Appetite and Gut Hormones Response to a Putative α-Glucosidase Inhibitor, Salacia Chinensis, in Overweight/Obese Adults: A Double Blind Randomized Controlled Trial

Lihong Hao, Yvette Schlussel, Krista Fieselmann, Stephen H Schneider, Sue A Shapses, Lihong Hao, Yvette Schlussel, Krista Fieselmann, Stephen H Schneider, Sue A Shapses

Abstract

Animal studies indicate Salacia reduces body weight, possibly due to its α-glucosidase inhibitor (α-GI) properties, but this has not been examined previously. In this study, a randomized, placebo-controlled, three-way cross-over design was used to evaluate whether Salacia Chinensis (SC) reduces appetite in healthy overweight/obese individuals (body mass index 28.8 ±3.6 kg/m²; 32 ± 12 years). Forty-eight participants were fasted overnight and consumed a dose of SC (300 or 500 mg) or placebo with a fixed breakfast meal at each visit. Appetite sensations, glycemic indices and gastrointestinal peptides were measured. Results indicated that SC had no effect on postprandial appetite. However, in women, hunger was reduced by SC compared to placebo at multiple time points (300 mg; p < 0.05), but not in men. Area under the curve (AUC) for serum glucose, insulin and amylin was attenuated with SC compared to placebo (p < 0.05). Glucagon like peptide-1 had two peaks after the meal, but the AUC did not differ between groups. The AUC of peak areas for peptide YY and ghrelin were greater for SC than placebo (p < 0.05). These findings indicate that Salacia decreases glycemic indices supporting its role as an α-GI, and affects certain gastrointestinal peptides suggesting it may be an appetite modulator.

Keywords: Salacia Chinensis; appetite; gastrointestinal peptides; glycemic indices.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, interpretation of data or in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure A1
Figure A1
Serum glucose (a), insulin (b), amylin (c), GLP-1 (d), PYY (e) and ghrelin (f) levels during 3 h after the mixed breakfast meal with a dose of SC or placebo. Abbreviations: glucagon-like peptide-1 (GLP-1), peptide YY (PYY), Salacia Chinensis extract (SC). * p < 0.05; ƚ p < 0.06, Differs from placebo. Values are means ± SEM. Placebo: ; 300 mg: ; 500 mg: .
Figure A2
Figure A2
Correlations of gut hormones (GLP-1, PYY) and prospective food consumption (PFC) at baseline, and after the meal with placebo or SC treatment (SC 300 mg, SC 500 mg) using area under the curve.
Figure 1
Figure 1
Flowchart of study participants. At each intervention, subjects were randomized in a double blind manner to placebo or one of two doses of treatment in a cross-over design.
Figure 2
Figure 2
Visual analogue scales (VAS) scores for hunger (a), fullness (b), satiety (c), and prospective food consumption (d) during 3 h after the mixed breakfast meal with a dose of Salacia Chinensis (SC) or placebo (n = 48). * p < 0.05, Differs compared to placebo. Values are means ± standard error of the mean (SEM). Placebo: ; 300 mg: ; 500 mg: .
Figure 3
Figure 3
VAS hunger scores during 3 h in age-matched females (a) and males (b). n = 32. * p < 0.05, Differs compared to placebo. Values are mean ± SEM. Placebo: ; 300 mg: ; 500 mg: .
Figure 4
Figure 4
Integrated area under the curve (AUC) for peak areas of glycemic indices (a) and gut hormones (b) after a mixed meal with either SC treatment compared to placebo. The AUC units are as follows: glucose (mg × min/dL); insulin (µIU × min/mL); and amylin/GLP-1/ PYY (pg × min/mL). * p < 0.05, Differs compared to placebo for glucose (×5), insulin, amylin, ghrelin (×0.5) and PYY. Placebo: ; 300 mg: ; 500 mg: .

References

    1. Flegal K.M., Carroll M.D., Ogden C.L., Curtin L.R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303:235–241. doi: 10.1001/jama.2009.2014.
    1. Wing R.R., Hill J.O. Successful weight loss maintenance. Annu. Rev. Nutr. 2001;21:323–341. doi: 10.1146/annurev.nutr.21.1.323.
    1. Cameron J.D., Goldfield G.S., Cyr M.J., Doucet E. The effects of prolonged caloric restriction leading to weight-loss on food hedonics and reinforcement. Physiol. Behav. 2008;94:474–480. doi: 10.1016/j.physbeh.2008.02.014.
    1. Polidori D., Sanghvi A., Seeley R.J., Hall K.D. How Strongly Does Appetite Counter Weight Loss? Quantification of the Feedback Control of Human Energy Intake. Obesity. 2016;24:2289–2295. doi: 10.1002/oby.21653.
    1. Batterham R.L., Cohen M.A., Ellis S.M., Le Roux C.W., Withers D.J., Frost G.S., Ghatei M.A., Bloom S.R. Inhibition of food intake in obese subjects by peptide YY3–36. N. Engl. J. Med. 2003;349:941–948. doi: 10.1056/NEJMoa030204.
    1. Gutzwiller J.P., Drewe J., Goke B., Schmidt H., Rohrer B., Lareida J., Beglinger C. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol. 1999;276:R1541–R1544.
    1. Spreckley E., Murphy K.G. The L-Cell in Nutritional Sensing and the Regulation of Appetite. Front. Nutr. 2015;2:23. doi: 10.3389/fnut.2015.00023.
    1. Kaku H., Tajiri Y., Yamada K. Anorexigenic effects of miglitol in concert with the alterations of gut hormone secretion and gastric emptying in healthy subjects. Horm. Metab. Res. 2012;44:312–318. doi: 10.1055/s-0032-1304563.
    1. Aoki K., Kamiyama H., Masuda K., Kamiko K., Noguchi Y., Tajima K., Terauchi Y. Effects of miglitol, vildagliptin, or their combination on serum insulin and peptide YY levels and plasma glucose, cholecystokinin, ghrelin, and obestatin levels. Endocr. J. 2014;61:249–256. doi: 10.1507/endocrj.EJ13-0399.
    1. Lee A., Patrick P., Wishart J., Horowitz M., Morley J.E. The effects of miglitol on glucagon-like peptide-1 secretion and appetite sensations in obese type 2 diabetics. Diabetes Obes. Metab. 2002;4:329–335. doi: 10.1046/j.1463-1326.2002.00219.x.
    1. Chiasson J.L., Josse R.G., Gomis R., Hanefeld M., Karasik A., Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359:2072–2077. doi: 10.1016/S0140-6736(02)08905-5.
    1. Kawamori R., Tajima N., Iwamoto Y., Kashiwagi A., Shimamoto K., Kaku K. Voglibose for prevention of type 2 diabetes mellitus: A randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet. 2009;373:1607–1614. doi: 10.1016/S0140-6736(09)60222-1.
    1. Domecq J.P., Prutsky G., Leppin A., Sonbol M.B., Altayar O., Undavalli C., Wang Z., Elraiyah T., Brito J.P., Mauck K.F., et al. Drugs commonly associated with weight change: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2015;100:363–370. doi: 10.1210/jc.2014-3421.
    1. Wolf B.W., Weisbrode S.E. Safety evaluation of an extract from Salacia oblonga. Food Chem. Toxicol. 2003;41:867–874. doi: 10.1016/S0278-6915(03)00038-3.
    1. Jeykodi S., Deshpande J., Juturu V. Salacia Extract Improves Postprandial Glucose and Insulin Response: A Randomized Double-Blind, Placebo Controlled, Crossover Study in Healthy Volunteers. J. Diabetes Res. 2016;2016:7971831. doi: 10.1155/2016/7971831.
    1. Shimada T., Nakayama Y., Harasawa Y., Matsui H., Kobayashi H., Sai Y., Miyamoto K., Tomatsu S., Aburada M. Salacia reticulata has therapeutic effects on obesity. J. Nat. Med. 2014;68:668–676. doi: 10.1007/s11418-014-0845-9.
    1. Flint A., Raben A., Blundell J.E., Astrup A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 2000;24:38–48. doi: 10.1038/sj.ijo.0801083.
    1. Ibrugger S., Kristensen M., Mikkelsen M.S., Astrup A. Flaxseed dietary fiber supplements for suppression of appetite and food intake. Appetite. 2012;58:490–495. doi: 10.1016/j.appet.2011.12.024.
    1. Williams J.A., Choe Y.S., Noss M.J., Baumgartner C.J., Mustad V.A. Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes. Am. J. Clin. Nutr. 2007;86:124–130.
    1. Blom W.A., Lluch A., Stafleu A., Vinoy S., Holst J.J., Schaafsma G., Hendriks H.F. Effect of a high-protein breakfast on the postprandial ghrelin response. Am. J. Clin. Nutr. 2006;83:211–220.
    1. Zhang J., Guo L. Effectiveness of acarbose in treating elderly patients with diabetes with postprandial hypotension. J. Investig. Med. :2017. doi: 10.1136/jim-2016-000295.
    1. Reda T.K., Geliebter A., Pi-Sunyer F.X. Amylin, food intake, and obesity. Obes. Res. 2002;10:1087–1091. doi: 10.1038/oby.2002.147.
    1. Lutz T.A. Amylinergic control of food intake. Physiol. Behav. 2006;89:465–471. doi: 10.1016/j.physbeh.2006.04.001.
    1. Maggio C.A., Decarr L.B., Vasselli J.R. Differential effects of sugars and the alpha-glucosidase inhibitor acarbose (Bay g 5421) on satiety in the Zucker obese rat. Int. J. Obes. 1987;11(Suppl 3):53–56.
    1. Emilien C., Hollis J.H. A brief review of salient factors influencing adult eating behaviour. Nutr. Res. Rev. 2017:1–14. doi: 10.1017/S0954422417000099.
    1. Hirschberg A.L. Sex hormones, appetite and eating behaviour in women. Maturitas. 2012;71:248–256. doi: 10.1016/j.maturitas.2011.12.016.
    1. Butera P.C. Estradiol and the control of food intake. Physiol. Behav. 2010;99:175–180. doi: 10.1016/j.physbeh.2009.06.010.
    1. Asarian L., Geary N. Modulation of appetite by gonadal steroid hormones. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2006;361:1251–1263. doi: 10.1098/rstb.2006.1860.
    1. Drapeau V., King N., Hetherington M., Doucet E., Blundell J., Tremblay A. Appetite sensations and satiety quotient: Predictors of energy intake and weight loss. Appetite. 2007;48:159–166. doi: 10.1016/j.appet.2006.08.002.
    1. Cummings D.E., Shannon M.H. Ghrelin and gastric bypass: Is there a hormonal contribution to surgical weight loss? J. Clin. Endocrinol. Metab. 2003;88:2999–3002. doi: 10.1210/jc.2003-030705.
    1. Nagaya N., Kojima M., Kangawa K. Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia. Intern. Med. 2006;45:127–134. doi: 10.2169/internalmedicine.45.1402.
    1. Borner T., Loi L., Pietra C., Giuliano C., Lutz T.A., Riediger T. The ghrelin receptor agonist HM01 mimics the neuronal effects of ghrelin in the arcuate nucleus and attenuates anorexia-cachexia syndrome in tumor-bearing rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016;311:R89–R96. doi: 10.1152/ajpregu.00044.2016.
    1. Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H., Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–660. doi: 10.1038/45230.
    1. Ariyasu H., Takaya K., Tagami T., Ogawa Y., Hosoda K., Akamizu T., Suda M., Koh T., Natsui K., Toyooka S., et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 2001;86:4753–4758. doi: 10.1210/jcem.86.10.7885.
    1. Date Y., Kojima M., Hosoda H., Sawaguchi A., Mondal M.S., Suganuma T., Matsukura S., Kangawa K., Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141:4255–4261. doi: 10.1210/endo.141.11.7757.
    1. Zheng F., Yin X., Lu W., Zhou J., Yuan H., Li H. Improved post-prandial ghrelin response by nateglinide or acarbose therapy contributes to glucose stability in Type 2 diabetic patients. J. Endocrinol. Invest. 2013;36:489–496.
    1. Ueno H., Tsuchimochi W., Wang H.W., Yamashita E., Tsubouchi C., Nagamine K., Sakoda H., Nakazato M. Effects of Miglitol, Acarbose, and Sitagliptin on Plasma Insulin and Gut Peptides in Type 2 Diabetes Mellitus: A Crossover Study. Diabetes Ther. 2015;6:187–196. doi: 10.1007/s13300-015-0113-3.
    1. Tai K., Hammond A.J., Wishart J.M., Horowitz M., Chapman I.M. Carbohydrate and fat digestion is necessary for maximal suppression of total plasma ghrelin in healthy adults. Appetite. 2010;55:407–412. doi: 10.1016/j.appet.2010.07.010.
    1. Shiiya T., Nakazato M., Mizuta M., Date Y., Mondal M.S., Tanaka M., Nozoe S., Hosoda H., Kangawa K., Matsukura S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J. Clin. Endocrinol. Metab. 2002;87:240–244. doi: 10.1210/jcem.87.1.8129.
    1. Flanagan D.E., Evans M.L., Monsod T.P., Rife F., Heptulla R.A., Tamborlane W.V., Sherwin R.S. The influence of insulin on circulating ghrelin. Am. J. Physiol. Endocrinol. Metab. 2003;284:E313–E316. doi: 10.1152/ajpendo.00569.2001.
    1. Shirakawa J., Arakawa S., Tagawa T., Gotoh K., Oikawa N., Ohno R., Shinagawa M., Hatano K., Sugawa H., Ichimaru K., et al. Salacia chinensis L. extract ameliorates abnormal glucose metabolism and improves the bone strength and accumulation of AGEs in type 1 diabetic rats. Food Funct. 2016;7:2508–2515. doi: 10.1039/C5FO01618E.
    1. Morikawa T., Akaki J., Ninomiya K., Kinouchi E., Tanabe G., Pongpiriyadacha Y., Yoshikawa M., Muraoka O. Salacinol and Related Analogs: New Leads for Type 2 Diabetes Therapeutic Candidates from the Thai Traditional Natural Medicine Salacia chinensis. Nutrients. 2015;7:1480–1493. doi: 10.3390/nu7031480.
    1. Shivaprasad H.N., Bhanumathy M., Sushma G., Midhun T., Raveendra K.R., Sushma K.R., Venkateshwarlu K. Salacia reticulata improves serum lipid profiles and glycemic control in patients with prediabetes and mild to moderate hyperlipidemia: A double-blind, placebo-controlled, randomized trial. J. Med. Food. 2013;16:564–568. doi: 10.1089/jmf.2013.2751.
    1. Tong J.J., Chen G.H., Wang F., Li X.W., Cao L., Sui X., Tao F., Yan W.W., Wei Z.J. Chronic acarbose treatment alleviates age-related behavioral and biochemical changes in SAMP8 mice. Behav. Brain. Res. 2015;284:138–152. doi: 10.1016/j.bbr.2015.01.052.
    1. Moritoh Y., Takeuchi K., Hazama M. Chronic administration of voglibose, an alpha-glucosidase inhibitor, increases active glucagon-like peptide-1 levels by increasing its secretion and decreasing dipeptidyl peptidase-4 activity in ob/ob mice. J. Pharmacol. Exp. Ther. 2009;329:669–676. doi: 10.1124/jpet.108.148056.

Source: PubMed

3
Abonner