Bench-to-bedside review: Vasopressin in the management of septic shock

James A Russell, James A Russell

Abstract

This review of vasopressin in septic shock differs from previous reviews by providing more information on the physiology and pathophysiology of vasopressin and vasopressin receptors, particularly because of recent interest in more specific AVPR1a agonists and new information from the Vasopressin and Septic Shock Trial (VASST), a randomized trial of vasopressin versus norepinephrine in septic shock. Relevant literature regarding vasopressin and other AVPR1a agonists was reviewed and synthesized. Vasopressin, a key stress hormone in response to hypotension, stimulates a family of receptors: AVPR1a, AVPR1b, AVPR2, oxytocin receptors and purinergic receptors. Rationales for use of vasopressin in septic shock are as follows: first, a deficiency of vasopressin in septic shock; second, low-dose vasopressin infusion improves blood pressure, decreases requirements for norepinephrine and improves renal function; and third, a recent randomized, controlled, concealed trial of vasopressin versus norepinephrine (VASST) suggests low-dose vasopressin may decrease mortality of less severe septic shock. Previous clinical studies of vasopressin in septic shock were small or not controlled. There was no difference in 28-day mortality between vasopressin-treated versus norepinephrine-treated patients (35% versus 39%, respectively) in VASST. There was potential benefit in the prospectively defined stratum of patients with less severe septic shock (5 to 14 μg/minute norepinephrine at randomization): vasopressin may have lowered mortality compared with norepinephrine (26% versus 36%, respectively, P = 0.04 within stratum). The result was robust: vasopressin also decreased mortality (compared with norepinephrine) if less severe septic shock was defined by the lowest quartile of arterial lactate or by use of one (versus more than one) vasopressor at baseline. Other investigators found greater hemodynamic effects of higher dose of vasopressin (0.06 units/minute) but also unique adverse effects (elevated liver enzymes and serum bilirubin). Use of higher dose vasopressin requires further evaluation of efficacy and safety. There are very few studies of interactions of therapies in critical care--or septic shock--and effects on mortality. Therefore, the interaction of vasopressin infusion, corticosteroid treatment and mortality of septic shock was evaluated in VASST. Low-dose vasopressin infusion plus corticosteroids significantly decreased 28-day mortality compared with corticosteroids plus norepinephrine (44% versus 35%, respectively, P = 0.03; P = 0.008 interaction statistic). Prospective randomized controlled trials would be necessary to confirm this interesting interaction. In conclusion, low-dose vasopressin may be effective in patients who have less severe septic shock already receiving norepinephrine (such as patients with modest norepinephrine infusion (5 to 15 μg/minute) or low serum lactate levels). The interaction of vasopressin infusion and corticosteroid treatment in septic shock requires further study.

Figures

Figure 1
Figure 1
Vasopressin occupies the AVPR1a receptor. Vasopressin (line and beads) occupies the AVPR1a receptor.
Figure 2
Figure 2
The hypothalamic pituitary axis and vasopressin. Provasopressin is synthesized in neurohypophyseal neurons of the paraventricular nuclei (PVN) and supraoptic nuclei (SON) of the hypothalamus. Provasopressin is transported along the supraoptic neurohypophyseal tract in neurosecretory granules to the posterior pituitary gland. Provasopressin is cleaved by enzymes to vasopressin during transport to the posterior pituitary gland. Hypotension and hyperosmolality stimulate release of stored vasopressin (immediate) and synthesis (delayed) of vasopressin. In response to hypotension, vasopressin is released into the systemic circulation and also into the pituitary portal capillaries, flows to the anterior pituitary, binds to the AVPR1b receptor of corticotrophs, and stimulates release of adrenocorticotropic hormone. MNPO, median pre-optic nucleus.
Figure 3
Figure 3
Plasma vasopressin levels in the Vasopressin and Septic Shock Trial. Plasma vasopressin levels in patients in the Vasopressin and Septic Shock Trial who were infused with vasopressin compared with norepinephrine. Plasma vasopressin levels over time in patients receiving a vasopressin infusion (n = 54, black squares), patients in the vasopressin group once vasopressin infusions had stopped (open squares), and patients in the norepinephrine group (n = 53, grey circles). Values are median and interquartile range (IQR).
Figure 4
Figure 4
Mean arterial pressure and heart rate in the Vasopressin and Septic Shock Trial. Comparison of (a) mean arterial pressure (MAP) and (b) heart rate in the norepinephrine group (grey circles) and in the vasopressin group (black squares) of the Vasopressin and Septic Shock Trial. Values are mean ± standard deviation (SD). Heart rate was significantly lower in the vasopressin group than in the norepinephrine group over the first 4 days (P < 0.001). There were no statistically significant differences between the norepinephrine and vasopressin groups in MAP.
Figure 5
Figure 5
Doses of norepinephrine infusions in the Vasopressin and Septic Shock Trial. Rates of total norepinephrine infusion (open-label and study drug) in the Vasopressin and Septic Shock Trial for the vasopressin-treated group (black squares) and for the norepinephrine-treated group (grey circles) amongst all patients who were treated with open-label norepinephrine at baseline. The rates of norepinephrine infusion were significantly lower in the vasopressin group than in the norepinephrine group over the first 4 days (P < 0.001). Values are median and interquartile range (IQR).
Figure 6
Figure 6
Survival curve for Vasopressin and Septic Shock Trial vasopressin-infused patients compared with norepinephrine-infused patients. Ninety-day Kaplan-Meier survival curves for all randomized and infused patients (P = 0.27 at day 28; P = 0.10 at day 90). Solid line, vasopressin-infused group; dotted line, norepinephrine-infused group. P values were calculated using the log-rank statistic.
Figure 7
Figure 7
Survival curve for patients with more severe and less severe septic shock. Ninety-day Kaplan-Meier survival curves for patients with more severe and less severe septic shock in the Vasopressin and Septic Shock Trial comparing vasopressin-infused patients with norepinephrine-infused patients within each stratum. (a) Patients in the more severe stratum (P = 0.77 at day 28 and P = 0.92 at day 90). (b) Patients in the less severe stratum (P = 0.05 at day 28 and P = 0.03 at day 90). Solid black line, vasopressin-treated group; dotted line, norepinephrine-treated group; vertical line, day 28. P values were calculated using the log-rank statistic.

References

    1. Thibonnier M, Auzan C, Madhun Z, Wilkins P, Berti-Mattera L, Clauser E. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J Biol Chem. 1994;269:3304–3310.
    1. Thibonnier M, Graves MK, Wagner MS, Chatelain N, Soubrier F, Corvol P, Willard HF, Jeunemaitre X. Study of V(1)-vascular vasopressin receptor gene microsatellite polymorphisms in human essential hypertension. J Mol Cell Cardiol. 2000;324:557–564.
    1. Berrada K, Plesnicher CL, Luo X, Thibonnier M. Dynamic interaction of human vasopressin/oxytocin receptor subtypes with G protein-coupled receptor kinases and protein kinase C after agonist stimulation. J Biol Chem. 2000;275:27229–27237.
    1. Okamura T, Ayajiki K, Fujioka H, Toda N. Mechanisms underlying arginine vasopressin-induced relaxation in monkey isolated coronary arteries. J Hypertens. 1999;17:673–678. doi: 10.1097/00004872-199917050-00011.
    1. Evora PR, Pearson PJ, Schaff HV. Arginine vasopressin induces endotheliumdependent vasodilatation of the pulmonary artery. V1-receptor-mediated production of nitric oxide. Chest. 1993;103:1241–1245. doi: 10.1378/chest.103.4.1241.
    1. Russ RD, Walker BR. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am J Physiol. 1992;262(3 Pt 2):H743–H747.
    1. Sai Y, Okamura T, Amakata Y, Toda N. Comparison of responses of canine pulmonary artery and vein to angiotensin II, bradykinin and vasopressin. Eur J Pharmacol. 1995;282:235–241. doi: 10.1016/0014-2999(95)00343-J.
    1. Kim SJ, Young LJ, Gonen D, Veenstra-VanderWeele J, Courchesne R, Courchesne E, Lord C, Leventhal BL, Cook EH Jr, Insel TR. Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Mol Psychiatry. 2002;7:503–507. doi: 10.1038/sj.mp.4001125.
    1. Knafo A, Israel S, Darvasi A, Bachner-Melman R, Uzefovsky F, Cohen L, Feldman E, Lerer E, Laiba E, Raz Y, Nemanov L, Gritsenko I, Dina C. Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes Brain Behav. 2008;7:266–275. doi: 10.1111/j.1601-183X.2007.00341.x.
    1. Bucher M, Hobbhahn J, Taeger K, Kurtz A. Cytokine-mediated downregulation of vasopressin V(1A) receptors during acute endotoxemia in rats. Am J Physiol Regul Integr Comp Physiol. 2002;282:R979–R984.
    1. Roth BL, Spitzer JA. Altered hepatic vasopressin and alpha 1-adrenergic receptors after chronic endotoxin infusion. Am J Physiol. 1987;252(5 Pt 1):E699–E702.
    1. Barrett LK, Orie NN, Taylor V, Stidwill RP, Clapp LH, Singer M. Differential effects of vasopressin and norepinephrine on vascular reactivity in a long-term rodent model of sepsis. Crit Care Med. 2007;35:2337–2343. doi: 10.1097/01.CCM.0000281861.72907.17.
    1. Antoni FA, Holmes MC, Makara GB, Karteszi M, Laszlo FA. Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor. Peptides. 1984;5:519–522. doi: 10.1016/0196-9781(84)90080-9.
    1. Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology. 2001;142:1659–1668. doi: 10.1210/en.142.4.1659.
    1. Lolait SJ, Stewart LQ, Jessop DS, Young WS, O'Carroll AM. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology. 2007;148:849–856.
    1. de Keyzer Y, Lenne F, Auzan C, Jegou S, Rene P, Vaudry H, Kuhn JM, Luton JP, Clauser E, Bertagna X. The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome. J Clin Invest. 1996;97:1311–1318. doi: 10.1172/JCI118547.
    1. O'Connor PM, Cowley AW Jr. Vasopressin-induced nitric oxide production in rat inner medullary collecting duct is dependent on V2 receptor activation of the phosphoinositide pathway. Am J Physiol Renal Physiol. 2007;293:F526–F532. doi: 10.1152/ajprenal.00052.2007.
    1. Park F, Zou AP, Cowley AW Jr. Arginine vasopressin-mediated stimulation of nitric oxide within the rat renal medulla. Hypertension. 1998;32:896–901.
    1. Martin K, Borgel D, Lerolle N, Feys HB, Trinquart L, Vanhoorelbeke K, Deckmyn H, Legendre P, Diehl JL, Baruch D. Decreased ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure. Crit Care Med. 2007;35:2375–2382. doi: 10.1097/01.CCM.0000284508.05247.B3.
    1. Ono T, Mimuro J, Madoiwa S, Soejima K, Kashiwakura Y, Ishiwata A, Takano K, Ohmori T, Sakata Y. Severe secondary deficiency of von Willebrand factorcleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107:528–534. doi: 10.1182/blood-2005-03-1087.
    1. Schmidt C, Hocherl K, Kurt B, Bucher M. Role of nuclear factor-κBdependent induction of cytokines in the regulation of vasopressin V1A-receptors during cecal ligation and puncture-induced circulatory failure. Crit Care Med. 2008;36:2363–2372. doi: 10.1097/CCM.0b013e318180b51d.
    1. Grinevich V, Knepper MA, Verbalis J, Reyes I, Aguilera G. Acute endotoxemia in rats induces down-regulation of V2 vasopressin receptors and aquaporin-2 content in the kidney medulla. Kidney Int. 2004;65:54–62. doi: 10.1111/j.1523-1755.2004.00378.x.
    1. Qahwash IM, Cassar CA, Radcliff RP, Smith GW. Bacterial lipopolysaccharideinduced coordinate downregulation of arginine vasopressin receptor V3 and corticotropin-releasing factor receptor 1 messenger ribonucleic acids in the anterior pituitary of endotoxemic steers. Endocrine. 2002;18:13–20. doi: 10.1385/ENDO:18:1:13.
    1. Thibonnier M, Conarty DM, Preston JA, Plesnicher CL, Dweik RA, Erzurum SC. Human vascular endothelial cells express oxytocin receptors. Endocrinology. 1999;140:1301–1309. doi: 10.1210/en.140.3.1301.
    1. Gutkowska J, Jankowski M, Mukaddam-Daher S, McCann SM. Oxytocin is a cardiovascular hormone. Braz J Med Biol Res. 2000;33:625–633.
    1. Indrambarya T, Boyd JH, Wang Y, McConechy M, Walley KR. Low-dose vasopressin infusion results in increased mortality and cardiac dysfunction following ischemia-reperfusion injury in mice. Crit Care. 2009;13:R98. doi: 10.1186/cc7930.
    1. Mori M, Tsushima H, Matsuda T. Antidiuretic effects of ATP induced by microinjection into the hypothalamic supraoptic nucleus in water-loaded and ethanol-anesthetized rats. Jpn J Pharmacol. 1994;66:445–450. doi: 10.1254/jjp.66.445.
    1. Guo W, Sun J, Xu X, Bunstock G, He C, Xiang Z. P2X receptors are differentially expressed on vasopressin- and oxytocin-containing neurons in the supraoptic and paraventricular nuclei of rat hypothalamus. Histochem Cell Biol. 2009;131:29–41. doi: 10.1007/s00418-008-0493-9.
    1. Knott TK, Velazquez-Marrero C, Lemos JR. ATP elicits inward currents in isolated vasopressinergic neurohypophysial terminals via P2X2 and P2X3 receptors. Pflugers Arch. 2005;450:381–389. doi: 10.1007/s00424-005-1471-x.
    1. Knott TK, Marrero HG, Custer EE, Lemos JR. Endogenous ATP potentiates only vasopressin secretion from neurohypophysial terminals. J Cell Physiol. 2008;217:155–161. doi: 10.1002/jcp.21485.
    1. Song Z, Vijayaraghavan S, Sladek CD. ATP increases intracellular calcium in supraoptic neurons by activation of both P2X and P2Y purinergic receptors. Am J Physiol Regul Integr Comp Physiol. 2007;292:R423–R431.
    1. Song Z, Gomes DA, Stevens W. Role of purinergic P2Y1 receptors in regulation of vasopressin and oxytocin secretion. Am J Physiol Regul Integr Comp Physiol. 2009;297:R478–R484. doi: 10.1152/ajpregu.00163.2009.
    1. Troadec JD, Thirion S, Nicaise G, Lemos JR, Dayanithi G. ATP-evoked increases in [Ca2+]i and peptide release from rat isolated neurohypophysial terminals via a P2X2 purinoceptor. J Physiol. 1998;511(Pt 1):89–103.
    1. Buller KM, Khanna S, Sibbald JR, Day TA. Central noradrenergic neurons signal via ATP to elicit vasopressin responses to haemorrhage. Neuroscience. 1996;73:637–642. doi: 10.1016/0306-4522(96)00156-X.
    1. Sperlagh B, Mergl Z, Juranyi Z, Vizi ES, Makara GB. Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. J Endocrinol. 1999;160:343–350. doi: 10.1677/joe.0.1600343.
    1. Kapoor JR, Sladek CD. Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J Neurosci. 2000;20:8868–8875.
    1. Troadec JD, Thirion S. Multifaceted purinergic regulation of stimulussecretion coupling in the neurohypophysis. Neuro Endocrinol Lett. 2002;23:273–280.
    1. Xiang Z, He C, Burnstock G. P2X5 receptors are expressed on neurons containing arginine vasopressin and nitric oxide synthase in the rat hypothalamus. Brain Res. 2006;1099:56–63. doi: 10.1016/j.brainres.2006.04.126.
    1. Sladek CD, Song Z. Regulation of vasopressin release by co-released neurotransmitters: mechanisms of purinergic and adrenergic synergism. Prog Brain Res. 2008;170:93–107.
    1. Gomes DA, Song Z, Stevens W, Sladek CD. Sustained stimulation of vasopressin and oxytocin release by ATP and phenylephrine requires recruitment of desensitization-resistant P2X purinergic receptors. Am J Physiol Regul Integr Comp Physiol. 2009;297:R940–R949. doi: 10.1152/ajpregu.00358.2009.
    1. Espallergues J, Solovieva O, Techer V, Bauer K, Alonso G, Vincent A, Hussy N. Synergistic activation of astrocytes by ATP and norepinephrine in the rat supraoptic nucleus. Neuroscience. 2007;148:712–723. doi: 10.1016/j.neuroscience.2007.03.043.
    1. Song Z, Sladek CD. Does conversion of ATP to adenosine terminate ATP-stimulated vasopressin release from hypothalamo-neurohypophyseal explants? Brain Res. 2005;1047:105–111. doi: 10.1016/j.brainres.2005.04.025.
    1. Cha SH, Sekine T, Endou H. P2 purinoceptor localization along rat nephron and evidence suggesting existence of subtypes P2Y1 and P2Y2. Am J Physiol. 1998;274(6 Pt 2):F1006–F1014.
    1. Wildman SS, Boone M, Peppiatt-Wildman CM, Contreras-Sanz A, King BF, Shirley DG, Deen PM, Unwin RJ. Nucleotides downregulate aquaporin 2 via activation of apical P2 receptors. J Am Soc Nephrol. 2009;20:1480–1490. doi: 10.1681/ASN.2008070686.
    1. Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA, Vallon V. Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J. 2007;21:3717–3726. doi: 10.1096/fj.07-8807com.
    1. Zenteno-Savin T, Sada-Ovalle I, Ceballos G, Rubio R. Effects of arginine vasopressin in the heart are mediated by specific intravascular endothelial receptors. Eur J Pharmacol. 2000;410:15–23. doi: 10.1016/S0014-2999(00)00853-0.
    1. Wilson MF, Brackett DJ, Tompkins P, Benjamin B, Archer LT, Hinshaw LB. Elevated plasma vasopressin concentrations during endotoxin and E. coli shock. Adv Shock Res. 1981;6:15–26.
    1. Landry DW, Levin HR, Gallant EM, Ashton RC, Seo S, D'Alessandro D, Oz MC, Oliver JA. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95:1122–1125.
    1. Landry DW, Levin HR, Gallant EM, Seo S, D'Alessandro D, Oz MC, Oliver JA. Vasopressin pressor hypersensitivity in vasodilatory septic shock. Crit Care Med. 1997;25:1279–1282. doi: 10.1097/00003246-199708000-00012.
    1. Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–1758. doi: 10.1097/01.CCM.0000063046.82359.4A.
    1. Sharshar T, Carlier R, Blanchard A, Feydy A, Gray F, Paillard M, Raphael JC, Gajdos P, Annane D. Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med. 2002;30:497–500. doi: 10.1097/00003246-200203000-00001.
    1. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ, Ayers D. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358:877–887. doi: 10.1056/NEJMoa067373.
    1. Jochberger S, Dorler J, Luckner G, Mayr VD, Wenzel V, Ulmer H, Morgenthaler NG, Hasibeder WR, Dunser MW. The vasopressin and copeptin response to infection, severe sepsis, and septic shock. Crit Care Med. 2009;37:476–482. doi: 10.1097/CCM.0b013e3181957532.
    1. Carnio EC, Moreto V, Giusti-Paiva A, Antunes-Rodrigues J. Neuro-immuneendocrine mechanisms during septic shock: role for nitric oxide in vasopressin and oxytocin release. Endocr Metab Immune Disord Drug Targets. 2006;6:137–142.
    1. Correa PB, Pancoto JA, de Oliveira-Pelegrin GR, Carnio EC, Rocha MJ. Participation of iNOS-derived NO in hypothalamic activation and vasopressin release during polymicrobial sepsis. J Neuroimmunol. 2007;183:17–25. doi: 10.1016/j.jneuroim.2006.10.021.
    1. Moreto V, Stabile AM, Antunes-Rodrigues J, Carnio EC. Role of hemeoxygenase pathway on vasopressin deficiency during endotoxemic shock-like conditions. Shock. 2006;26:472–476. doi: 10.1097/01.shk.0000230301.86139.6a.
    1. Morgenthaler NG, Muller B, Struck J, Bergmann A, Redl H, Christ-Crain M. Copeptin, a stable peptide of the arginine vasopressin precursor, is elevated in hemorrhagic and septic shock. Shock. 2007;28:219–226. doi: 10.1097/SHK.0b013e318033e5da.
    1. Muller B, Morgenthaler N, Stolz D, Schuetz P, Muller C, Bingisser R, Bergmann A, Tamm M, Christ-Crain M. Circulating levels of copeptin, a novel biomarker, in lower respiratory tract infections. Eur J Clin Invest. 2007;37:145–152. doi: 10.1111/j.1365-2362.2007.01762.x.
    1. Jochberger S, Morgenthaler NG, Mayr VD, Luckner G, Wenzel V, Ulmer H, Schwarz S, Hasibeder WR, Friesenecker BE, Dunser MW. Copeptin and arginine vasopressin concentrations in critically ill patients. J Clin Endocrinol Metab. 2006;91:4381–4386. doi: 10.1210/jc.2005-2830.
    1. Jochberger S, Mayr VD, Luckner G, Wenzel V, Ulmer H, Schmid S, Knotzer H, Pajk W, Hasibeder W, Friesenecker B, Mayr AG, Dunser MW. Serum vasopressin concentrations in critically ill patients. Crit Care Med. 2006;34:293–299. doi: 10.1097/01.CCM.0000198528.56397.4F.
    1. Lin IY, Ma HP, Lin AC, Chong CF, Lin CM, Wang TL. Low plasma vasopressin/norepinephrine ratio predicts septic shock. Am J Emerg Med. 2005;23:718–724. doi: 10.1016/j.ajem.2005.02.055.
    1. Luckner G, Dunser MW, Jochberger S, Mayr VD, Wenzel V, Ulmer H, Schmid S, Knotzer H, Pajk W, Hasibeder W, Mayr AG, Friesenecker B. Arginine vasopressin in 316 patients with advanced vasodilatory shock. Crit Care Med. 2005;33:2659–2666. doi: 10.1097/01.CCM.0000186749.34028.40.
    1. Luckner G, Mayr VD, Jochberger S, Wenzel V, Ulmer H, Hasibeder WR, Dunser MW. Comparison of two dose regimens of arginine vasopressin in advanced vasodilatory shock. Crit Care Med. 2007;35:2280–2285. doi: 10.1097/01.CCM.0000281853.50661.23.
    1. Lodha R, Vivekanandhan S, Sarthi M, Kabra SK. Serial circulating vasopressin levels in children with septic shock. Pediatr Crit Care Med. 2006;7:220–224. doi: 10.1097/01.PCC.0000216414.00362.81.
    1. Scharte M, Meyer J, Van Aken H, Bone HG. Hemodynamic effects of terlipressin (a synthetic analog of vasopressin) in healthy and endotoxemic sheep. Crit Care Med. 2001;29:1756–1760. doi: 10.1097/00003246-200109000-00017.
    1. Nakajima Y, Baudry N, Duranteau J, Vicaut E. Effects of vasopressin, norepinephrine, and L-arginine on intestinal microcirculation in endotoxemia. Crit Care Med. 2006;34:1752–1757. doi: 10.1097/01.CCM.0000218812.73741.6C.
    1. Knotzer H, Maier S, Dunser MW, Hasibeder WR, Hausdorfer H, Brandner J, Torgersen C, Ulmer H, Friesenecker B, Iannetti C, Pajik W. Arginine vasopressin does not alter mucosal tissue oxygen tension and oxygen supply in an acute endotoxemic pig model. Intensive Care Med. 2006;32:170–174. doi: 10.1007/s00134-005-2858-z.
    1. Leone M, Boyle WA. Decreased vasopressin responsiveness in vasodilatory septic shock-like conditions. Crit Care Med. 2006;34:1126–1130. doi: 10.1097/.
    1. Kang CH, Kim WG. The effect of vasopressin on organ blood flow in an endotoxin-induced rabbit shock model. J Invest Surg. 2006;19:361–369. doi: 10.1080/08941930600985702.
    1. Dubois MJ, De Backer D, Creteur J, Anane S, Vincent JL. Effect of vasopressin on sublingual microcirculation in a patient with distributive shock. Intensive Care Med. 2003;29:1020–1023.
    1. Kienbaum P, Prante C, Lehmann N, Sander A, Jalowy A, Peters J. Alterations in forearm vascular reactivity in patients with septic shock. Anaesthesia. 2008;63:121–128. doi: 10.1111/j.1365-2044.2007.05286.x.
    1. Russell JA. Vasopressin in vasodilatory and septic shock. Curr Opin Crit Care. 2007;13:383–391. doi: 10.1097/MCC.0b013e328263885e.
    1. Dunser MW, Mayr AJ, Ulmer H, Ritsch N, Knotzer H, Pajk W, Luckner G, Mutz NJ, Hasibeder WR. The effects of vasopressin on systemic hemodynamics in catecholamine-resistant septic and postcardiotomy shock: a retrospective analysis. Anesth Analg. 2001;93:7–13.
    1. Dunser MW, Mayr AJ, Stallinger A, Ulmer H, Ritsch N, Knotzer H, Pajk W, Mutz NJ, Hasibeder WR. Cardiac performance during vasopressin infusion in postcardiotomy shock. Intensive Care Med. 2002;28:746–751. doi: 10.1007/s00134-002-1265-y.
    1. Dunser MW, Mayr AJ, Ulmer H, Knotzer H, Sumann G, Pajk W, Friesenecker B, Hasibeder WR. Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation. 2003;107:2313–2319. doi: 10.1161/.
    1. Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA. The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med. 2001;27:1416–1421. doi: 10.1007/s001340101014.
    1. Malay MB, Ashton RC, Landry DW, Townsend RN. Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma. 1999;47:699–703. doi: 10.1097/00005373-199910000-00014.
    1. Patel BM, Chittock DR, Russell JA, Walley KR. Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology. 2002;96:576–582. doi: 10.1097/00000542-200203000-00011.
    1. Hiltebrand LB, Krejci V, Jakob SM, Takala J, Sigurdsson GH. Effects of vasopressin on microcirculatory blood flow in the gastrointestinal tract in anesthetized pigs in septic shock. Anesthesiology. 2007;106:1156–1167. doi: 10.1097/01.anes.0000267599.02140.86.
    1. Dunser MW, Mayr AJ, Tur A, Pajk W, Barbara F, Knotzer H, Ulmer H, Hasibeder WR. Ischemic skin lesions as a complication of continuous vasopressin infusion in catecholamine-resistant vasodilatory shock: incidence and risk factors. Crit Care Med. 2003;31:1394–1398. doi: 10.1097/01.CCM.0000059722.94182.79.
    1. Aninat C, Seguin P, Descheemaeker PN, Morel F, Malledant Y, Guillouzo A. Catecholamines induce an inflammatory response in human hepatocytes. Crit Care Med. 2008;36:848–854. doi: 10.1097/CCM.0B013E31816532BE.
    1. American College of Chest Physicians/Society of Critical Care Medicine. Consensus conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–874. doi: 10.1097/00003246-199206000-00025.
    1. Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest. 1992;101:1481–1483. doi: 10.1378/chest.101.6.1481.
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–1655. doi: 10.1378/chest.101.6.1644.
    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41.
    1. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, Weiss YG, Benbenishty J, Kalenka A, Forst H, Laterre PF, Reinhart K, Cuthbertson BH. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–124. doi: 10.1056/NEJMoa071366.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Hall LG, Oyen LJ, Taner CB, Cullinane DC, Baird TK, Cha SS, Sawyer MD. Fixeddose vasopressin compared with titrated dopamine and norepinephrine as initial vasopressor therapy for septic shock. Pharmacotherapy. 2004;24:1002–1012. doi: 10.1592/phco.24.11.1002.36139.
    1. Russell JA, Walley KR, Gordon AC, Cooper DJ, Hebert PC, Singer J, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ. Interaction of vasopressin infusion, corticosteroid treatment, and mortality of septic shock. Crit Care Med. 2009;37:811–818. doi: 10.1097/CCM.0b013e3181961ace.
    1. Rabadan-Diehl C, Aguilera G. Glucocorticoids increase vasopressin V1b receptor coupling to phospholipase C. Endocrinology. 1998;139:3220–3226. doi: 10.1210/en.139.7.3220.
    1. Ertmer C, Bone HG, Morelli A, Van Aken H, Erren M, Lange M, Traber DL, Westphal M. Methylprednisolone reverses vasopressin hyporesponsiveness in ovine endotoxemia. Shock. 2007;27:281–288. doi: 10.1097/01.shk.0000235140.97903.90.
    1. Lauand F, Ruginsk SG, Rodrigues HL, Reis WL, de Castro M, Elias LL, Antunes-Rodrigues J. Glucocorticoid modulation of atrial natriuretic peptide, oxytocin, vasopressin and Fos expression in response to osmotic, angiotensinergic and cholinergic stimulation. Neuroscience. 2007;147:247–257. doi: 10.1016/j.neuroscience.2007.04.021.
    1. Pietranera L, Saravia F, Roig P, Lima A, De Nicola AF. Mineralocorticoid treatment upregulates the hypothalamic vasopressinergic system of spontaneously hypertensive rats. Neuroendocrinology. 2004;80:100–110. doi: 10.1159/000081314.
    1. Aguilera G, Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept. 2000;96:23–29. doi: 10.1016/S0167-0115(00)00196-8.
    1. Tanoue A, Ito S, Honda K, Oshikawa S, Kitagawa Y, Koshimizu TA, Mori T, Tsujimoto G. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions. J Clin Invest. 2004;113:302–309.
    1. Annane D. Vasopressin plus corticosteroids: the shock duo! Crit Care Med. 2009;37:1126–1127. doi: 10.1097/CCM.0b013e31819879c1.
    1. Dunser MW, Hasibeder WR, Wenzel V. Vasopressin in septic shock. N Engl J Med. 2008;358:2736. author reply 7-8.
    1. Westphal M, Freise H, Kehrel BE, Bone HG, Van Aken H, Sielenkamper AW. Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med. 2004;32:194–200. doi: 10.1097/01.CCM.0000104201.62736.12.
    1. Martikainen TJ, Tenhunen JJ, Uusaro A, Ruokonen E. The effects of vasopressin on systemic and splanchnic hemodynamics and metabolism in endotoxin shock. Anesth Analg. 2003;97:1756–1763. doi: 10.1213/01.ANE.0000087039.60041.2E.
    1. Klinzing S, Simon M, Reinhart K, Bredle DL, Meier-Hellmann A. High-dose vasopressin is not superior to norepinephrine in septic shock. Crit Care Med. 2003;31:2646–2650. doi: 10.1097/01.CCM.0000094260.05266.F4.
    1. Leone M, Albanese J, Delmas A, Chaabane W, Garnier F, Martin C. Terlipressin in catecholamine-resistant septic shock patients. Shock. 2004;22:314–319. doi: 10.1097/.
    1. Leone M, Boutiere-Albanese B, Valette S, Camoin-Jau L, Barrau K, Albanese J, Martin C, Dignat-George F. Cell adhesion molecules as a marker reflecting the reduction of endothelial activation induced by glucocorticoids. Shock. 2004;21:311–314. doi: 10.1097/00024382-200404000-00004.
    1. O'Brien A, Clapp L, Singer M. Terlipressin for norepinephrine-resistant septic shock. Lancet. 2002;359:1209–1210. doi: 10.1016/S0140-6736(02)08225-9.
    1. Albanese J, Leone M, Delmas A, Martin C. Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med. 2005;33:1897–1902. doi: 10.1097/01.CCM.0000178182.37639.D6.
    1. Asfar P, Pierrot M, Veal N, Moal F, Oberti F, Croquet V, Douay O, Gallois Y, Saumet JL, Alquier P, Cales P. Low-dose terlipressin improves systemic and splanchnic hemodynamics in fluid-challenged endotoxic rats. Crit Care Med. 2003;31:215–220. doi: 10.1097/00003246-200301000-00033.
    1. Asfar P, Hauser B, Ivanyi Z, Ehrmann U, Kick J, Albicini M, Vogt J, Wachter U, Bruckner UB, Radermacher P, Bracht H. Low-dose terlipressin during longterm hyperdynamic porcine endotoxemia: effects on hepatosplanchnic perfusion, oxygen exchange, and metabolism. Crit Care Med. 2005;33:373–380. doi: 10.1097/01.CCM.0000152253.45901.FB.
    1. Morelli A, Rocco M, Conti G, Orecchioni A, De Gaetano A, Cortese G, Coluzzi F, Vernaglione E, Pelaia P, Pietropaoli P. Effects of terlipressin on systemic and regional haemodynamics in catecholamine-treated hyperkinetic septic shock. Intensive Care Med. 2004;30:597–604. doi: 10.1007/s00134-003-2094-3.
    1. Westphal M, Stubbe H, Sielenkamper AW, Ball C, Van Aken H, Borgulya R, Bone HG. Effects of titrated arginine vasopressin on hemodynamic variables and oxygen transport in healthy and endotoxemic sheep. Crit Care Med. 2003;31:1502–1508. doi: 10.1097/01.CCM.0000063042.15272.84.
    1. Westphal M, Stubbe H, Sielenkamper AW, Borgulya R, Van Aken H, Ball C, Bone HG. Terlipressin dose response in healthy and endotoxemic sheep: impact on cardiopulmonary performance and global oxygen transport. Intensive Care Med. 2003;29:301–308.
    1. Pesaturo AB, Jennings HR, Voils SA. Terlipressin: vasopressin analog and novel drug for septic shock. Ann Pharmacother. 2006;40:2170–2177. doi: 10.1345/aph.1H373.
    1. Morelli A, Ertmer C, Lange M, Dunser M, Rehberg S, Van Aken H, Pietropaoli P, Westphal M. Effects of short-term simultaneous infusion of dobutamine and terlipressin in patients with septic shock: the DOBUPRESS study. Br J Anaesth. 2008;100:494–503. doi: 10.1093/bja/aen017.
    1. Lange M, Ertmer C, Westphal M. Vasopressin vs. terlipressin in the treatment of cardiovascular failure in sepsis. Intensive Care Med. 2008;34:821–832. doi: 10.1007/s00134-007-0946-y.
    1. Bernadich C, Bandi JC, Melin P, Bosch J. Effects of F-180, a new selective vasoconstrictor peptide, compared with terlipressin and vasopressin on systemic and splanchnic hemodynamics in a rat model of portal hypertension. Hepatology. 1998;27:351–356. doi: 10.1002/hep.510270206.
    1. Forsling ML, Aziz LA, Miller M, Davies R, Donovan B. Conversion of triglycylvasopressin to lysine-vasopressin in man. J Endocrinol. 1980;85:237–244. doi: 10.1677/joe.0.0850237.
    1. Fabian M, Forsling ML, Jones JJ, Pryor JS. The clearance and antidiuretic potency of neurohypophysial hormones in man, and their plasma binding and stability. J Physiol. 1969;204:653–668.
    1. Nilsson G, Lindblom P, Ohlin M, Berling R, Vernersson E. Pharmacokinetics of terlipressin after single i.v. doses to healthy volunteers. Drugs Exp Clin Res. 1990;16:307–314.
    1. Klein M, Weksler N, Borer A, Koyfman L, Kesslin J, Gurman GM. Terlipressin facilitates transport of septic patients treated with norepinephrine. Isr Med Assoc J. 2006;8:691–693.
    1. Solanki P, Chawla A, Garg R, Gupta R, Jain M, Sarin SK. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebocontrolled clinical trial. J Gastroenterol Hepatol. 2003;18:152–156. doi: 10.1046/j.1440-1746.2003.02934.x.
    1. Sanyal AJ, Boyer T, Garcia-Tsao G, Regenstein F, Rossaro L, Appenrodt B, Blei A, Gulberg V, Sigal S, Teuber P. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology. 2008;134:1360–1368. doi: 10.1053/j.gastro.2008.02.014.
    1. Martin-Llahi M, Pepin MN, Guevara M, Diaz F, Torre A, Monescillo A, Soriano G, Terra C, Fabrega E, Arroyo V, Rhodes J, Gines P. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology. 2008;134:1352–1359. doi: 10.1053/j.gastro.2008.02.024.
    1. Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, Holmes CL, Hebert PC, Cooper DJ, Mehta S, Granton JT, Cook DJ, Presneill JJ. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Medicine. 2009;36:83–91.
    1. Morelli A, Ertmer C, Rehberg S, Lange M, Orecchioni A, Cecchini V, Bachetoni A, D'Alessandro M, Van Aken H, Pietropaoli P, Westphal M. Continuous terlipressin versus vasopressin infusion in septic shock (TERLIVAP): a randomized, controlled pilot study. Crit Care. 2009;13:R130. doi: 10.1186/cc7990.
    1. Rehberg S, Ertmer C, Kohler G, Spiegel HU, Morelli A, Lange M, Moll K, Schlack K, Van Aken H, Su F, Vincent JL, Westphal M. Role of arginine vasopressin and terlipressin as first-line vasopressor agents in fulminant ovine septic shock. Intensive Care Med. 2009;35:1286–1296. doi: 10.1007/s00134-009-1470-z.
    1. Michel F, Thomachot L, David M, Nicaise C, Vialet R, Di Marco JN, Lagier P, Martin C. Continuous low-dose infusion of terlipressin as a rescue therapy in meningococcal septic shock. Am J Emerg Med. 2007;25:863.e1–2. doi: 10.1016/j.ajem.2007.02.019.
    1. Lange M, Morelli A, Ertmer C, Koehler G, Broking K, Hucklenbruch C, Bone HG, Van Aken H, Traber DL, Westphal M. Continuous versus bolus infusion of terlipressin in ovine endotoxemia. Shock. 2007;28:623–629.
    1. Broking K, Lange M, Morelli A, Ertmer C, Aken HV, Luecke M, Rehberg S, Bowering N, Bone HG, Traber DL, Westphal M. Employing dobutamine as a useful agent to reverse the terlipressin-linked impairments in cardiopulmonary hemodynamics and global oxygen transport in healthy and endotoxemic sheep. Shock. 2008;29:71–77.
    1. Ryckwaert F, Virsolvy A, Fort A, Murat B, Richard S, Guillon G, Colson PH. Terlipressin, a provasopressin drug exhibits direct vasoconstrictor properties: consequences on heart perfusion and performance. Crit Care Med. 2009;37:876–881. doi: 10.1097/CCM.0b013e31819b8199.
    1. Ouattara A, Landi M, Le Manach Y, Lecomte P, Leguen M, Boccara G, Coriat P, Riou B. Comparative cardiac effects of terlipressin, vasopressin, and norepinephrine on an isolated perfused rabbit heart. Anesthesiology. 2005;102:85–92. doi: 10.1097/00000542-200501000-00016.
    1. Noguera I, Medina P, Segarra G, Martinez MC, Aldasoro M, Vila JM, Lluch S. Potentiation by vasopressin of adrenergic vasoconstriction in the rat isolated mesenteric artery. Br J Pharmacol. 1997;122:431–438. doi: 10.1038/sj.bjp.0701397.
    1. Urge J, Sincl F, Prochazka V, Urbanek K. Terlipressin-induced ventricular arrhythmia. Scand J Gastroenterol. 2008;43:1145–1148. doi: 10.1080/00365520801905304.
    1. Siami S, Bailly-Salin J, Polito A, Porcher R, Blanchard A, Haymann JP, Laborde K, Maxime V, Boucly C, Carlier R, Annane D, Sharshar T. Osmoregulation of vasopressin secretion is altered in the postacute phase of septic shock. Crit Care Med. 2010;38:1962–1969.
    1. Bauer SR, Aloi JJ, Ahrens CL, Yeh JY, Culver DA, Reddy AJ. Discontinuation of vasopressin before norepinephrine increases the incidence of hypotension in patients recovering from septic shock: a retrospective cohort study. J Crit Care. 2010;25:362.e7–362.e11. doi: 10.1016/j.jcrc.2009.10.005.
    1. Holt DB, Delaney RR, Uyehara CF. Effects of combination dobutamine and vasopressin therapy on microcirculatory blood flow in a porcine model of severe endotoxic shock. J Surg Res. 2009. [Epub ahead of print]
    1. Rehberg S, Ertmer C, Vincent JL, Spiegel HU, Köhler G, Erren M, Lange M, Morelli A, Seisel J, Su F, Van Aken H, Traber DL, Westphal M. Effects of combined arginine vasopressin and levosimendan on organ function in ovine septic shock. Crit Care Med. 2010;38:2016–2023.
    1. Nakada T, Russell JA, Wellman H, Boyd JH, Nakada E, Thain KR, Thair SA, Hirasawa H, Oda S, Walley KR. Leucyl/cystinyl aminopeptidase (LNPEP) gene variants in septic shock. Chest. 2011;139:1042–1049. doi: 10.1378/chest.10-2517.
    1. Wagener G, Kovalevskaya G, Minhaz M, Mattis F, Emond JC, Landry DW. Vasopressin deficiency and vasodilatory state in end-stage liver disease. J Cardiothorac Vasc Anesth. 2010. in press .
    1. Rehberg S, Ertmer C, Lange M, Morelli A, Whorton E, Dünser M, Strohhäcker AK, Lipke E, Kampmeier TG, Van Aken H, Traber DL, Westphal M. Role of selective V2-receptor-antagonism in septic shock: a randomized, controlled, experimental study. Crit Care. 2010;14:R200. doi: 10.1186/cc9320.
    1. Sharshar T, Carlier R, Blanchard A, Feyde A, Gray F, Paillard M, Raphael JC, Gajdos P, Annane D. Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med. 2002;30:497–500. doi: 10.1097/00003246-200203000-00001.
    1. Sharshar T, Blanchard A, Paillard M, Raphael JC, Gajdos P, Annane D. Circulating vasopressin levels in septic shock. Crit Care Med. 2003;31:1752–1758. doi: 10.1097/01.CCM.0000063046.82359.4A.
    1. Le Clerc F, Walter-Nicolet E, Leteurtre S, Noizet O, Sadik A, Cremer R, Fourier C. Admission plasma vasopressin levels in children with meningococcal septic shock. Intensive Care Med. 2003;29:1339–1344. doi: 10.1007/s00134-003-1868-y.
    1. Kruger S, Ewig S, Kunde J. C-terminal provasopressin (copeptin) in patients with community-acquired pneumonia - influence of antibiotic pretreatment. Results from the German competence network (CAPNETZ) J Antimicrob Chemother. 2009;64:159–162. doi: 10.1093/jac/dkp148.
    1. de Kruif MD, Lemaire LC, Giebelen IA, Struck J, Morgenthaler NG, Papassotiriou J, Elliott PJ, van der Poll T. The influence of corticosteroids on the release of novel biomarkers in human endotoxemia. Intensive Care Med. 2008;34:518–522. doi: 10.1007/s00134-007-0955-x.

Source: PubMed

3
Abonner