Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects

Bernardino Clavo, Francisco Rodríguez-Esparragón, Delvys Rodríguez-Abreu, Gregorio Martínez-Sánchez, Pedro Llontop, David Aguiar-Bujanda, Leandro Fernández-Pérez, Norberto Santana-Rodríguez, Bernardino Clavo, Francisco Rodríguez-Esparragón, Delvys Rodríguez-Abreu, Gregorio Martínez-Sánchez, Pedro Llontop, David Aguiar-Bujanda, Leandro Fernández-Pérez, Norberto Santana-Rodríguez

Abstract

(1) Background: Cancer is one of the leading causes of mortality worldwide. Radiotherapy and chemotherapy attempt to kill tumor cells by different mechanisms mediated by an intracellular increase of free radicals. However, free radicals can also increase in healthy cells and lead to oxidative stress, resulting in further damage to healthy tissues. Approaches to prevent or treat many of these side effects are limited. Ozone therapy can induce a controlled oxidative stress able to stimulate an adaptive antioxidant response in healthy tissue. This review describes the studies using ozone therapy to prevent and/or treat chemotherapy-induced toxicity, and how its effect is linked to a modification of free radicals and antioxidants. (2) Methods: This review encompasses a total of 13 peer-reviewed original articles (most of them with assessment of oxidative stress parameters) and some related works. It is mainly focused on four drugs: Cisplatin, Methotrexate, Doxorubicin, and Bleomycin. (3) Results: In experimental models and the few existing clinical studies, modulation of free radicals and antioxidants by ozone therapy was associated with decreased chemotherapy-induced toxicity. (4) Conclusions: The potential role of ozone therapy in the management of chemotherapy-induced toxicity merits further research. Randomized controlled trials are ongoing.

Keywords: antioxidants; bleomycin; cancer treatment; chemotherapy-induced toxicity; cisplatin; doxorubicin; free radicals; methotrexate; oxidative stress; ozone therapy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Representation of the interaction with the crosstalk between the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) pathways and the role of ozone. HO-1, haem-oxygenase-1; ARE, antioxidant response element; Keap1, Kelch-like ECH-associated protein 1; IKK: IκB kinase; CBP: CREB binding protein; HDAC3: histone deacetylase 3. Nrf2: nuclear erythroid 2 related factor 2; NF-κB: nuclear factor kappa light chain enhancer of B cell; LPS: lipopolysaccharide; O3: ozone.
Figure 2
Figure 2
Schemes of results obtained in the experimental studies using systemic ozone therapy (rectal or intraperitoneal) using chemotherapy drugs. (Left and Middle): “Oxidative stress markers” (MDA: malondialdehyde, TBARS: thiobarbituric acid-reactive substances) and “Tissue damage markers” (creatinine, pro-BNP: pro-brain natriuretic peptide) increased largely and significantly with chemotherapy. The increase was significantly lower in rats with chemotherapy + ozone therapy. (Middle): levels of “Antioxidants” (GSH: glutathione, SOD: superoxide dismutase, CAT: catalase and GSH-GPx: glutathione peroxidase) decreased in chemotherapy group whereas those contents were closer to the control group in rats treated with chemotherapy + ozone therapy. All differences were statistically significant.
Figure 3
Figure 3
The redox status of patients with rheumatoid arthritis in (a): Methotrexate (MTX) and (b): “MTX + ozone” groups at the end of the study. (A) Protective redox markers, (B) Injury redox markers. The units of each marker are: SOD (superoxide dismutase, U/mL/min) and CAT (catalase, U/L/min) activities, GSH (reduced glutathione, µM), NO (nitric oxide, µM), AOPP (advanced oxidation protein products, µM), TH (total hydroperoxides, µM), MDA (malondialdehyde, µM). Data represent the mean ± S.E.M. of each group. Data analysis for each group was made by t-test. All differences between MTX vs. MTX + ozone groups were statistically significant, p < 0.05. From Ref. [56], with permission.
Figure 4
Figure 4
Topical ozone treatment in a patient with skin necrosis after Doxorubicin extravasation. A 61-year old patient under treatment for a stage IIIA multiple myeloma suffered a skin necrosis secondary to Doxorubicin (DOX) extravasation in the left elbow flexure. Because adverse evolution with conservative management, a muscle flap with a cutaneous graft was required (by the Department of Plastic Surgery). A second surgery was planned because of a loss of tissue in the distal area of the graft. (Left): Picture at the 9th session of local ozone therapy (wound size 25 × 15 mm). Black arrows and dotted lines show the limits of the wound at the commencement of ozone therapy (wound size 60 × 30 mm). (Right): Picture at the end of local ozone therapy, after 20 sessions. The planned second graft was avoided.

References

    1. Zuo L., Prather E.R., Stetskiv M., Garrison D.E., Meade J.R., Peace T.I., Zhou T. Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. Int. J. Mol. Sci. 2019;20:4472. doi: 10.3390/ijms20184472.
    1. Milkovic L., Cipak Gasparovic A., Zarkovic N. Overview on major lipid peroxidation bioactive factor 4-hydroxynonenal as pluripotent growth-regulating factor. Free Radic. Res. 2015;49:850–860. doi: 10.3109/10715762.2014.999056.
    1. Bocci V. Ozone A New Medical Drug. 2nd ed. Springer Publishing; Dordrecht, The Netherlands: 2011.
    1. Schwartz-Tapia A., Martínez-Sánchez G., Sabah F. Madrid Declaration on Ozone Therapy. ISCO3 (International Scientific Committee of Ozone Therapy); Madrid, Spain: 2015.
    1. Andrady A., Aucamp P.J., Bais A., Ballare C.L., Bjorn L.O., Bornman J.F., Caldwell M., Cullen A.P., Erickson D.J., de Gruijl F.R., et al. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2008. Photochem. Photobiol. Sci. 2009;8:13–22.
    1. Bocci V. Is it true that ozone is always toxic? The end of a dogma. Toxicol. Appl. Pharmacol. 2006;216:493–504. doi: 10.1016/j.taap.2006.06.009.
    1. Galie M., Covi V., Tabaracci G., Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int. J. Mol. Sci. 2019;20:4009. doi: 10.3390/ijms20164009.
    1. Hakiminia B., Goudarzi A., Moghaddas A. Has vitamin E any shreds of evidence in cisplatin-induced toxicity. J. Biochem. Mol. Toxicol. 2019;33:e22349. doi: 10.1002/jbt.22349.
    1. Pabla N., Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008;73:994–1007. doi: 10.1038/sj.ki.5002786.
    1. Dugbartey G.J., Peppone L.J., de Graaf I.A. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology. 2016;371:58–66. doi: 10.1016/j.tox.2016.10.001.
    1. Howard S.C., McCormick J., Pui C.H., Buddington R.K., Harvey R.D. Preventing and Managing Toxicities of High-Dose Methotrexate. Oncologist. 2016;21:1471–1482. doi: 10.1634/theoncologist.2015-0164.
    1. Wessels J.A., Huizinga T.W., Guchelaar H.J. Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis. Rheumatology (Oxford) 2008;47:249–255. doi: 10.1093/rheumatology/kem279.
    1. Miyazono Y., Gao F., Horie T. Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand. J. Gastroenterol. 2004;39:1119–1127. doi: 10.1080/00365520410003605.
    1. Mahmoud A.M., Hussein O.E., Hozayen W.G., Abd El-Twab S.M. Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPARgamma and Nrf2: Protective effect of 18beta-Glycyrrhetinic acid. Chem. Biol. Interact. 2017;270:59–72. doi: 10.1016/j.cbi.2017.04.009.
    1. Pugazhendhi A., Edison T., Velmurugan B.K., Jacob J.A., Karuppusamy I. Toxicity of Doxorubicin (Dox) to different experimental organ systems. Life Sci. 2018;200:26–30. doi: 10.1016/j.lfs.2018.03.023.
    1. Luo X., Evrovsky Y., Cole D., Trines J., Benson L.N., Lehotay D.C. Doxorubicin-induced acute changes in cytotoxic aldehydes, antioxidant status and cardiac function in the rat. Biochim. Biophys. Acta. 1997;1360:45–52.
    1. Sikic B.I. Biochemical and cellular determinants of bleomycin cytotoxicity. Cancer Surv. 1986;5:81–91.
    1. Yu Z., Yan B., Gao L., Dong C., Zhong J., DOrtenzio M., Nguyen B., Seong Lee S., Hu X., Liang F. Targeted Delivery of Bleomycin: A Comprehensive Anticancer Review. Curr. Cancer Drug Targets. 2016;16:509–521. doi: 10.2174/1568009616666151130213910.
    1. Shariati S., Kalantar H., Pashmforoosh M., Mansouri E., Khodayar M.J. Epicatechin protective effects on bleomycin-induced pulmonary oxidative stress and fibrosis in mice. Biomed. Pharmacother. 2019;114:108776. doi: 10.1016/j.biopha.2019.108776.
    1. Chen W., Li S., Li J., Zhou W., Wu S., Xu S., Cui K., Zhang D.D., Liu B. Artemisitene activates the Nrf2-dependent antioxidant response and protects against bleomycin-induced lung injury. FASEB J. 2016;30:2500–2510. doi: 10.1096/fj.201500109R.
    1. Bocci V., Borrelli E., Travagli V., Zanardi I. The ozone paradox: Ozone is a strong oxidant as well as a medical drug. Med. Res. Rev. 2009;29:646–682. doi: 10.1002/med.20150.
    1. Bocci V.A., Zanardi I., Travagli V. Ozone acting on human blood yields a hormetic dose-response relationship. J. Transl. Med. 2011;9:66. doi: 10.1186/1479-5876-9-66.
    1. Viebahn-Hansler R., Leon Fernandez O.S., Fahmy Z. Ozone in Medicine: The Low-Dose Ozone Concept—Guidelines and Treatment Strategies. Ozone-Sci. Eng. 2012;34:408–424. doi: 10.1080/01919512.2012.717847.
    1. Re L., Malcangi G., Martínez-Sánchez G. Medical ozone is now ready for a scientific challenge: Current status and future perspectives. J. Exp. Integr. Med. 2012;2:193–196. doi: 10.5455/jeim.070612.ir.012.
    1. Hamilton R.F., Jr., Li L., Eschenbacher W.L., Szweda L., Holian A. Potential involvement of 4-hydroxynonenal in the response of human lung cells to ozone. Am. J. Physiol. 1998;274 (Pt 1):L8–L16. doi: 10.1152/ajplung.1998.274.1.L8.
    1. Pryor W.A., Squadrito G.L., Friedman M. The cascade mechanism to explain ozone toxicity: The role of lipid ozonation products. Free Radic. Biol. Med. 1995;19:935–941. doi: 10.1016/0891-5849(95)02033-7.
    1. Pecorelli A., Bocci V., Acquaviva A., Belmonte G., Gardi C., Virgili F., Ciccoli L., Valacchi G. NRF2 activation is involved in ozonated human serum upregulation of HO-1 in endothelial cells. Toxicol. Appl. Pharmacol. 2013;267:30–40. doi: 10.1016/j.taap.2012.12.001.
    1. Oliveira-Marques V., Marinho H.S., Cyrne L., Antunes F. Role of hydrogen peroxide in NF-kappaB activation: From inducer to modulator. Antioxid. Redox Signal. 2009;11:2223–2243. doi: 10.1089/ars.2009.2601.
    1. Huth K.C., Saugel B., Jakob F.M., Cappello C., Quirling M., Paschos E., Ern K., Hickel R., Brand K. Effect of aqueous ozone on the NF-kappaB system. J. Dent. Res. 2007;86:451–456. doi: 10.1177/154405910708600512.
    1. Kafoury R.M., Hernandez J.M., Lasky J.A., Toscano W.A., Jr., Friedman M. Activation of transcription factor IL-6 (NF-IL-6) and nuclear factor-kappaB (NF-kappaB) by lipid ozonation products is crucial to interleukin-8 gene expression in human airway epithelial cells. Environ. Toxicol. 2007;22:159–168. doi: 10.1002/tox.20246.
    1. Wang L., Chen Z., Liu Y., Du Y., Liu X. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway. Drug Des. Devel. Ther. 2018;12:1293–1301. doi: 10.2147/DDDT.S164927.
    1. Galie M., Costanzo M., Nodari A., Boschi F., Calderan L., Mannucci S., Covi V., Tabaracci G., Malatesta M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic. Biol. Med. 2018;124:114–121. doi: 10.1016/j.freeradbiomed.2018.05.093.
    1. Siniscalco D., Trotta M.C., Brigida A.L., Maisto R., Luongo M., Ferraraccio F., D’Amico M., Di Filippo C. Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. Biology (Basel) 2018;7:10. doi: 10.3390/biology7010010.
    1. Nakasone M., Nakaso K., Horikoshi Y., Hanaki T., Kitagawa Y., Takahashi T., Inagaki Y., Matsura T. Preconditioning by Low Dose LPS Prevents Subsequent LPS-Induced Severe Liver Injury via Nrf2 Activation in Mice. Yonago Acta Med. 2016;59:223–231.
    1. Ayala A., Munoz M.F., Arguelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014;2014:360438. doi: 10.1155/2014/360438.
    1. Breitzig M., Bhimineni C., Lockey R., Kolliputi N. 4-Hydroxy-2-nonenal: A critical target in oxidative stress? Am. J. Physiol. Cell Physiol. 2016;311:C537–C543. doi: 10.1152/ajpcell.00101.2016.
    1. Re L., Martínez-Sánchez G., Bordicchia M., Malcangi G., Pocognoli A., Angel Morales-Segura M., Rothchild J., Rojas A. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur. J. Pharmacol. 2014;742:158–162. doi: 10.1016/j.ejphar.2014.08.029.
    1. Delgado-Roche L., Riera-Romo M., Mesta F., Hernandez-Matos Y., Barrios J.M., Martinez-Sanchez G., Al-Dalaien S.M. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur. J. Pharmacol. 2017;811:148–154. doi: 10.1016/j.ejphar.2017.06.017.
    1. Ahmed S.M., Luo L., Namani A., Wang X.J., Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:585–597. doi: 10.1016/j.bbadis.2016.11.005.
    1. Ganesh Yerra V., Negi G., Sharma S.S., Kumar A. Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-kappaB pathways in diabetic neuropathy. Redox Biol. 2013;1:394–397. doi: 10.1016/j.redox.2013.07.005.
    1. Mohan S., Gupta D. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed. Pharmacother. 2018;108:1866–1878. doi: 10.1016/j.biopha.2018.10.019.
    1. Wardyn J.D., Ponsford A.H., Sanderson C.M. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem. Soc. Trans. 2015;43:621–626. doi: 10.1042/BST20150014.
    1. Yu G., Liu X., Chen Z., Chen H., Wang L., Wang Z., Qiu T., Weng X. Ozone therapy could attenuate tubulointerstitial injury in adenine-induced CKD rats by mediating Nrf2 and NF-kappaB. Iran. J. Basic Med. Sci. 2016;19:1136–1143.
    1. Borrego A., Zamora Z.B., Gonzalez R., Romay C., Menendez S., Hernandez F., Montero T., Rojas E. Protection by ozone preconditioning is mediated by the antioxidant system in cisplatin-induced nephrotoxicity in rats. Mediators Inflamm. 2004;13:13–19. doi: 10.1080/09629350410001664806.
    1. Gonzalez R., Borrego A., Zamora Z., Romay C., Hernandez F., Menendez S., Montero T., Rojas E. Reversion by ozone treatment of acute nephrotoxicity induced by cisplatin in rats. Mediators Inflamm. 2004;13:307–312. doi: 10.1080/09629350400008836.
    1. Borrego A., Zamora Z.B., Gonzalez R., Romay C., Menendez S., Hernandez F., Berlanga J., Montero T. Ozone/oxygen mixture modifies the subcellular redistribution of Bax protein in renal tissue from rats treated with cisplatin. Arch. Med. Res. 2006;37:717–722. doi: 10.1016/j.arcmed.2006.02.008.
    1. Sheikh-Hamad D., Cacini W., Buckley A.R., Isaac J., Truong L.D., Tsao C.C., Kishore B.K. Cellular and molecular studies on cisplatin-induced apoptotic cell death in rat kidney. Arch. Toxicol. 2004;78:147–155. doi: 10.1007/s00204-003-0521-4.
    1. Redza-Dutordoir M., Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012.
    1. Shiraishi F., Curtis L.M., Truong L., Poss K., Visner G.A., Madsen K., Nick H.S., Agarwal A. Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am. J. Physiol. Renal. Physiol. 2000;278:F726–F736. doi: 10.1152/ajprenal.2000.278.5.F726.
    1. Bolisetty S., Traylor A., Joseph R., Zarjou A., Agarwal A. Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury. Am. J. Physiol. Renal. Physiol. 2016;310:F385–F394. doi: 10.1152/ajprenal.00335.2015.
    1. Bocci V., Valacchi G. Nrf2 activation as target to implement therapeutic treatments. Front. Chem. 2015;3:4. doi: 10.3389/fchem.2015.00004.
    1. Kocak H.E., Taskin U., Aydin S., Oktay M.F., Altinay S., Celik D.S., Yucebas K., Altas B. Effects of ozone (O3) therapy on cisplatin-induced ototoxicity in rats. Eur. Arch. Otorhinolaryngol. 2016;273:4153–4159. doi: 10.1007/s00405-016-4104-4.
    1. Kesik V., Uysal B., Kurt B., Kismet E., Koseoglu V. Ozone ameliorates methotrexate-induced intestinal injury in rats. Cancer Biol. Ther. 2009;8:1623–1628. doi: 10.4161/cbt.8.17.9203.
    1. Aslaner A., Cakir T., Celik B., Dogan U., Mayir B., Akyuz C., Polat C., Basturk A., Soyer V., Koc S., et al. Does intraperitoneal medical ozone preconditioning and treatment ameliorate the methotrexate induced nephrotoxicity in rats? Int. J. Clin. Exp. Med. 2015;8:13811–13817.
    1. Aslaner A., Cakir T., Celik B., Dogan U., Akyuz C., Basturk A., Polat C., Gunduz U., Mayir B., Sehirli A.O. The protective effect of intraperitoneal medical ozone preconditioning and treatment on hepatotoxicity induced by methotrexate. Int. J. Clin. Exp. Med. 2015;8:13303–13309.
    1. Leon Fernandez O.S., Viebahn-Haensler R., Cabreja G.L., Espinosa I.S., Matos Y.H., Roche L.D., Santos B.T., Oru G.T., Polo Vega J.C. Medical ozone increases methotrexate clinical response and improves cellular redox balance in patients with rheumatoid arthritis. Eur. J. Pharmacol. 2016;789:313–318. doi: 10.1016/j.ejphar.2016.07.031.
    1. Delgado-Roche L., Hernandez-Matos Y., Medina E.A., Morejon D.A., Gonzalez M.R., Martinez-Sanchez G. Ozone-Oxidative Preconditioning Prevents Doxorubicin-induced Cardiotoxicity in Sprague-Dawley Rats. Sultan Qaboos Univ. Med. J. 2014;14:e342–e348.
    1. Calunga Fernández J.L., Bello Ferro M., Chaple La Hoz M., Barber Gutierrez E., Menendez Cepero S., Merino N. Ozonoterapia en la glomerulonefritis tóxica experimental por adriamicina. Rev. Cubana Investig. Biomed. 2004;23:139–143.
    1. Kesik V., Yuksel R., Yigit N., Saldir M., Karabacak E., Erdem G., Babacan O., Gulgun M., Korkmazer N., Bayrak Z. Ozone Ameliorates Doxorubicine-Induced Skin Necrosis - results from an animal model. Int. J. Low Extrem. Wounds. 2016;15:248–254. doi: 10.1177/1534734615597863.
    1. Salem E.A., Salem N.A., Hellstrom W.J. Therapeutic effect of ozone and rutin on adriamycin-induced testicular toxicity in an experimental rat model. Andrologia. 2017;49:e12603. doi: 10.1111/and.12603.
    1. Kamble S.M., Patil C.R. Asiatic Acid Ameliorates Doxorubicin-Induced Cardiac and Hepato-Renal Toxicities with Nrf2 Transcriptional Factor Activation in Rats. Cardiovasc Toxicol. 2018;18:131–141. doi: 10.1007/s12012-017-9424-0.
    1. Santana-Rodriguez N., Santisteban P.L., Clavo B., Camacho R., Santana C., Fiuza M.D. Protective effect of ozone in an experimental model of pulmonary fibrosis. Br. J. Surg. 2015;102:11.
    1. Menendez Cepero S., Gonzalez Alvarez R., Ledea Lozano O.E., Hernandez Rosales F., Leon Fernandez O.S., Diaz Gomez M. Ozono, Aspectos Básicos y Aplicaciones Clínicas. Centro de Investigaciones del Ozono; La Habana, Cuba: 2008.
    1. Borrelli E. Treatment of advanced non-small-cell lung cancer with oxygen ozone therapy and mistletoe: An integrative approach. Eur. J. Integr. Med. 2012;4:130.
    1. Velasco R., Bruna J. Chemotherapy-induced peripheral neuropathy: An unresolved issue. Neurologia. 2010;25:116–131. doi: 10.1016/S0213-4853(10)70036-0.
    1. Velasco R., Santos C., Soler G., Gil-Gil M., Pernas S., Galan M., Palmero R., Bruna J. Serum micronutrients and prealbumin during development and recovery of chemotherapy-induced peripheral neuropathy. J. Peripher. Nerv. Syst. 2016;21:134–141. doi: 10.1111/jns.12177.
    1. Starobova H., Vetter I. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front. Mol. Neurosci. 2017;10:174. doi: 10.3389/fnmol.2017.00174.
    1. Albers J.W., Chaudhry V., Cavaletti G., Donehower R.C. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst. Rev. 2014;3:CD005228. doi: 10.1002/14651858.CD005228.pub4.
    1. Hershman D.L., Lacchetti C., Dworkin R.H., Lavoie Smith E.M., Bleeker J., Cavaletti G., Chauhan C., Gavin P., Lavino A., Lustberg M.B., et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2014;32:1941–1967. doi: 10.1200/JCO.2013.54.0914.
    1. Clavo B. Ozone therapy in the management of side effects related to cancer treatments; Proceedings of the 2nd International Traditional and Complementary Medicine Congress (Organized with technical sponsorship of the World Health Organization); Istanbul, Turkey. 24 April 2019.
    1. Bakkal B.H., Gultekin F.A., Guven B., Turkcu U.O., Bektas S., Can M. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats. Braz J. Med. Biol. Res. 2013;46:789–796. doi: 10.1590/1414-431X20132856.
    1. Gultekin F.A., Bakkal B.H., Guven B., Tasdoven I., Bektas S., Can M., Comert M. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats. J. Radiat. Res. 2013;54:36–44. doi: 10.1093/jrr/rrs073.
    1. Menendez S., Cepero J., Borrego L.R. Ozone therapy in cancer treatment: State of the art. Ozone Sci. Eng. 2008;30:398–404. doi: 10.1080/01919510802473724.
    1. Clavo B., Ceballos D., Gutierrez D., Rovira G., Suarez G., Lopez L., Pinar B., Cabezon A., Morales V., Oliva E., et al. Long-term control of refractory hemorrhagic radiation proctitis with ozone therapy. J. Pain Symptom Manag. 2013;46:106–112. doi: 10.1016/j.jpainsymman.2012.06.017.
    1. Clavo B., Santana-Rodriguez N., Llontop P., Gutierrez D., Ceballos D., Mendez C., Rovira G., Suarez G., Rey-Baltar D., Garcia-Cabrera L., et al. Ozone Therapy in the Management of Persistent Radiation-Induced Rectal Bleeding in Prostate Cancer Patients. Evid. Based Complement. Alternat. Med. 2015;2015:480369. doi: 10.1155/2015/480369.
    1. Milkovic L., Zarkovic N., Saso L. Controversy about pharmacological modulation of Nrf2 for cancer therapy. Redox Biol. 2017;12:727–732. doi: 10.1016/j.redox.2017.04.013.
    1. Zhong H., Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biol. 2015;4:193–199. doi: 10.1016/j.redox.2014.12.011.
    1. Allen B.G., Bhatia S.K., Buatti J.M., Brandt K.E., Lindholm K.E., Button A.M., Szweda L.I., Smith B.J., Spitz D.R., Fath M.A. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin. Cancer Res. 2013;19:3905–3913. doi: 10.1158/1078-0432.CCR-12-0287.
    1. DiDonato J.A., Mercurio F., Karin M. NF-kappaB and the link between inflammation and cancer. Immunol. Rev. 2012;246:379–400. doi: 10.1111/j.1600-065X.2012.01099.x.
    1. Garg A., Aggarwal B.B. Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia. 2002;16:1053–1068. doi: 10.1038/sj.leu.2402482.
    1. El-Deek H.E.M., Ahmed A.M., Mohammed R.A.A. Aberration of Nrf2Bach1 pathway in colorectal carcinoma; role in carcinogenesis and tumor progression. Ann. Diagn. Pathol. 2019;38:138–144. doi: 10.1016/j.anndiagpath.2018.11.003.
    1. Rocha C.R., Kajitani G.S., Quinet A., Fortunato R.S., Menck C.F. NRF2 and glutathione are key resistance mediators to temozolomide in glioma and melanoma cells. Oncotarget. 2016;7:48081–48092. doi: 10.18632/oncotarget.10129.
    1. Zheng H., Nong Z., Lu G. Correlation Between Nuclear Factor E2-Related Factor 2 Expression and Gastric Cancer Progression. Med. Sci. Monit. 2015;21:2893–2899. doi: 10.12659/MSM.894467.
    1. Rojo de la Vega M., Chapman E., Zhang D.D. NRF2 and the Hallmarks of Cancer. Cancer Cell. 2018;34:21–43. doi: 10.1016/j.ccell.2018.03.022.
    1. Yasueda A., Urushima H., Ito T. Efficacy and Interaction of Antioxidant Supplements as Adjuvant Therapy in Cancer Treatment: A Systematic Review. Integr. Cancer Ther. 2016;15:17–39. doi: 10.1177/1534735415610427.
    1. Conklin K.A. Chemotherapy-associated oxidative stress: Impact on chemotherapeutic effectiveness. Integr. Cancer Ther. 2004;3:294–300. doi: 10.1177/1534735404270335.
    1. Clavo B., Santana-Rodriguez N., Llontop P., Gutierrez D., Suarez G., Lopez L., Rovira G., Martinez-Sanchez G., Gonzalez E., Jorge I.J., et al. Ozone Therapy as Adjuvant for Cancer Treatment: Is Further Research Warranted? Evid. Based Complement. Alternat. Med. 2018;2018:7931849. doi: 10.1155/2018/7931849.

Source: PubMed

3
Abonner