Safety and Efficacy of Low-Level Laser Therapy in Autoimmune Thyroiditis: Long-Term Follow-Up Study

Danilo Bianchini Höfling, Maria Cristina Chavantes, Carlos Alberto Buchpiguel, Giovanni Guido Cerri, Suemi Marui, Paulo Campos Carneiro, Maria Cristina Chammas, Danilo Bianchini Höfling, Maria Cristina Chavantes, Carlos Alberto Buchpiguel, Giovanni Guido Cerri, Suemi Marui, Paulo Campos Carneiro, Maria Cristina Chammas

Abstract

Introduction: A randomized clinical trial (RCT) was performed to evaluate the efficacy of low-level laser therapy (LLLT) for hypothyroidism induced by chronic autoimmune thyroiditis (CAT).

Objective: The objective was to assess the safety and actions of LLLT 6 years after completion of the RCT.

Materials and methods: Forty-three participants were invited to participate in this study 6 years after completion of the RCT. Twenty-five were subjected to LLLT (group L), and 18 were subjected to placebo (group P). Primary outcome measure: frequency of thyroid nodules, which were subjected to fine-needle aspiration biopsy. Secondary outcome measures: dose of levothyroxine required to treat hypothyroidism, thyroid peroxidase antibodies (anti-TPO), and anti-thyroglobulin antibodies (anti-Tg).

Results: In group L, a nodule was observed in three patients, who all had a Bethesda II classification. In group P, a nodule was also observed in three patients, with two classified as Bethesda II and one as Bethesda III. The levothyroxine dose required by group L was significantly lower than that required by group P (P = 0.002). The anti-TPO and anti-Tg levels did not differ between the groups.

Conclusion: LLLT, by the methods described, has been shown to be safe for the treatment of hypothyroidism resulting from CAT. This trial is registered with ClinicalTrials.gov Identifier: NCT02240563.

Figures

Figure 1
Figure 1
Study design.
Figure 2
Figure 2
Replacement doses of LT4 (μg/day) required by the patients of the L and P groups at M0, M1, and M2.

References

    1. Azevedo L. H., Correaaranha A. C., Stolf S. F., Eduardo C. D. P., Ferreira Vieira M. M. Evaluation of low intensity laser effects on the thyroid gland of male mice. Photomedicine and Laser Surgery. 2005;23(6):567–570. doi: 10.1089/pho.2005.23.567.
    1. Vidal L., Ortiz M., Perez de Vargas I. Ultrastructural changes in thyroid perifollicular capillaries during normal postnatal development and after infrared laser radiation. Lasers in Medical Science. 2002;17(3):187–197. doi: 10.1007/s101030200028.
    1. Parrado C., Carrillo de Albornoz F., Vidal L., Perez de Vargas I. A quantitative investigation of microvascular changes in the thyroid gland after infrared (IR) laser radiation. Histology and Histopathology. 1999;14(4):1067–1071. doi: 10.14670/HH-14.1067.
    1. Morcos N., Omran M., Ghanem H., Elahdal M., Kamel N., Attia E. Phototherapeutic effect of low-level laser on thyroid gland of gamma-irradiated rats. Photochemistry and Photobiology. 2015;91(4):942–951. doi: 10.1111/php.12465.
    1. Höfling D. B., Chavantes M. C., Juliano A. G., et al. Low-level laser therapy in chronic autoimmune thyroiditis: a pilot study. Lasers in Surgery and Medicine. 2010;42(6):589–596. doi: 10.1002/lsm.20941.
    1. Höfling D. B., Chavantes M. C., Juliano A. G., et al. Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial. Lasers in Medical Science. 2013;28(3):743–753. doi: 10.1007/s10103-012-1129-9.
    1. Höfling D. B., Chavantes M. C., Juliano A. G., et al. Assessment of the effects of low-level laser therapy on the thyroid vascularization of patients with autoimmune hypothyroidism by color Doppler ultrasound. ISRN Endocrinology. 2012;2012:9. doi: 10.5402/2012/126720.126720
    1. Höfling D. B., Chavantes M. C., Acencio M. M. P., et al. Effects of low-level laser therapy on the serum TGF-β1 concentrations in individuals with autoimmune thyroiditis. Photomedicine and Laser Surgery. 2014;32(8):444–449. doi: 10.1089/pho.2014.3716.
    1. Gao X., Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. Journal of Biomedical Science. 2009;16(1):p. 4. doi: 10.1186/1423-0127-16-4.
    1. Yoshida A., Adachi T., Noguchi T., et al. Echographic findings and histological feature of the thyroid: a reverse relationship between the level of echo-amplitude and lymphocytic infiltration. Endocrinologia Japonica. 1985;32(5):681–690. doi: 10.1507/endocrj1954.32.681.
    1. Müller H. -W., Schröder S., Schneider C., Seifert G. Sonographic tissue characterisation in thyroid gland diagnosis. A correlation between sonography and histology. Klinische Wochenschrift. 1985;63(15):706–710. doi: 10.1007/BF01733114.
    1. Gharib H., Papini E., Valcavi R., et al. American Association of Clinical Endocrinologists and Associazione Medici Endocrinologi medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocrine Practice. 2006;12(1):63–102. doi: 10.4158/EP.12.1.63.
    1. Okayasu I. The relationship of lymphocytic thyroiditis to the development of thyroid carcinoma. Endocrine Pathology. 1997;8(3):225–230. doi: 10.1007/BF02738789.
    1. Tramalloni J., Monpeyssen H. Thyroïde normale et variants. In: Tramalloni J., Monpeyssen H., editors. Écographie de la Thyroïde. Issy-les-Moulieaux, France: Elsevier/Masson; 2006. pp. 1–30.
    1. Gao Y., Qu N., Zhang L., Chen J. Y., Ji Q. H. Preoperative ultrasonography and serum thyroid-stimulating hormone on predicting central lymph node metastasis in thyroid nodules as or suspicious for papillary thyroid microcarcinoma. Tumour Biology. 2016;37(6):7453–7459. doi: 10.1007/s13277-015-4535-3.
    1. Cibas E. S., Ali S. Z. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19(11):1159–1165. doi: 10.1089/thy.2009.0274.
    1. Tsai S. R., Hamblin M. R. Biological effects and medical applications of infrared radiation. Journal of Photochemistry and Photobiology B: Biology. 2017;170:197–207. doi: 10.1016/j.jphotobiol.2017.04.014.
    1. de Freitas L. F., Hamblin M. R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE Journal of Selected Topics in Quantum Electronics. 2016;22(3):348–364. doi: 10.1109/JSTQE.2016.2561201.
    1. Zosin I., Balas M. Clinical, ultrasonographical and histopathological aspects in Hashimoto's thyroiditis associated with malignant and benign thyroid nodules. Endokrynologia Polska. 2013;64(4):255–262. doi: 10.5603/EP.2013.0002.
    1. Dossing H., Bennedbaek F. N., Karstrup S., Hegedus L. Benign solitary solid cold thyroid nodules: US-guided interstitial laser photocoagulation— initial experience. Radiology. 2002;225(1):53–57. doi: 10.1148/radiol.2251011042.
    1. Pacella C. M., Bizzarri G., Spiezia S., et al. Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology. 2004;232(1):272–280. doi: 10.1148/radiol.2321021368.
    1. Pacella C. M., Bizzarri G., Guglielmi R., et al. Thyroid tissue: US-guided percutaneous interstitial laser ablation-a feasibility study. Radiology. 2000;217(3):673–677. doi: 10.1148/radiology.217.3.r00dc09673.
    1. Ohshiro T., Calderhead R. G. Development of low reactive-level laser therapy and Its present status. Journal of Clinical Laser Medicine & Surgery. 1991;9(4):267–275. doi: 10.1089/clm.1991.9.267.
    1. Valcavi R., Riganti F., Bertani A., Formisano D., Pacella C. M. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid. 2010;20(11):1253–1261. doi: 10.1089/thy.2010.0189.
    1. Dossing H., Bennedbaek F. N., Hegedus L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. European Journal of Endocrinology. 2011;165(1):123–128. doi: 10.1530/EJE-11-0220.
    1. Piana S., Riganti F., Froio E., Andrioli M., Pacella C. M., Valcavi R. Pathological findings of thyroid nodules after percutaneous laser ablation: a series of 22 cases with cyto-histological correlation. Endocrine Pathology. 2012;23(2):94–100. doi: 10.1007/s12022-012-9192-0.
    1. Weetman A. P. Autoimmune thyroid disease. Autoimmunity. 2004;37(4):337–340. doi: 10.1080/08916930410001705394.

Source: PubMed

3
Abonner