Neurological Manifestations of Severe SARS-CoV-2 Infection: Potential Mechanisms and Implications of Individualized Mechanical Ventilation Settings

Denise Battaglini, Iole Brunetti, Pasquale Anania, Pietro Fiaschi, Gianluigi Zona, Lorenzo Ball, Daniele Roberto Giacobbe, Antonio Vena, Matteo Bassetti, Nicolò Patroniti, Angelo Schenone, Paolo Pelosi, Patricia R M Rocco, Chiara Robba, Denise Battaglini, Iole Brunetti, Pasquale Anania, Pietro Fiaschi, Gianluigi Zona, Lorenzo Ball, Daniele Roberto Giacobbe, Antonio Vena, Matteo Bassetti, Nicolò Patroniti, Angelo Schenone, Paolo Pelosi, Patricia R M Rocco, Chiara Robba

Abstract

In December 2019, an outbreak of illness caused by a novel coronavirus (2019-nCoV, subsequently renamed SARS-CoV-2) was reported in Wuhan, China. Coronavirus disease 2019 (COVID-19) quickly spread worldwide to become a pandemic. Typical manifestations of COVID-19 include fever, dry cough, fatigue, and respiratory distress. In addition, both the central and peripheral nervous system can be affected by SARS-CoV-2 infection. These neurological changes may be caused by viral neurotropism, by a hyperinflammatory and hypercoagulative state, or even by mechanical ventilation-associated impairment. Hypoxia, endothelial cell damage, and the different impacts of different ventilatory strategies may all lead to increased stress and strain, potentially exacerbating the inflammatory response and leading to a complex interaction between the lungs and the brain. To date, no studies have taken into consideration the possible secondary effect of mechanical ventilation on brain recovery and outcomes. The aim of our review is to provide an updated overview of the potential pathogenic mechanisms of neurological manifestations in COVID-19, discuss the physiological issues related to brain-lung interactions, and propose strategies for optimization of respiratory support in critically ill patients with SARS-CoV-2 pneumonia.

Keywords: COVID-19; SARS-CoV-2; coronavirus; neurological manifestations; neurotropism.

Copyright © 2020 Battaglini, Brunetti, Anania, Fiaschi, Zona, Ball, Giacobbe, Vena, Bassetti, Patroniti, Schenone, Pelosi, Rocco and Robba.

Figures

Figure 1
Figure 1
Proposed mechanisms for neurological manifestations in SARS-CoV-2 infection. We hypothesize three possible mechanisms for neurological manifestations in SARS-CoV-2 infection: (1) Viral neurotropism; (2) Hypercoagulation and inflammation, and (3) Brain-lung crosstalk.
Figure 2
Figure 2
SARS-CoV-2-induced hypercoagulability. Passage of the virus from the airway to the systemic circulation is facilitated by the sluggish movement of blood within the microcirculation and subsequent binding of ACE-2 receptors, expressed on the capillary endothelium, followed by endothelial damage, enhanced inflammation, and hypercoagulability. In this figure, we represent the activation of both intrinsic and extrinsic coagulation pathways as a possible mechanism for hypercoagulability and potential brain damage. Intrinsic pathway: activation of factor (F) XIIa, followed by activation of FXIa and VIII. Extrinsic pathway: activation of FVIIa and tissue factor. Both pathways converge in the common pathway with activation of FXa, FVa, prothrombin into thrombin, fibrinogen into fibrin, and fibrin degradation products (FDP) such as D-dimer.
Figure 3
Figure 3
Bohr effect. The oxyhemoglobin dissociation curve is shifted to the left in response to respiratory alkalosis (lower PaCO2 and higher pH), with increased affinity of oxygen for the hemoglobin. Conversely, during respiratory acidosis (higher PaCO2 and lower pH), the alveolar oxygen tension and systemic saturation improve, thus reducing alveolar carbon dioxide tension, as explained by the Bohr effect: the higher the acidity, the more carbon dioxide is eliminated.
Figure 4
Figure 4
Improving oxygen delivery to the brain. Raising hemoglobin and cardiac output should be considered for improving oxygen delivery, especially in COVID-19 phenotype 1. This figure represents different delivery of oxygen (DO2) at a fixed cardiac output, by changing hemoglobin, or at fixed hemoglobin, by changing cardiac output.
Figure 5
Figure 5
(A–C) Brain–lung–heart cross talk. SARS-CoV-2 lung infection can require mechanical ventilation, which heightens the pro-inflammatory cascade. In this figure, we propose the effect of increased PEEP on the cardiovascular system and CNS in healthy subjects (A), ARDS (B), and COVID-19 (C). In normal lungs (A), high PEEP and alveolar hyperdistention cause increased plateau pressure (Pplat), driving pressure (ΔP), and pleural pressure (Ppl), with consequent reduction of venous return (VR) and cardiac index (CI) and reduced cerebral perfusion pressure (CPP) and increased intracranial pressure (ICP). This can be partially offset by the presence of preserved gas exchange. In ARDS patients (B), the increase in PEEP with recruitment of collapsed areas does not cause significant changes in hemodynamics or cerebral function, and can increase oxygen delivery (cDO2). Conversely, in COVID-19 patients (C) who do not respond to recruitment, the concomitance of alveolar hyperdistention after PEEP increase and hypoxemia can cause serious impairment of cerebral dynamics and cerebral hypoxemia (low PbtO2).

References

    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. (2020) 395:497–506. 10.1016/S0140-6736(20)30183-5
    1. Naming the Coronavirus Disease (COVID-19) and the Virus that Causes It Available online at: (accessed March 31, 2020).
    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. . A novel coronavirus from patients with pneumonia in China, 2019. NEJM. (2020) 382:727–33. 10.1056/NEJMoa2001017
    1. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. (2020) 92:418–23. 10.1002/jmv.25681
    1. Choi WJ, Lee KN, Kang EJ, Lee H. Middle east respiratory syndrome-coronavirus infection: a case report of serial computed tomographic findings in a young male patient. Korean J Radiol. (2016) 17:166–70. 10.3348/kjr.2016.17.1.166
    1. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveil. (2020) 25:2000045 10.2807/1560-7917.ES.2020.25.3.2000045
    1. Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. (2020) 12:135. 10.3390/v12020135
    1. The Lancet . Emerging understandings of 2019-nCoV. Lancet. (2020) 395:311. 10.1016/S0140-6736(20)30186-0
    1. Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. . Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. JAMA Neurol. (2020) 77:1–9. 10.2139/ssrn.3544840
    1. McGrath BA, Brenner MJ, Warrillow SJ, Pandian V, Arora A, Cameron TS, et al. . Tracheostomy in the COVID-19 era: global and multidisciplinary guidance. Lancet Resp Med. (2020) 8:717–25. 10.1016/S2213-2600(20)30230-7
    1. Robba C, Battaglini D, Pelosi P, Rocco RMP. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Exp Rev Respir Med. (2020) 22:1–4. 10.1080/17476348.2020.1778470
    1. Pinzon RT, Wijaya VO, Buana RB, Al Jody A, Nunsio PN. Neurologic characteristics in coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Front Neurol. (2020) 11:565. 10.3389/fneur.2020.00565
    1. Ferrarese C, Silani V, Priori A, Galimberti S, Agostoni E, Monaco S, et al. . An Italian multicenter retrospective-prospective observational study on neurological manifestations of COVID-19 (NEUROCOVID). Neurol Sci. (2020) 41:1–5. 10.1007/s10072-020-04450-1
    1. Pelosi P, Rocco PRM. The lung and the brain: a dangerous cross-talk. Crit Care. (2011) 15:168. 10.1186/cc10259
    1. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res. (2018) 100:163–88. 10.1016/bs.aivir.2018.01.001
    1. Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. (2015) 235:185–95. 10.1002/path.4454
    1. Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. (2004) 203:631–7. 10.1002/path.1570
    1. Mattern T, Scholtz W, Feller AC, Flad HD, Ulmer AJ. Expression of CD26 (Dipeptidyl Peptidase IV) on resting and activated human T-lymphocytes. Scand J Immunol. (1991) 33:737–48. 10.1111/j.1365-3083.1991.tb02548.x
    1. Chan PKS, To KF, Lo AWI, Cheung JLK, Chu I, Au FWL, et al. . Persistent infection of SARS coronavirus in colonic cells in vitro. J Med Virol. (2004) 74:1–7. 10.1002/jmv.20138
    1. Lu C-W, Liu X-F, Jia Z-F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet. (2020) 395:e39. 10.1016/S0140-6736(20)30313-5
    1. Koester V. Coronavirus entering and replicating in a host cell. ChemViews. (2020) 5:e1000428 10.1002/chemv.202000018
    1. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. (2020) 10.1001/jamaneurol.2020.2065. [Epub ahead of print].
    1. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. (2020) 11:995–8. 10.1021/acschemneuro.0c00122
    1. Ahmed MU, Hanif M, Ali MJ, Haider MA, Kherani D, Memon GM, et al. . Neurological manifestations of COVID-19 (SARS-CoV-2): a review. Front Neurol. (2020) 11:518. 10.3389/fneur.2020.00518
    1. Trojanowicz B, Ulrich C, Kohler F, Bode V, Seibert E, Fiedler R, et al. . Monocytic angiotensin-converting enzyme 2 relates to atherosclerosis in patients with chronic kidney disease. Nephrol Dial Transplantat. (2017) 32:287–98. 10.1093/ndt/gfw206
    1. Spiegel M, Schneider K, Weber F, Weidmann M, Hufert FT. Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J Gen Virol. (2006) 87:1953–60. 10.1099/vir.0.81624-0
    1. Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke. Transl Stroke Res. (2020) 11:322–5. 10.1007/s12975-020-00818-9
    1. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. . Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis virus transmission pathways. J Pathol. (2004) 203:622–30. 10.1002/path.1560
    1. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. . Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. (2007) 81:813–21. 10.1128/JVI.02012-06
    1. Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. (2018) 95:e00404–18. 10.1128/JVI.00404-18
    1. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. . Multiple organ infection and the pathogenesis of SARS. J Exp Med. (2005) 202:415–24. 10.1084/jem.20050828
    1. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. (2020) 92:552–5. 10.1002/jmv.25728
    1. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. (2008) 82:7264–75. 10.1128/JVI.00737-08
    1. Beltrán-Corbellini Á, Chico-García JL, Martínez-Poles J, Rodríguez-Jorge F, Natera-Villalba E, Gómez-Corral J, et al. Acute-onset smell and taste disorders in the context of Covid-19: a pilot multicenter PCR-based case-control study. Eur J Neurol. (2020) 2020:14273 10.1111/ene.14273
    1. Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. (2020) 2020:ciaa330 10.1093/cid/ciaa330
    1. Yan CH, Faraji F, Prajapati DP, Boone CE, deConde AS. Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. (2020) 10:807–13. 10.1002/alr.22579
    1. Lechien JR, Chiesa-Estomba CM, de Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. . Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. (2020) 277:2251–61. 10.1007/s00405-020-05965-1
    1. Politi LS, Salsano E, Grimaldi M. Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and Anosmia. JAMA Neurol. (2020) 2020:2125. 10.1001/jamaneurol.2020.2125
    1. Coolen T, Lolli V, Sadeghi N, Rovai A, Trotta N, Taccone FS, et al. . Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology. (2020). 10.1212/WNL.0000000000010116. [Epub ahead of print].
    1. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. . Endothelial cell infection and endotheliitis in COVID-19. Lancet. (2020) 395:1417–18. 10.1016/S0140-6736(20)30937-5
    1. von Weyhern CH, Kaufmann I, Neff F, Kremer M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet. (2020) 395:e109. 10.1016/S0140-6736(20)31282-4
    1. Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot PJ. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. (2006) 349:335–46. 10.1016/j.virol.2006.01.049
    1. Lee S, Nedumaran B, Hypolite J, Caldwell B, Rudolph MC, Malykhina AP. Differential neurodegenerative phenotypes are associated with heterogeneous voiding dysfunction in a coronavirus-induced model of multiple sclerosis. Sci Rep. (2019) 9:10869. 10.1038/s41598-019-47407-x
    1. Mecha M, Carrillo-Salinas FJ, Mestre L, Feliú A, Guaza C. Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler's virus. Prog Neurobiol. (2013) 101–102:46–64. 10.1016/j.pneurobio.2012.11.003
    1. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory Coronaviruses. J Virol. (2000) 74:8913–21. 10.1128/JVI.74.19.8913-8921.2000
    1. Boucher A, Desforges M, Duquette P, Talbot PJ. Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients. Clin Immunol. (2007) 123:258–67. 10.1016/j.clim.2007.02.002
    1. Talbot PJ, Paquette JS, Ciurli C, Antel JP, Ouellet F. Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Ann Neurol. (1996) 39:233–40. 10.1002/ana.410390213
    1. Zanin L, Saraceno G, Panciani PP, Renisi G, Signorini L, Migliorati K, et al. . SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochirur. (2020) 162:1491–4. 10.1007/s00701-020-04374-x
    1. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. New Engl J Med. (2020) 382:2268–70. 10.1056/NEJMc2008597
    1. Al Saiegh F, Ghosh R, Leibold A, Avery MB, Schmidt RF, Theofanis T, et al. . Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry. (2020) 91:846–8. 10.1136/jnnp-2020-323522
    1. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. (2020) 92:424–32. 10.1002/jmv.25685
    1. Heuer JF, Selke M, Crozier TA, Pelosi P, Herrmann P, Perske C, et al. . Effects of acute intracranial hypertension on extracerebral organs: a randomized experimental study in pigs. J Neurol Surg A Cent Eur Neurosurg. (2012) 73:289–95. 10.1055/s-0032-1304813
    1. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit care. (2020) 24:353. 10.1186/s13054-020-03062-7
    1. Yang M, Ng MHL, Chi KL. Thrombocytopenia in patients with severe acute respiratory syndrome (review). Hematology. (2005) 10:101–5. 10.1080/10245330400026170
    1. González-Duarte A, García-Ramos GS, Valdés-Ferrer SI, Cantú-Brito C. Clinical description of intracranial hemorrhage associated with bleeding disorders. J Stroke Cerebrovasc Dis. (2008) 17:204–7. 10.1016/j.jstrokecerebrovasdis.2008.02.008
    1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. (2020) 18:844–7. 10.1111/jth.14768
    1. Kitchens CS. Thrombocytopenia and thrombosis in disseminated intravascular coagulation (DIC). Hematol Am Soc Hematol Educ Progr. (2009) 2009:240–6. 10.1182/asheducation-2009.1.240
    1. Bergmann CC, Lane TE, Stohlman SA. Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol. (2006) 4:121–32. 10.1038/nrmicro1343
    1. Lavi E, Cong L. Type I astrocytes and microglia induce a cytokine response in an encephalitic murine coronavirus infection. Exp Mol Pathol. (2020) 115:104474. 10.1016/j.yexmp.2020.104474
    1. Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. . Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Inf Dis. (2005) 41:1089–96. 10.1086/444461
    1. Ray P, Wangzhou A, Ghneim N, Yousuf M, Paige C, Tavares-Ferreira D, et al. A Pharmacological interactome between COVID-19 patient samples and human sensory neurons reveals potential drivers of neurogenic pulmonary dysfunction. Brain Behav Immun. (2020). 10.1016/j.bbi.2020.05.078. [Epub ahead of print].
    1. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19–volume, page range.associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. (2020) 2020:201187 10.1148/radiol.2020201187
    1. Dixon L, Varley J, Gontsarova A, Mallon D, Tona F, Muir D, et al. . COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurol Neuroimmunol Neuroinflammation. (2020) 7:e789. 10.1212/NXI.0000000000000789
    1. Conti P, Younes A. Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents. (2020). 10.23812/Editorial-Conti-3. [Epub ahead of print].
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. . COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. (2020) 395:1033–4. 10.1016/S0140-6736(20)30628-0
    1. Skinner J, Yankey B, Shelton BK. Hemophagocytic lymphohistiocytosis. AACN Adv Crit Care. (2019) 30:151–64. 10.4037/aacnacc2019463
    1. Lippi G, Plebani M, Michael Henry B. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. (2020) 506:145–8. 10.1016/j.cca.2020.03.022
    1. Han H, Yang L, Liu R, Liu F, Wu K-L, Li J, et al. . Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. (2020) 58:1116–20. 10.1515/cclm-2020-0188
    1. Yao T, Tian BL, Li G, Cui Q, Wang CF, Zhang Q, et al. . Elevated plasma D-dimer levels are associated with short-term poor outcome in patients with acute ischemic stroke: a prospective, observational study. BMC Neurol. (2019) 19:175. 10.1186/s12883-019-1386-3
    1. Koch HJ, Horn M, Bogdahn U, Ickenstein GW. The relationship between plasma D-dimer concentrations and acute ischemic stroke subtypes. J Stroke Cerebrovas Dis. (2005) 14:75–9. 10.1016/j.jstrokecerebrovasdis.2004.12.002
    1. Zi W-J, Shuai J. Plasma D-dimer levels are associated with stroke subtypes and infarction volume in patients with acute ischemic stroke. PLoS ONE. (2014) 9:e86465. 10.1371/journal.pone.0086465
    1. Goldberg MF, Goldberg MF, Cerejo R, Tayal AH. Cerebrovascular disease in COVID-19. AJNR Am J Neuroradiol. (2020) 41:1170–2. 10.3174/ajnr.A6588
    1. Scullen T, Keen J, Mathkour M, Dumont AS, Kahn L. COVID-19 associated encephalopathies and cerebrovascular disease: the New Orleans experience. World Neurosurg. (2020). 10.1016/j.wneu.2020.05.192. [Epub ahead of print].
    1. Morassi M, Bagatto D, Cobelli M, D'Agostini S, Gigli GL, Bnà C, et al. . Stroke in patients with SARS-CoV-2 infection: case series. J Neurol. (2020) 267:2185–92. 10.1007/s00415-020-09885-2
    1. Fara MG, Stein LK, Skliut M, Morgello S, Fifi JT, Dhamoon MS. Macrothrombosis and stroke in patients with mild Covid-19 infection. J Thromb Haemost. (2020) 2020:jth.14938. 10.1111/jth.14938
    1. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. . Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. (2020) 382:e60. 10.1056/NEJMc2009787
    1. Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg. (2020) 194:105921. 10.1016/j.clineuro.2020.105921
    1. Battaglini D, Robba C, Lopes da Silva A, dos Santos Samary C, Leme Silva P, Dal Pizzol F, et al. . Brain–heart interaction after acute ischemic stroke. Crit Care. (2020) 24:163. 10.1186/s13054-020-02885-8
    1. Di Castelnuovo A, Agnoli C, de Curtis A, Giurdanella MC, Sieri S, Mattiello A, et al. . Elevated levels of D-dimers increase the risk of ischaemic and haemorrhagic stroke: findings from the EPICOR study. Thromb Haemost. (2014) 112:941–6. 10.1160/th14-04-0297
    1. Zhang J, Song Y, Shan B, He M, Ren Q, Zeng Y, et al. . Elevated level of D-dimer increases the risk of stroke. Oncotarget. (2018) 9:2208–19. 10.18632/oncotarget.23367
    1. Zhou Z, Liang Y, Zhang X, Xu J, Kang K, Qu H, et al. . Plasma D-dimer concentrations and risk of intracerebral hemorrhage: a systematic review and meta-analysis. Front Neurol. (2018) 9:1114. 10.3389/fneur.2018.01114
    1. Cheng X, Zhang L, Xie NC, Ma YQ, Lian YJ. High plasma levels of d-Dimer are independently associated with a heightened risk of deep vein thrombosis in patients with intracerebral hemorrhage. Mol Neurobiol. (2016) 53:5671–8. 10.1007/s12035-015-9487-5
    1. Robba C, Battaglini D, Ball L, Patroniti N, Loconte M, Brunetti I, et al. . Distinct phenotypes require distinct respiratory management strategies in severe COVID-19. Respir Physiol Neurobiol. (2020) 279:103455. 10.1016/j.resp.2020.103455
    1. Pelosi P, Caironi P, Gattinoni L. Pulmonary and extrapulmonary forms of acute respiratory distress syndrome. Semin Respir Crit Care Med. (2001) 22:259–68. 10.1055/s-2001-15783
    1. Leite-Junior JHP, Garcia CSNB, Souza-Fernandes AB, Silva PL, Ornellas DS, Larangeira AP, et al. . Methylprednisolone improves lung mechanics and reduces the inflammatory response in pulmonary but not in extrapulmonary mild acute lung injury in mice. Crit Care Med. (2008) 36:2621–8. 10.1097/CCM.0b013e3181847b43
    1. Pelosi P, D'Andrea L, Vitale G, Pesenti A, Gattinoni L. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med. (1994) 149:8–13. 10.1164/ajrccm.149.1.8111603
    1. Goodman LR, Fumagalli R, Tagliabue P, Tagliabue M, Ferrario M, Gattinoni L, et al. . Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlations. Radiology. (1999) 213:545–52. 10.1148/radiology.213.2.r99nv42545
    1. Gattinoni L, D'andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R. Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA. (1993) 269:2122–7. 10.1001/jama.269.16.2122
    1. Oddo M, Nduom E, Frangos S, MacKenzie L, Chen I, Maloney-Wilensky E, et al. . Acute lung injury is an independent risk factor for brain hypoxia after severe traumatic brain injury. Neurosurgery. (2010) 67:338–44. 10.1227/01.NEU.0000371979.48809.D9
    1. Rosenthal G, Hemphill JC, Sorani M, Martin C, Morabito D, Meeker M, et al. . The role of lung function in brain tissue oxygenation following traumatic brain injury. J Neurosurg. (2008) 108:59–65. 10.3171/JNS/2008/108/01/0059
    1. Van Santbrink H, Vd Brink WA, Steyerberg EW, Suazo JAC, Avezaat CJJ, Maas AIR, et al. . Brain tissue oxygen response in severe traumatic brain injury. Acta Neurochirur. (2003) 145:429–38. 10.1007/s00701-003-0032-3
    1. Lang M, Som A, Mendoza DP, Flores EJ, Reid N, Carey D, et al. . Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis Dis. (2020). 10.1016/S1473-3099(20)30367-4. [Epub ahead of print].
    1. Ottestad W, Søvik S. COVID-19 patients with respiratory failure: what can we learn from aviation medicine? Br J Anaesth. (2020). 10.1016/j.bja.2020.04.012. [Epub ahead of print].
    1. Teboul JL, Scheeren T. Understanding the Haldane effect. Intensive Care Med. (2017) 43:91–3. 10.1007/s00134-016-4261-3
    1. Sekhon MS, Griesdale DE, Czosnyka M, Donnelly J, Liu X, Aries MJ, et al. . The effect of red blood cell transfusion on cerebral autoregulation in patients with severe traumatic brain injury. Neurocrit Care. (2015) 23:210–6. 10.1007/s12028-015-0141-x
    1. Iadecola C, Anrather J. The immunology of stroke: rom mechanisms to translation. Nat Med. (2011) 17:796–808. 10.1038/nm.2399
    1. Nemer SN, Caldeira JB, Santos RG, Guimarães BL, Garcia JM, Prado D, et al. . Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: a pilot study. J Crit Care. (2015) 30:1263–6. 10.1016/j.jcrc.2015.07.019
    1. Pelosi P, Ferguson ND, Frutos-Vivar F, Anzueto A, Putensen C, Raymondos K, et al. . Management and outcome of mechanically ventilated neurologic patients. Crit Care Med. (2011) 39:1482–92. 10.1097/CCM.0b013e31821209a8
    1. Boone MD, Jinadasa SP, Mueller A, Shaefi S, Kasper EM, Hanafy KA, et al. . The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. (2017) 26:174–81. 10.1007/s12028-016-0328-9
    1. Alhazzani W, Hylander Møller M, Arabi YM, Loeb M, Ng Gong M, Fan E, et al. . Surviving sepsis campaign: guidelines on the management of critically Ill adults with coronavirus disease 2019 (COVID-19). Crit Care Med. (2020) 48:e440–69. 10.1097/CCM.0000000000004363
    1. Huynh T, Messer M, Sing RF, Miles W, Jacobs DG, Thomason MH, et al. . Positive end-expiratory pressure alters intracranial and cerebral perfusion pressure in severe traumatic brain injury. J Trauma. (2002) 53:488–93. 10.1097/00005373-200209000-00016
    1. Robba C, Bonatti G, Battaglini D, Rocco PRM, Pelosi P. Mechanical ventilation in patients with acute ischaemic stroke: from pathophysiology to clinical practice. Crit Care. (2019) 23:388. 10.1186/s13054-019-2662-8
    1. Mascia L. Acute lung injury in patients with severe brain injury: a double hit model. Neurocrit Care. (2009) 11:417–26. 10.1007/s12028-009-9242-8
    1. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. (2020). 10.1056/NEJMcp2009575. [Epub ahead of print].
    1. Bouma GJ, Muizelaar JP. Cerebral blood flow in severe clinical head injury. New Horiz. (1995) 3:384–94.
    1. Mascia L, Grasso S, Fiore T, Bruno F, Berardino M, Ducati A. Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med. (2005) 31:373–9. 10.1007/s00134-004-2491-2
    1. Solomon IH, Normandin E, Bhattacharyya S, Mukerji SS, Keller K, Ali AS, et al. . Neuropathological features of Covid-19. N Engl J Med. (2020) 2020:NEJMc2019373. 10.1056/NEJMc2019373
    1. Mahammedi A, Saba L, Vagal A, Leali M, Rossi A, Gaskill M, et al. Imaging in neurological disease of hospitalized COVID-19 patients: an Italian multicenter retrospective observational study. Radiology. (2020) 2020:201933 10.1148/radiol.2020201933
    1. Benussi A, Pilotto A, Premi E, Libri I, Giunta M, Agosti C, et al. . Clinical characteristics and outcomes of inpatients with neurologic disease and COVID-19 in Brescia, Lombardy, Italy. Neurology. (2020). 10.1212/WNL.0000000000009848. [Epub ahead of print].
    1. Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Thompson BT, Bellamy SL, et al. . The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. (2012) 185:1307–15. 10.1164/rccm.201111-2025OC
    1. Girard TD, Thompson JL, Pandharipande PP, Brummel NE, Jackson JC, Patel MB, et al. . Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir Med. (2018) 6:213–22. 10.1016/S2213-2600(18)30062-6
    1. Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. (2019) 23:352. 10.1186/s13054-019-2626-z
    1. Deliwala S, Abdulhamid S, Abusalih MF, Al-Qasmi MM, Bachuwa G. Encephalopathy as the sentinel sign of a cortical stroke in a patient infected with coronavirus disease-19 (COVID-19). Cureus. (2020) 12:e8121. 10.7759/cureus.8121

Source: PubMed

3
Abonner