: a randomized controlled study. Clin. Rehabil. 10.1177/0269215518788615 [Epub ahead of print].
    1. Thaut M. H., Schicks W., McIntosh G. C., Hömberg V. (2002b). The role of motor imagery and temporal cueing in hemiparetic arm rehabilitation. Neurorehabil. Neural Repair 16:115.
    1. Thaut M. H., Stephan K. M., Wunderlich G., Schicks W., Tellmann L., Herzog H., et al. (2009). Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex 45 44–53. 10.1016/j.cortex.2007.09.009
    1. Theunissen F. E., Elie J. E. (2014). Neural processing of natural sounds. Nat. Rev. Neurosci. 15 355–366. 10.1038/nrn3731
    1. Ticini L. F., Schütz-Bosbach S., Weiss C., Casile A., Waszak F. (2012). When sounds become actions: higher-order representation of newly learned action sounds in the human motor system. J. Cogn. Neurosci. 24 464–474. 10.1162/jocn_a_00134
    1. Tinazzi M., Fiaschi A., Frasson E., Fiorio M., Cortese F., Aglioti S. M. (2002). Deficits of temporal discrimination in dystonia are independent from the spatial distance between the loci of tactile stimulation. Mov. Disord. 17 333–338. 10.1002/mds.10019
    1. Tissberger J. P., Wersenyi G. (2011). “Sonification solutions for body movements in rehabilitation of locomotor disorders,” in Proceedings of the 17th International Conference on Auditory Display, Budapest, 1–6.
    1. Tomeo E., Cesari P., Aglioti S. M., Urgesi C. (2012). Fooling the kickers but not the goalkeepers: behavioral and neurophysiological correlates of fake action detection in soccer. Cereb. Cortex 23 2765–2778. 10.1093/cercor/bhs279
    1. Torres A. V., Kluckner V., Franinovic K. (2013). “). Development of a sonification method to enhance gait rehabilitation,” in Proceedings of the ISon 2013, 4th Interactive Sonification Workshop, Erlangen, 37–43.
    1. Uchitomi H., Ota L., Ogawa K. I., Orimo S., Miyake Y. (2013). Interactive rhythmic cue facilitates gait relearning in patients with Parkinson’s disease. PLoS One 8:e72176. 10.1371/journal.pone.0072176
    1. van der Zwan R., MacHatch C., Kozlowski D., Troje N. F., Blanke O., Brooks A. (2009). Gender bending: auditory cues affect visual judgements of gender in biological motion displays. Exp. Brain Res. 198 373–382. 10.1007/s00221-009-1800-y
    1. Van Vugt F. T., Ritter J., Rollnik J. D., Altenmüller E. (2014). Music-supported motor training after stroke reveals no superiority of synchronization in group therapy. Front. Hum. Neurosci. 8:315. 10.3389/fnhum.2014.00315
    1. van Vugt F. T., Tillmann B. (2015). Auditory feedback in error-based learning of motor regularity. Brain Res. 1606 54–67. 10.1016/j.brainres.2015.02.026
    1. Vogt K., Pirrò D., Kobenz I., Höldrich R., Eckel G. (2010). “PhysioSonic - evaluated movement sonification as auditory feedback in physiotherapy,” in Auditory Display. CMMR 2009, ICAD 2009. Lecture Notes in Computer Science Vol. 5954 eds Ystad S., Aramaki M., Kronland-Martinet R., Jensen K. (Berlin: Springer; ), 103–120.
    1. Wallis I., Ingalls T., Rikakis T., Olsen L., Chen Y., Xu W., et al. (2007). “Real-time sonification of movement for an immersive stroke rehabilitation environment,” in Proceedings of the 13th International Conference on Auditory Display, Montreal, 26–29.
    1. Wang X., Pathak S., Stefaneanu L., Yeh F. C., Li S., Fernandez-Miranda J. C. (2016). Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct. Funct. 221 2075–2092. 10.1007/s00429-015-1028-5
    1. Whitall J., Waller S. M., Silver K. H., Macko R. F. (2000). Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 31 2390–2395. 10.1161/01.STR.31.10.2390
    1. Willems A. M., Leuven K. U., Nieuwboer A., Chavret F., Desloovere K., Dom R., et al. (2006). The use of rhythmic auditory cues to influence gait in patients with Parkinson’s disease, the differential effect for freezers and non-freezers, an explorative study. Disabil. Rehabil. 28 721–728. 10.1080/09638280500386569
    1. Wilson E. M., Davey N. J. (2002). Musical beat influences corticospinal drive to ankle flexor and extensor muscles in man. Int. J. Psychophysiol. 44 177–184. 10.1016/S0167-8760(01)00203-3
    1. Witt S. T., Laird A. R., Meyerand M. E. (2008). Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42 343–356. 10.1016/j.neuroimage.2008.04.025
    1. Wittwer J. E., Webster K. E., Hill K. (2013). Rhythmic auditory cueing to improve walking in patients with neurological conditions other than Parkinson’s disease–what is the evidence?. Disabil. Rehabil. 35 164–176. 10.3109/09638288.2012.690495
    1. Wolf A., Scheiderer R., Napolitan N., Belden C., Shaub L., Whitford M. (2014). Efficacy and task structure of bimanual training post stroke: a systematic review. Top. Stroke Rehabil. 21 181–196. 10.1310/tsr2103-181
    1. Wolf P., Sigrist R., Rauter G., Riener R. (2011). Error sonification of a complex motor task. BIO Web Conf. 1:00098 10.1051/bioconf/20110100098
    1. Wolpert D. M., Diedrichsen J., Flanagan J. R. (2011). Principles of sensorimotor learning. Nat. Rev. Neurosci. 12 739–751. 10.1038/nrn3112
    1. Woods E. A., Hernandez A. E., Wagner V. E., Beilock S. L. (2014). Expert athletes activate somatosensory and motor planning regions of the brain when passively listening to familiar sports sounds. Brain Cogn. 87 122–133. 10.1016/j.bandc.2014.03.007
    1. Wright R. L., Bevins J. W., Pratt D., Sackley C. M., Wing A. M. (2016). Metronome cueing of walking reduces gait variability after a cerebellar stroke. Front. Neurol. 7:84. 10.3389/fneur.2016.00084
    1. Wright R. L., Brownless S. B., Pratt D., Sackley C. M., Wing A. M. (2017). Stepping to the beat: feasibility and potential efficacy of a home-based auditory-cued step training program in chronic stroke. Front. Neurol. 8:412. 10.3389/fneur.2017.00412
    1. Yang C. H., Kim J. H., Lee B. H. (2016). Effects of real-time auditory stimulation feedback on balance and gait after stroke: a randomized controlled trial. J. Exp. Stroke Transl. Med. 9 1–5.
    1. Yang J., Hunt A. (2013). “Sonic trainer: real-time sonification of muscular activity and limb positions in general physical exercise,” in Proceedings of the ISon 2013, 4th Interactive Sonification Workshop, Erlangen, 44–51.
    1. Yang J., Hunt A. (2015). “Real-time sonification of biceps curl exercise using muscular activity and kinematics,” in Proceedings of the 21st International Conference on Auditory Display, Graz, 289–293.
    1. Yoo G. E., Kim S. J. (2016). Rhythmic auditory cueing in motor rehabilitation for stroke patients: systematic review and meta-analysis. J. Music Ther. 53 149–177. 10.1093/jmt/thw003
    1. Yoon S. K., Kang S. H. (2016). Effects of inclined treadmill walking training with rhythmic auditory stimulation on balance and gait in stroke patients. J. Phys. Ther. Sci. 28 3367–3370. 10.1589/jpts.28.3367
    1. Young W. R., Rodger M. W., Craig C. M. (2014). Auditory observation of stepping actions can cue both spatial and temporal components of gait in Parkinson’s disease patients. Neuropsychologia 57 140–153. 10.1016/j.neuropsychologia.2014.03.009
    1. Young W. R., Shreve L., Quinn E. J., Craig C., Bronte-Stewart H. (2016). Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: action-relevance or cue-continuity? Neuropsychologia 87 54–62. 10.1016/j.neuropsychologia.2016.04.034
    1. Zhang Y., Cai J., Zhang Y., Ren T., Zhao M., Zhao Q. (2016). Improvement in stroke-induced motor dysfunction by music-supported therapy: a systematic review and meta-analysis. Sci. Rep. 6:38521. 10.1038/srep38521

Source: PubMed

3
Abonner