Early Effect of Supplemented Infant Formulae on Intestinal Biomarkers and Microbiota: A Randomized Clinical Trial

Mireille Castanet, Christos Costalos, Nadja Haiden, Jean-Michel Hascoet, Bernard Berger, Norbert Sprenger, Dominik Grathwohl, Harald Brüssow, Nanda De Groot, Philippe Steenhout, Sophie Pecquet, Jalil Benyacoub, Jean-Charles Picaud, Mireille Castanet, Christos Costalos, Nadja Haiden, Jean-Michel Hascoet, Bernard Berger, Norbert Sprenger, Dominik Grathwohl, Harald Brüssow, Nanda De Groot, Philippe Steenhout, Sophie Pecquet, Jalil Benyacoub, Jean-Charles Picaud

Abstract

Background: Post-natal gut maturation in infants interrelates maturation of the morphology, digestive, and immunological functions and gut microbiota development. Here, we explored both microbiota development and markers of gut barrier and maturation in healthy term infants during their early life to assess the interconnection of gut functions during different infant formulae regimes.

Methods: A total of 203 infants were enrolled in this randomized double-blind controlled trial including a breastfed reference group. Infants were fed starter formulae for the first four weeks of life, supplemented with different combination of nutrients (lactoferrin, probiotics (Bifidobacterium animal subsp. Lactis) and prebiotics (Bovine Milk-derived Oligosaccharides-BMOS)) and subsequently fed the control formula up to eight weeks of life. Stool microbiota profiles and biomarkers of early gut maturation, calprotectin (primary outcome), elastase, α-1 antitrypsin (AAT) and neopterin were measured in feces at one, two, four, and eight weeks.

Results: Infants fed formula containing BMOS had lower mean calprotectin levels over the first two to four weeks compared to the other formula groups. Elastase and AAT levels were closer to levels observed in breastfed infants. No differences were observed for neopterin. Global differences between the bacterial communities of all groups were assessed by constrained multivariate analysis with hypothesis testing. The canonical correspondence analysis (CCA) at genus level showed overlap between microbiota profiles at one and four weeks of age in the BMOS supplemented formula group with the breastfed reference, dominated by bifidobacteria. Microbiota profiles of all groups at four weeks were significantly associated with the calprotectin levels at 4 (CCA, p = 0.018) and eight weeks of age (CCA, p = 0.026).

Conclusion: A meaningful correlation was observed between changes in microbiota composition and gut maturation marker calprotectin. The supplementation with BMOS seems to favor gut maturation closer to that of breastfed infants.

Keywords: early gut maturation; infant microbiota; prebiotics; probiotics.

Conflict of interest statement

D.G., N.S., B.B., H.B., N.D.G., S.P. are or were employees of Société des Produits Nestlé S.A., Switzerland. P.S., J.B. are or were employees of Nestlé Health Science. NH reports grants from Medical University of Vienna-Department of Pediatrics, during the conduct of the study. J.M.H., C.C. report grants from Société des Produits Nestlé S.A., outside the submitted work; J.C.P., M.C., have nothing to disclose. The funders declare that they were involved in the design of the study; in the collection, analyses and interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Flowchart of infants participating in the study (Intention To Treat, ITT) and 16S (Per Protocol, PP) analysis. * 203 infants were enrolled; one was excluded due to a randomization error. The total number of infants enrolled was 202. GI is gastrointestinal symptoms, w2 and w4 means week 2 and week 4.
Figure 2
Figure 2
Fecal calprotectin z-scores compared to breastfed group set as zero line (PP population).
Figure 3
Figure 3
Gut microbiota composition in infants from the four nutritional intervention groups (PP data set). Determination by 16S rRNA gene sequence analysis: bubble plot of bacteria determined at species level (identified at the right ordinate) for the intervention groups and time points specified on the top abscissa. The proportion of the specified bacterium in the specified sample is indicated by the size of the square (key at top right of the figure).
Figure 4
Figure 4
Canonical correspondence analysis at genus level for the nutritional intervention groups (PP data set). Ellipses indicates the 95% confidence intervals around the centroids. BF, breast fed; F, control formula; FLP, formula lactoferrin probiotic; FLPP, formula lactoferrin probiotic prebiotic.
Figure 5
Figure 5
Anthropometric data. z-scores for body weight, length, head circumference, and BMI (PP data set).

References

    1. Tamburini S., Shen N., Wu H.C., Clemente J.C. The microbiome in early life: Implications for health outcomes. Nat. Med. 2016;22:713–722. doi: 10.1038/nm.4142.
    1. Chin A.M., Hill D.R., Aurora M., Spence J.R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Boil. 2017;66:81–93. doi: 10.1016/j.semcdb.2017.01.011.
    1. Fiebiger U., Bereswill S., Heimesaat M.M. Dissecting the interplay between intestinal microbiota and host immunity in health and disease: Lessons learned from germfree and gnotobiotic animal models. Eur. J. Microbiol. Immunol. 2016;6:253–271. doi: 10.1556/1886.2016.00036.
    1. Parker A., Lawson M.A., Vaux L., Pin C. Host-microbe interaction in the gastrointestinal tract. Environ. Microbiol. 2017;20:2337–2353. doi: 10.1111/1462-2920.13926.
    1. Mazmanian S.K., Round J.L., Kasper D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–625. doi: 10.1038/nature07008.
    1. Chung H., Pamp S.J., Hill J.A., Surana N.K., Edelman S.M., Troy E.B., Reading N.C., Villablanca E.J., Wang S., Mora J.R., et al. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota. Cell. 2012;149:1578–1593. doi: 10.1016/j.cell.2012.04.037.
    1. Cilieborg M.S., Boye M., Sangild P. Bacterial colonization and gut development in preterm neonates. Early Hum. Dev. 2012;88:S41–S49. doi: 10.1016/j.earlhumdev.2011.12.027.
    1. Azad M.B., Konya T., Maughan H., Guttman D.S., Field C.J., Chari R.S., Sears M.R., Becker A.B., Scott J.A., Kozyrskyj A.L. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. Can. Med. Assoc. J. 2013;185:385–394. doi: 10.1503/cmaj.121189.
    1. Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., Li Y., Xia Y., Xie H., Zhong H. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703. doi: 10.1016/j.chom.2015.04.004.
    1. Bokulich N.A., Chung J., Battaglia T., Henderson N., Jay M., Li H., Lieber A.D., Wu F., Pérez-Pérez G., Chen Y., et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 2016;8:343ra82. doi: 10.1126/scitranslmed.aad7121.
    1. Fallani M., Young D., A Scott J., Norin E., Amarri S., Adam R., Aguilera M., Khanna S., Gil A., Edwards C.A., et al. Intestinal Microbiota of 6-week-old Infants Across Europe: Geographic Influence Beyond Delivery Mode, Breast-feeding, and Antibiotics. J. Pediatr. Gastroenterol. Nutr. 2010;51:77–84. doi: 10.1097/MPG.0b013e3181d1b11e.
    1. Oozeer N.B., Fairgrieve R., Clement W. Conservative management of laryngeal dog bite. Scott. Med. J. 2013;58:e22–e27. doi: 10.1177/0036933013482663.
    1. Penders J., Thijs C., Vink C., Stelma F.F., Snijders B., Kummeling I., Brandt P.A.V.D., Stobberingh E.E. Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy. Pediatrics. 2006;118:511–521. doi: 10.1542/peds.2005-2824.
    1. Simeoni U., Berger B., Junick J., Blaut M., Pecquet S., Rezzonico E., Grathwohl D., Sprenger N., Brüssow H., Team S. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and B ifidobacterium animalis subsp. lactis CNCM I-3446. Environ. Microbiol. 2016;18:2185–2195. doi: 10.1111/1462-2920.13144.
    1. Yassour M., Vatanen T., Siljander H., Hämäläinen A.-M., Härkönen T., Ryhänen S., Franzosa E.A., Vlamakis H., Huttenhower C., Gevers D., et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 2016;8:343ra81. doi: 10.1126/scitranslmed.aad0917.
    1. Catassi C., Bonucci A., Coppa G.V., Carlucci A., Giorgi P.L. Intestinal permeability changes during the first month: Effect of natural versus artificial feeding. J. Pediatr. Gastroenterol. Nutr. 1995;21:383–386. doi: 10.1097/00005176-199511000-00003.
    1. Colomé G., Sierra C., Blasco J., García M.V., Valverde E., Sánchez E., Blasco-Alonso J. Intestinal permeability in different feedings in infancy. Acta Paediatr. 2007;96:69–72. doi: 10.1111/j.1651-2227.2007.00030.x.
    1. Weaver L.T., Ewing G., Taylor L.C. The Bowel Habit of Milk-Fed Infants. J. Pediatr. Gastroenterol. Nutr. 1988;7:568–571. doi: 10.1097/00005176-198807000-00015.
    1. Xie L., Innis S.M. Genetic Variants of the FADS1 FADS2 Gene Cluster Are Associated with Altered (n-6) and (n-3) Essential Fatty Acids in Plasma and Erythrocyte Phospholipids in Women during Pregnancy and in Breast Milk during Lactation. J. Nutr. 2008;138:2222–2228. doi: 10.3945/jn.108.096156.
    1. Harsløf L.B., Larsen L.H., Ritz C., I Hellgren L., Michaelsen K.F., Vogel U., Lauritzen L. FADS genotype and diet are important determinants of DHA status: A cross-sectional study in Danish infants. Am. J. Clin. Nutr. 2013;97:1403–1410. doi: 10.3945/ajcn.113.058685.
    1. Muc M., Kreiner E., Larsen J.M., Birch S., Brix S., Bisgaard H., Lauritzen L., Brix S. Maternal fatty acid desaturase genotype correlates with infant immune responses at 6 months. Br. J. Nutr. 2015;114:891–898. doi: 10.1017/S0007114515002561.
    1. Manzoni P., Decembrino L., Stolfi I., Pugni L., Rinaldi M., Cattani S., Romeo M., Messner H., Laforgia N., Vagnarelli F., et al. Lactoferrin and prevention of late-onset sepsis in the pre-term neonates. Early Hum. Dev. 2010;86:59–61. doi: 10.1016/j.earlhumdev.2010.01.009.
    1. Manzoni P., Stolfi I., Messner H., Cattani S., Laforgia N., Romeo M.G., Bollani L., Rinaldi M., Gallo E., Quercia M., et al. Bovine Lactoferrin Prevents Invasive Fungal Infections in Very Low Birth Weight Infants: A Randomized Controlled Trial. Pediatrics. 2011;129:116–123. doi: 10.1542/peds.2011-0279.
    1. Ochoa T.J., Chea-Woo E., Baiocchi N., Pecho I., Campos-Sánchez M., Prada A., Valdiviezo G., Lluque A., Lai D., Cleary T.G. Randomized double-blind controlled trial of bovine lactoferrin for prevention of diarrhea in children. J. Pediatr. 2012;162:349–356. doi: 10.1016/j.jpeds.2012.07.043.
    1. Pammi M., Abrams S.A. Oral Lactoferrin for the Prevention of Sepsis and Necrotizing Enterocolitis in Preterm Infants. Wiley; Hoboken, NJ, USA: 2015. p. CD007137.
    1. Costantini L., Molinari R., Farinon B., Merendino N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017;18:2645. doi: 10.3390/ijms18122645.
    1. Watson H., Mitra S., Croden F.C., Taylor M., Wood H.M., Perry S.L., A Spencer J., Quirke P., Toogood G.J., Lawton C.L., et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut. 2017;67:1974–1983. doi: 10.1136/gutjnl-2017-314968.
    1. Chichlowski M., German J.B., Lebrilla C.B., Mills D.A. The Influence of Milk Oligosaccharides on Microbiota of Infants: Opportunities for Formulas. Annu. Rev. Food Sci. Technol. 2011;2:331–351. doi: 10.1146/annurev-food-022510-133743.
    1. Berger B., Porta N., Foata F., Grathwohl D., Delley M., Moine D., Charpagne A., Siegwald L., Descombes P., Alliet P., et al. Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk to Require Antibiotics. mBio. 2020;11 doi: 10.1128/mBio.03196-19.
    1. Campeotto F., Butel M.J., Kalach N., Derrieux S., Aubert-Jacquin C., Barbot L., Francoual C., Dupont C., Kapel N. High faecal calprotectin concentrations in newborn infants. Arch. Dis. Child. - Fetal Neonatal Ed. 2004;89:F353–F355. doi: 10.1136/adc.2002.022368.
    1. Summerton C.B., Longlands M.G., Wiener K., Shreeve D.R. Faecal calprotectin: A marker of inflammation throughout the intestinal tract. Eur. J. Gastroenterol. Hepatol. 2002;14:841–845. doi: 10.1097/00042737-200208000-00005.
    1. Kapel N., Campeotto F., Kalach N., Baldassare M., Butel M.-J., Dupont C. Faecal Calprotectin in Term and Preterm Neonates. J. Pediatr. Gastroenterol. Nutr. 2010;51:542–547. doi: 10.1097/MPG.0b013e3181e2ad72.
    1. I Campbell D., McPhail G., Lunn P.G., Elia M., Jeffries D.J. Intestinal Inflammation Measured by Fecal Neopterin in Gambian Children with Enteropathy: Association With Growth Failure, Giardia lamblia, and Intestinal Permeability. J. Pediatr. Gastroenterol. Nutr. 2004;39:153–157. doi: 10.1097/00005176-200408000-00005.
    1. Keller K.-M., Knobel R., Ewe K. Fecal α1-Antitrypsin in Newborn Infants. J. Pediatr. Gastroenterol. Nutr. 1997;24:271–275. doi: 10.1097/00005176-199703000-00007.
    1. Nissler K., Von Katte I., Huebner A., Henker J. Pancreatic Elastase 1 in Feces of Preterm and Term Infants. J. Pediatr. Gastroenterol. Nutr. 2001;33:28–31. doi: 10.1097/00005176-200107000-00005.
    1. David-Henriau L., Bui S., Molinari I., Montaudon D., Lamireau T. Fecal elastase-1: A useful test in pediatric practice. Arch. Pediatr. Organe Off. Soc. Fr. Pediatr. 2005;12:1221–1225. doi: 10.1016/j.arcped.2005.02.016.
    1. Shulman R.J., Buffone G., Wise L. Enteric protein loss in necrotizing enterocolitis as measured by fecal α1-antitrypsin excretion. J. Pediatr. 1985;107:287–289. doi: 10.1016/S0022-3476(85)80152-9.
    1. Kapel N., Meillet D., Favennec L., Magne D., Raichvarg D., Gobert J.-G. Evaluation of Intestinal Clearance and Faecal Excretion of α1-Antiproteinase and Immunoglobulins During Crohn’s Disease and Ulcerative Colitis. Clin. Chem. Lab. Med. 1992;30:197–202. doi: 10.1515/cclm.1992.30.4.197.
    1. Majamaa H., Aittoniemi J., Miettinen A. Increased concentration of fecal α1-antitrypsin is associated with cow’s milk allergy in infants with atopic eczema. Clin. Exp. Allergy. 2001;31:590–592. doi: 10.1046/j.1365-2222.2001.01035.x.
    1. Rollins N.C., Filteau S.M., Coutsoudis A., Tomkins A.M. Feeding mode, intestinal permeability, and neopterin excretion: A longitudinal study in infants of HIV-infected South African women. J. Acquir. Immune Defic. Syndr. (1999) 2001;28:132–139. doi: 10.1097/00126334-200110010-00004.
    1. Amarri S., Benatti F., Callegari M., Shahkhalili Y., Chauffard F., Rochat F., Acheson K., Hager C., Benyacoub J., Galli E., et al. Changes of Gut Microbiota and Immune Markers During the Complementary Feeding Period in Healthy Breast-fed Infants. J. Pediatr. Gastroenterol. Nutr. 2006;42:488–495. doi: 10.1097/01.mpg.0000221907.14523.6d.
    1. Borulf S., Lindberg T., Månsson M. Immunoreactive Anionic Trypsin and Anionic Elastase in Human Milk. Acta Paediatr. 1987;76:11–15. doi: 10.1111/j.1651-2227.1987.tb10406.x.
    1. Campeotto F., Kapel N., Kalach N., Razafimahefa H., Castela F., Barbot L., Soulaines P., Dehan M., Gobert J.G., Dupont C. Low levels of pancreatic elastase 1 in stools of preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2002;86:F198–F199. doi: 10.1136/fn.86.3.F198.
    1. Davidson L.A., Lönnerdal B. Fecal Alpha1-Antitrypsin in Breast-Fed Infants Is Derived from Human Milk and Is not Indicative of Enteric Protein Loss. Acta Paediatr. 1990;79:137–141. doi: 10.1111/j.1651-2227.1990.tb11429.x.
    1. Lisowska-Myjak B., Pachecka J. Alpha-1-Antitrypsin and IgA in Serial Meconium and Faeces of Healthy Breast-Fed Newborns. Fetal Diagn. Ther. 2006;22:116–120. doi: 10.1159/000097108.
    1. Matsubara Y., E Gaull G. Biopterin and neopterin in various milks and infant formulas. Am. J. Clin. Nutr. 1985;41:110–112. doi: 10.1093/ajcn/41.1.110.
    1. Mohan R., Koebnick C., Schildt J., Mueller M., Radke M., Blaut M. Effects of Bifidobacterium lactis Bb12 Supplementation on Body Weight, Fecal pH, Acetate, Lactate, Calprotectin, and IgA in Preterm Infants. Pediatr. Res. 2008;64:418–422. doi: 10.1203/PDR.0b013e318181b7fa.
    1. Lönnerdal B., Erdmann P., Thakkar S.K., Sauser J., Destaillats F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: A developmental perspective. J. Nutr. Biochem. 2017;41:1–11. doi: 10.1016/j.jnutbio.2016.06.001.
    1. Van Elburg R.M., Fetter W.P.F., Bunkers C.M., Heymans H. Intestinal permeability in relation to birth weight and gestational and postnatal age. Arch. Dis. Child. Fetal Neonatal Ed. 2003;88:F52–F55. doi: 10.1136/fn.88.1.F52.
    1. [(accessed on 19 May 2020)]; Available online: .
    1. Meli F., Puccio G., Cajozzo C., Ricottone G.L., Pecquet S., Sprenger N., Steenhout P. Growth and safety evaluation of infant formulae containing oligosaccharides derived from bovine milk: A randomized, double-blind, noninferiority trial. BMC Pediatr. 2014;14:306. doi: 10.1186/s12887-014-0306-3.
    1. Asgarshirazi M., Shariat M., Nayeri F., Dalili H., Abdollahi A. Comparison of Fecal Calprotectin in Exclusively Breastfed and Formula or Mixed Fed Infants in the First Six Months of Life. Acta Med. Iran. 2017;55:53–58.
    1. Groer M., Ashmeade T., Louis-Jacques A., Beckstead J., Ji M. Relationships of Feeding and Mother’s Own Milk with Fecal Calprotectin Levels in Preterm Infants. Breastfeed. Med. 2016;11:207–212. doi: 10.1089/bfm.2015.0115.
    1. Savino F., Castagno E., Calabrese R., Viola S., Oggero R., Miniero R. High Faecal Calprotectin Levels in Healthy, Exclusively Breast-Fed Infants. Neonatology. 2010;97:299–304. doi: 10.1159/000255161.
    1. Li F., Ma J., Geng S., Wang J., Ren F., Sheng X. Comparison of the different kinds of feeding on the level of fecal calprotectin. Early Hum. Dev. 2014;90:471–475. doi: 10.1016/j.earlhumdev.2014.06.005.
    1. Austin S., De Castro C.A., Bénet T., Hou Y., Sun H., Thakkar S.K., Vinyes-Pares G., Zhang Y., Wang P. Temporal Change of the Content of 10 Oligosaccharides in the Milk of Chinese Urban Mothers. Nutrients. 2016;8:346. doi: 10.3390/nu8060346.
    1. Keikha M., Bahreynian M., Saleki M., Kelishadi R. Macro- and Micronutrients of Human Milk Composition: Are They Related to Maternal Diet? A Comprehensive Systematic Review. Breastfeed. Med. 2017;12:517–527. doi: 10.1089/bfm.2017.0048.
    1. Sprenger N., Lee L.Y., De Castro C.A., Steenhout P., Thakkar S.K. Longitudinal change of selected human milk oligosaccharides and association to infants’ growth, an observatory, single center, longitudinal cohort study. PLoS ONE. 2017;12:e0171814. doi: 10.1371/journal.pone.0171814.
    1. Zhernakova A., Kurilshikov A., Bonder M.-J., Tigchelaar E.F., Schirmer M., Vatanen T., Mujagic Z., Vila A.V., Falony G., Vieira-Silva S., et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–569. doi: 10.1126/science.aad3369.
    1. Löser C., Mollgaard A., Fölsch U.R. Faecal elastase 1: A novel, highly sensitive, and specific tubeless pancreatic function test. Gut. 1996;39:580–586. doi: 10.1136/gut.39.4.580.
    1. Stein J., Jung M., Sziegoleit A., Zeuzem S., Caspary W.F., Lembcke B. Immunoreactive elastase I: Clinical evaluation of a new noninvasive test of pancreatic function. Clin. Chem. 1996;42:222–226. doi: 10.1093/clinchem/42.2.222.
    1. Pokusaeva K., Fitzgerald G.F., Van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6:285–306. doi: 10.1007/s12263-010-0206-6.
    1. Brüssow H., Parkinson S.J. You are what you eat. Nat. Biotechnol. 2014;32:243–245. doi: 10.1038/nbt.2845.
    1. Cooper P., Bolton K.D., Velaphi S., De Groot N., Emady-Azar S., Pecquet S., Steenhout P. Early Benefits of a Starter Formula Enriched in Prebiotics and Probiotics on the Gut Microbiota of Healthy Infants Born to HIV+ Mothers: A Randomized Double-Blind Controlled Trial. Clin. Med. Insights Pediatr. 2016;10:119–130. doi: 10.4137/CMPed.S40134.

Source: PubMed

3
Abonner