Exercise and Physical Therapy Interventions for Children with Ataxia: A Systematic Review

Helen Hartley, Elizabeth Cassidy, Lisa Bunn, Ram Kumar, Barry Pizer, Steven Lane, Bernie Carter, Helen Hartley, Elizabeth Cassidy, Lisa Bunn, Ram Kumar, Barry Pizer, Steven Lane, Bernie Carter

Abstract

The effectiveness of exercise and physical therapy for children with ataxia is poorly understood. The aim of this systematic review was to critically evaluate the range, scope and methodological quality of studies investigating the effectiveness of exercise and physical therapy interventions for children with ataxia. The following databases were searched: AMED, CENTRAL, CDSR, CINAHL, ClinicalTrials.gov, EMBASE, Ovid MEDLINE, PEDro and Web of Science. No limits were placed on language, type of study or year of publication. Two reviewers independently determined whether the studies met the inclusion criteria, extracted all relevant outcomes, and conducted methodological quality assessments. A total of 1988 studies were identified, and 124 full texts were screened. Twenty studies were included in the review. A total of 40 children (aged 5-18 years) with ataxia as a primary impairment participated in the included studies. Data were able to be extracted from eleven studies with a total of 21 children (aged 5-18 years), with a range of cerebellar pathology. The studies reported promising results but were of low methodological quality (no RCTs), used small sample sizes and were heterogeneous in terms of interventions, participants and outcomes. No firm conclusions can be made about the effectiveness of exercise and physical therapy for children with ataxia. There is a need for further high-quality child-centred research.

Keywords: Ataxia; Exercise; Paediatrics; Physical therapy; Systematic review.

Conflict of interest statement

Helen Hartley, Elizabeth Cassidy and Lisa Bunn are chartered physiotherapists. As professionals who may be involved in the delivery of exercise interventions, it is plausible that they may be seen to have a bias favouring the effectiveness of exercise interventions. The authors confirm no other conflicts of interest.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram: search results

References

    1. Musselman KE, Stoyanov CT, Marasigan R, Jenkins M, Konczak J, Morton S, et al. Prevalence of ataxia in children: a systematic review. Neurol. 2014;82:80–89. doi: 10.1212/01.wnl.0000438224.25600.6c.
    1. Manto M, Marien P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum & Ataxias. 2015;2:2. doi: 10.1186/s40673-015-0023-1.
    1. Pavone P, Pratico A, Pavone V, Lubrano R, Falsaperla R, Rizzo R, et al. Ataxia in children: early recognition and clinical evaluation. Italian J of Pediatrics. 2017;43:e9. doi: 10.1186/s13052-017-0328-1.
    1. Bastian A. Mechanisms of ataxia. Phys Ther. 1997;77:672–675. doi: 10.1093/ptj/77.6.672.
    1. Mariotti C, Fancellu R, Di Donato S. An overview of the patient with ataxia. J Neurol. 2005;252:511–518. doi: 10.1007/s00415-005-0814-z.
    1. Bodranghien F, Bastian A, Casali C, Hallett M, Louis E, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15:369–391. doi: 10.1007/s12311-015-0687-3.
    1. Ilg W, Bastian AJ, Boesch S, Burciu R, Celnik P, Claaßen J, et al. Consensus paper: management of degenerative cerebellar disorders. Cerebellum. 2014;13:248–268. doi: 10.1007/s12311-013-0531-6.
    1. Ilg W, Synofzik M, Brötz D, Burkard S, Giese M, Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009;73(22):1823–1830. doi: 10.1212/WNL.0b013e3181c33adf.
    1. Ilg W, Brotz D, Burkard S, Giese M, Schols L, Synofzik M. Long-term effects of coordinative training in degenerative cerebellar disease. Mvt Disorders. 2010;25(13):2239–2246. doi: 10.1002/mds.23222.
    1. Martin CL, Tan D, Bragge P, Bialoccerkowski A. Effectiveness of physiotherapy for adults with cerebellar dysfunction: a systematic review. Clin Rehabil. 2009;23:15–26. doi: 10.1177/0269215508097853.
    1. Trujillo-Martín MM, Serano-Aguilar P, Monton-Álvarez F, Carrillo-Fumero R. Effectiveness and safety for treatment of degenerative ataxias: a systematic review. Mov Disord. 2009;24:1111–1124. doi: 10.1002/mds.22564.
    1. Artigas RA, Ayrers JS, Noll J, Peralles SRN, Borges MK, Bastos de Brito CI. Physical therapy for people with spinocerebellar ataxia: a literature review. Rev Neurocienc. 2013;21:126–135. doi: 10.4181/RNC.2013.21.777.10p.
    1. Martins CP, de Carvalho Rodrigues E, Santos de Oliveira LA. Physical therapy approach to spinocerebellar ataxia: a systematic review. Fisioter Pesq. 2013;20:287–291.
    1. Fonteyn EMR, Keus SHJ, Verstappen CCP, Schols L, de Groot I, van de Warrenburg B, et al. The effectiveness of allied health care in patients with ataxia: a systematic review. J Neurol. 2014;261:251–258. doi: 10.1007/s00415-013-6910-6.
    1. Marquer A, Barbieri G, Pérennou D. The assessment and treatment of postural disorders in cerebellar ataxia: a systematic review. Ann Phys Rehabil Med. 2014;57:67–78. doi: 10.1016/j.rehab.2014.01.002.
    1. Synofzik M, Ilg W. Motor training in degenerative spinocerebellar disease: ataxia-specific improvements by intensive physiotherapy and exergames. Biomed Res Int. 2014:e11.
    1. Milne SC, Corben LA, Georgiou-Karistianis N, Delatycki MB, Yiu EM. Rehabilitation for individuals with genetic degenerative ataxia: a systematic review. Neurorehabil Neural Repair. 2017;31:609–622. doi: 10.1177/1545968317712469.
    1. Johnson MH. Functional brain development in humans. Nat Rev Neurosci. 2001;2:475–483. doi: 10.1038/35081509.
    1. Sival D, Brunt E. The International Cooperative Ataxia Rating Scale shows strong age-dependency in children. Dev Med Child Neurol. 2009;51:568–572. doi: 10.1111/j.1469-8749.2009.03334.x.
    1. Sullivan KJ, Kantak SS, Burtner PA. Motor learning in children: feedback effects on skill acquisition. Phys Ther. 2008;88:720–732. doi: 10.2522/ptj.20070196.
    1. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Pub Health Rep. 1985;100(2):126–131.
    1. U.S. Department of Health and Human Services (USDHSS). Physical activity guidelines for Americans. (accessed 10 January 2018).
    1. Ryan JM, Cassidy EE, Noorduyn SG, O’Connell NE. Exercise interventions for cerebral palsy. Cochrane Database for Systematic Reviews. 2017;6:CD011660.
    1. Chartered Society of Physiotherapy 2013 (accessed 10 January 2018).
    1. Manto M, Bower JM, Conforto AB, Delgado-Garcia J, Farias de Guarda S, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement on movement. Cerebellum. 2012;11:457–487. doi: 10.1007/s12311-011-0331-9.
    1. Hardwick RM, Rottschy C, Miall RC, Eickhoff SB. A quantitative meta-analysis and review of motor learning in the human brain. NeuroImage. 2013;67:283–297. doi: 10.1016/j.neuroimage.2012.11.020.
    1. Kabat H. Analysis and therapy of cerebellar ataxia and asynergia. AMA Arch Neurol Psychiatry. 1955;74:375–382. doi: 10.1001/archneurpsyc.1955.02330160025005.
    1. Konczak J, Timmann D. The effect of damage to the cerebellum on sensorimotor and cognitive function in children and adolescents. Neurosci Biobehav Rev. 2007;31:1101–1113. doi: 10.1016/j.neubiorev.2007.04.014.
    1. Berger A, Sadeh M, Tzur G, Shuper A, Kornreich L, Inbar D, et al. Motor and non-motor sequence learning in children and adolescents with cerebellar damage. J Int Neuropsychol Soc. 2005;11:482–487. doi: 10.1017/S1355617705050587.
    1. Therrien AS, Wolpert DM, Bastian AJ. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain. 2016;139:101–114. doi: 10.1093/brain/awv329.
    1. Marsden J, Harris C. Cerebellar ataxia: pathophysiology and rehabilitation. Clin Rehabil. 2011;25:195–216. doi: 10.1177/0269215510382495.
    1. Bhanpuri NH, Okamura AM, Bastian AJ. Predicting and correcting ataxia using a model of cerebellar function. Brain. 2014;137:1931–1944. doi: 10.1093/brain/awu115.
    1. Rosenbaum P, Gorter JW. The ‘F-words’ in childhood disability: I swear this is how we should think! Child Care Health Dev. 2012;38:457–463. doi: 10.1111/j.1365-2214.2011.01338.x.
    1. World Health Organisation . International classification of functioning, disability and health. Geneva: World Health Organisation; 2001.
    1. Russell D, Rosenbaum P, Cadman D, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol. 1989;31(3):341–352. doi: 10.1111/j.1469-8749.1989.tb04003.x.
    1. McCabe M, Granger C. Content validity of a pediatric functional independence measure. Appl Nurs Res. 1990;3(3):120–121. doi: 10.1016/S0897-1897(05)80128-4.
    1. Haley S, Coster W, Ludlow L, Haltiwanger J, Andrellos P, Pediatric Evaluation of Disability Inventory (PEDI) Development, standardization and administration manual. Boston (MA): New England Medical Centre; 1992.
    1. Testa MA, Simonson DC. Assessment of quality of life outcomes. New Engl J Med. 1996;334:835–840. doi: 10.1056/NEJM199603283341306.
    1. Solans M, Pane S, Estrada MD. Health-related quality of life measurement in children and adolescents: a systematic review of generic and disease-specific instruments. Value Health. 2008;11:742–764. doi: 10.1111/j.1524-4733.2007.00293.x.
    1. Landgraf J, Maunsell E, Speechley K, Bullinger M, Campbell S, Abetz L, et al. Canadian-French, German and UK versions of the Child Health Questionnaire: methodology and preliminary item scaling results. Qual Life Res. 1998;7(5):433–445. doi: 10.1023/A:1008810004694.
    1. Schmitz-Hubsch T, Tezenas du Montcel S, Baliko L, Boesch S, Depondt C, Giunti P, et al. Scale for the assessment and rating of ataxia. Neurol. 2006;66:1717–1720. doi: 10.1212/01.wnl.0000219042.60538.92.
    1. Gorton GE, Stout JL, Bagley AM, Bevans K, Novacheck TF, Tucker CA. Gillette functional assessment questionnaire 22-item skill set: factor and Rasch analysis. Dev Med Child Neurol. 2011;53:25–55.
    1. Schmahmann J, Gardner R, MacMore J, Vangel M. Development of a Brief Ataxia Scale (BARS) based on a modified form of the ICARS. Mov Disord. 2009;24(12):1820–1828. doi: 10.1002/mds.22681.
    1. OCEBM Levels of Evidence Working Group. The Oxford 2011 levels of evidence: Oxford Centre for Evidence-Based Medicine. . Accessed 10 Jan 2018
    1. Cytowicz W, Lodzinski A. Rehabilitation of children with infantile cerebral palsy. Wiadomosci Lekarskie (Warsaw, Poland) 1973;26:1601–1605.
    1. Tauffkirchen E. Cerebral paresis pathogenesis clinical aspects and treatment by the Bobath method. Wien Med Wochenschr. 1970;120:643–647.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Ada L, Sherrington C, Canning CG, Dean CM, Scianni A. Computerised tracking to train dexterity after cerebellar tumour: a single-case experimental study. Brain Inj. 2009;23:702–706. doi: 10.1080/02699050902970752.
    1. Sartor-Glittenberg C, Brickner L. A multidimensional physical therapy program for individuals with cerebellar ataxia secondary to traumatic brain injury: a case series. Physiotherapy Theory and Practice. 2014;30:138–148. doi: 10.3109/09593985.2013.819952.
    1. Bar-Haim S, Harries N, Belokoptov M, Frank A, Copeliovitch L, Kaplanski J, et al. Comparison of efficacy of Adeli suit and neurodevelopmental treatments in children with cerebral palsy. Dev Med Child Neurol. 2006;48:325–330. doi: 10.1017/S0012162206000727.
    1. Harris-Love MO, Lohman Siegal K, Paul SM, Benson K. Rehabilitation management of Friedreich ataxia: lower extremity force-control variability and gait performance. Neurorehabil Neuro Repair. 2004;18:117–123. doi: 10.1177/0888439004267241.
    1. Nicholson JH, Morton RE, Attfield S, Rennie D. Assessment of upper-limb function and movement in children with cerebral palsy wearing lycra garments. Dev Med Child Neurol. 2001;43:384–391. doi: 10.1017/S001216220100072X.
    1. Blundell SW, Shepherd RB, Dean CM, Adams RD, Cahill BM. Functional strength training in cerebral palsy: a pilot study for a group circuit training class for children aged 4-8 years. Clin Rehabil. 2003;17:48–57. doi: 10.1191/0269215503cr584oa.
    1. Knox V, Lloyd EA. Evaluation of the functional effects of a course of Bobath therapy in children with cerebral palsy: a preliminary study. Dev Med Child Neurol. 2002;44:447–460. doi: 10.1111/j.1469-8749.2002.tb00306.x.
    1. Schroeder AS, Von Kries R, Riedel C, Homburg M, Auffermann H, Blaschek A, et al. Patient-specific determinants of responsiveness to robot-enhanced treadmill therapy in children and adolescents with cerebral palsy. Dev Med Child Neurol. 2014;56:1172–1179. doi: 10.1111/dmcn.12564.
    1. Van Hedel HJA, Meyer-Heim A, Rüsch-Bohtz C. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev Neurorehabil. 2016;16:410–415. doi: 10.3109/17518423.2015.1017661.
    1. Biffi E, Beretta E, Cesareo A, Maghini C, Turconi A, Reni G, Strazzer S. An immersive virtual reality platform to enhance walking ability of children with acquired brain injuries. Methods Inf Med. 2017;56:119–126. doi: 10.3414/ME16-02-0020.
    1. Nardone A, Turcato AM, Schieppati M. Effects of balance and gait rehabilitation in cerebellar disease of vascular or degenerative origin. Restorative Neurol Neurosci. 2014;32:233–245.
    1. Sabel M, Sjölund A, Broeren J, Arvidsson D, Saury J, Blomgren K, et al. Active video gaming improves coordination in survivors of childhood brain tumours. Disabil Rehabil. 2016;38:2073–2084. doi: 10.3109/09638288.2015.1116619.
    1. Santos G, Zeigelboim DBS, Severiano M, Teive H, Liberalesso P, Marques J, et al. Feasibility of virtual reality-based rehabilitation in adults with spinocerebellar ataxia: a prospective observational study. Hearing Balance Communication. 2017;15:244–251. doi: 10.1080/21695717.2017.1381490.
    1. Cernak K, Stevens V, Price R, Shumway-Cook A. Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther. 2008;88:88–97. doi: 10.2522/ptj.20070134.
    1. Da Silva RR, Iwabe-Marchese C. Using virtual reality for motor rehabilitation in a child with ataxic cerebral palsy: case report. Fisioter Pesq. 2015;22:97–102.
    1. Frank A, McCloskey S, Dole R. Effect of hippotherapy on perceived self-confidence and participation in a child with cerebral palsy. Ped Phys Ther. 2011;23:301–308. doi: 10.1097/PEP.0b013e318227caac.
    1. Ilg W, Schatton C, Schicks J, Giese M, Schols L, Synofzik M. Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurol. 2012;79:2056–2060. doi: 10.1212/WNL.0b013e3182749e67.
    1. Mulligan H, Mills K, Pascoe O, Smith M. Physiotherapy treatment for a child with non-progressive congenital ataxia. New Zealand J Physiotherapy. 1999;27:34–41.
    1. Schatton C, Synofzik M, Fleszar Z, Giese MA, Schöls L, Ilg W. Individualized exergame training improves postural control in advanced degenerative spinocerebellar ataxia: a rater-blinded, intra-individually controlled trial. Parkinsonism Relat D. 2017;39:80–84. doi: 10.1016/j.parkreldis.2017.03.016.
    1. Synofzik M, Schatton C, Giese M, Wolf J, Schöls L, Ilg W. Videogame-based coordinative training can improve advanced, multisystemic early-onset ataxia. J Neurol. 2013;260:26–58. doi: 10.1007/s00415-013-7087-8.
    1. Joanna Briggs Institute checklist for case reports. 2016. Accessed 10 Jan 2018.
    1. Shamseer L, Sampson M, Bukutu C, Schmid C, Nikles J, Johnston B, et al. CONSORT extension for reporting n-of-1 trials (CENT) 2015: explanation and elaboration. J Clin Epidemiol. 2016;76:18–46. doi: 10.1016/j.jclinepi.2015.05.018.
    1. NIH (National Heart, Lung and Blood Institute). Quality assessment tool for before-after (pre-post) studies with no control group. 2014 (Accessed 10 January 2018).
    1. Donoghue D, Physiotherapy Research and Older People Group. Stokes E. How much change is true change? The minimum detectable change of the Berg balance scale in elderly people. J Rehabil Med. 2009;41:343–346. doi: 10.2340/16501977-0337.
    1. Bohannon RW, Crouch R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: a systematic review. J Evaluation Clin Prac. 2017;23:377–381. doi: 10.1111/jep.12629.
    1. Oeffinger D, Bagley A, Rogers S, Gorton G, Kryscio R, Abel M, Damiano D, Barnes D, Tylkowski C. Outcome tools used for ambulatory children with cerebral palsy: responsiveness and minimum clinically important differences. Dev Med Child Neurol. 2008;50:918–925. doi: 10.1111/j.1469-8749.2008.03150.x.
    1. Schmitz-Hübsch T, Fimmers R, Rakowicz M, Rola R, Zdzienicka E, Fancellu R, et al. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology. 2010;74:678–684. doi: 10.1212/WNL.0b013e3181d1a6c9.
    1. Abbott JH. The distinction between randomized clinical trials (RCTs) and preliminary feasibility and pilot studies: what they are and are not. J Orthop Sports Phys Ther. 2014;44:555–558. doi: 10.2519/jospt.2014.0110.
    1. Maring J, Croarkin E, Morgan S, Plack M. Perceived effectiveness and barriers to physical therapy services for families and children with Friedreich ataxia. Pediatr Phys Ther. 2013;25:305–313. doi: 10.1097/PEP.0b013e31828ed7cb.
    1. Vohra S, Shamseer L, Sampson M, Schmid C, Tate R, Nikles J, et al. CONSORT extension for reporting N-of-1 trials (CENT) 2015 statement. J Clin Epidemiol. 2016;76:9–17. doi: 10.1016/j.jclinepi.2015.05.004.
    1. Puget S, Boddaert N, Viguier D, Kieffer V, Bulteau C, Garnett M, Callu D, Sainte-Rose C, Kalifa C, Dellatolas G, Grill J. Injuries to inferior vermis and dentate nuclei predict poor neurological and neuropsychological outcome in children with malignant posterior fossa tumors. Cancer. 2009;115:1338–1347. doi: 10.1002/cncr.24150.
    1. Jacobi H, Rakowicz M, Rola R, Fancellu R, Mariotti C, Charles P, Dürr A, Küper M, Timmann D, Linnemann C, Schöls L, Kaut O, Schaub C, Filla A, Baliko L, Melegh B, Kang JS, Giunti P, van de Warrenburg BPC, Fimmers R, Klockgether T. Inventory of non-ataxia signs (INAS): validation of a new clinical assessment instrument. Cerebellum. 2013;12:418–428. doi: 10.1007/s12311-012-0421-3.
    1. Johnston MV. Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev. 2009;15:94–101. doi: 10.1002/ddrr.64.
    1. Hartley H, Pizer B, Lane S, Sneade C, Pratt R, Bishop A, Kumar R. Inter-rater reliability and validity of two ataxia rating scales in children with brain tumours. Childs Nerv Syst. 2015;31:693–669. doi: 10.1007/s00381-015-2650-5.
    1. Lawerman TF, Brandsma R, Burger H, Burgerhof JGM, Sival DA, on behalf of the Childhood Ataxia and Cerebellar Group of the European Paediatric Neurology Society Age related reference values for the paediatric scale for the assessment and rating of ataxia: a multicentre study. Dev Med Child Neurol. 2017;59:1077–1082. doi: 10.1111/dmcn.13507.
    1. Deighton J, Croudace T, Fonagy P, Brown J, Patalay P, Wolpert M. Measuring mental health and wellbeing outcomes for children and adolescents to inform practice and policy: a review of child self-report measures. Child Adolescent Psychiatry Mental Health. 2014;8:14. doi: 10.1186/1753-2000-8-14.
    1. Friedman LS, Farmer JM, Perlman S, Wilmot G, Gomez C, Bushara K, et al. Measuring the rate of progression in Friedreich ataxia: implications for clinical trial design. Mov Disord. 2010;25:426–432. doi: 10.1002/mds.22912.

Source: PubMed

3
Abonner