Molecular Profiling of Thymoma and Thymic Carcinoma: Genetic Differences and Potential Novel Therapeutic Targets

Franz Enkner, Bettina Pichlhöfer, Alexandru Teodor Zaharie, Milica Krunic, Tina Maria Holper, Stefan Janik, Bernhard Moser, Karin Schlangen, Barbara Neudert, Karin Walter, Brigitte Migschitz, Leonhard Müllauer, Franz Enkner, Bettina Pichlhöfer, Alexandru Teodor Zaharie, Milica Krunic, Tina Maria Holper, Stefan Janik, Bernhard Moser, Karin Schlangen, Barbara Neudert, Karin Walter, Brigitte Migschitz, Leonhard Müllauer

Abstract

Thymoma and thymic carcinoma are thymic epithelial tumors (TETs). We performed a molecular profiling to investigate the pathogenesis of TETs and identify novel targets for therapy. We analyzed 37 thymomas (18 type A, 19 type B3) and 35 thymic carcinomas. The sequencing of 50 genes detected nonsynonymous mutations in 16 carcinomas affecting ALK, ATM, CDKN2A, ERBB4, FGFR3, KIT, NRAS and TP53. Only two B3 thymomas had a mutation in noncoding regions of the SMARCB1 and STK11 gene respectively. Three type A thymomas harbored a nonsynonymous HRAS mutation. Fluorescence in situ hybridization detected in 38 % of carcinomas a CDKN2A, in 32 % a TP53 and in 8 % an ATM gene deletion, whereas only one B3 thymoma exhibited a CDKNA deletion, and none of the type A thymomas showed a gene loss. Sequencing of the total miRNA pool of 5 type A thymomas and 5 thymic carcinomas identified the C19MC miRNA cluster as highly expressed in type A thymomas, but completely silenced in thymic carcinomas. Furthermore, the miRNA cluster C14MC was downregulated in thymic carcinomas. Among non-clustered miRNAs, the upregulation of miR-21, miR-9-3 and miR-375 and the downregulation of miR-34b, miR-34c, miR-130a and miR-195 in thymic carcinomas were most significant. The expression of ALK, HER2, HER3, MET, phospho-mTOR, p16INK4A, PDGFRA, PDGFRB, PD-L1, PTEN and ROS1 was investigated by immunohistochemistry. PDGFRA was increased in thymic carcinomas and PD-L1 in B3 thymomas and thymic carcinomas. In summary, our results reveal genetic differences between thymomas and thymic carcinomas and suggest potential novel targets for therapy.

Keywords: Immunohistochemistry; Mutation; Thymic carcinoma; Thymoma; miRNA.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Heatmap of all miRNA transcripts differentially expressed in type A thymomas and thymic carcinomas at a false discovery rate p-value 

Fig. 2

Heatmap showing high C19MC miRNA…

Fig. 2

Heatmap showing high C19MC miRNA cluster expression in four of five type A…

Fig. 2
Heatmap showing high C19MC miRNA cluster expression in four of five type A thymomas, but virtually no expression in thymic carcinomas at a false discovery rate p-value 

Fig. 3

Heatmap showing different expression of…

Fig. 3

Heatmap showing different expression of C14MC miRNA cluster members in type A thymomas…

Fig. 3
Heatmap showing different expression of C14MC miRNA cluster members in type A thymomas and thymic carcinomas at a false discovery rate p-value 

Fig. 4

Non-clustered miRNAs with stronger expression…

Fig. 4

Non-clustered miRNAs with stronger expression in thymic carcinomas than in type A thymomas

Fig. 4
Non-clustered miRNAs with stronger expression in thymic carcinomas than in type A thymomas

Fig. 5

Non-clustered miRNAs with lower expression…

Fig. 5

Non-clustered miRNAs with lower expression in thymic carcinomas than in type A thymomas

Fig. 5
Non-clustered miRNAs with lower expression in thymic carcinomas than in type A thymomas

Fig. 6

PDGFRA protein expression in type…

Fig. 6

PDGFRA protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 6
PDGFRA protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 7

PD-L1 protein expression in type…

Fig. 7

PD-L1 protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 7
PD-L1 protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 8

p16 INK4A protein expression in…

Fig. 8

p16 INK4A protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 8
p16INK4A protein expression in type A and B3 thymomas and thymic carcinomas
All figures (8)
Similar articles
Cited by
References
    1. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (Eds.) (2015) WHO classification of tumours of the lung, pleura, thymus and heart. IARC Press, Lyon - PubMed
    1. Kelly RJ, Petrini I, Rajan A, Wang Y, Giaccone G. Thymic malignancies: from clinical management to targeted therapies. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(36):4820–4827. doi: 10.1200/JCO.2011.36.0487. - DOI - PMC - PubMed
    1. Schirosi L, Nannini N, Nicoli D, Cavazza A, Valli R, Buti S, Garagnani L, Sartori G, Calabrese F, Marchetti A, Buttitta F, Felicioni L, Migaldi M, Rea F, Di Chiara F, Mengoli M, Rossi G. Activating c-KIT mutations in a subset of thymic carcinoma and response to different c-KIT inhibitors. Ann Oncol: Off J Eur Soc Med Oncol / ESMO. 2012;23(9):2409–2414. doi: 10.1093/annonc/mdr626. - DOI - PubMed
    1. Yoh K, Nishiwaki Y, Ishii G, Goto K, Kubota K, Ohmatsu H, Niho S, Nagai K, Saijo N. Mutational status of EGFR and KIT in thymoma and thymic carcinoma. Lung Cancer. 2008;62(3):316–320. doi: 10.1016/j.lungcan.2008.03.013. - DOI - PubMed
    1. Petrini I, Meltzer PS, Kim IK, Lucchi M, Park KS, Fontanini G, Gao J, Zucali PA, Calabrese F, Favaretto A, Rea F, Rodriguez-Canales J, Walker Rl, Pineda M, Zhu YJ, Lau C, Killian KJ, Bilke S, Voeller D, Dakshanamurthy S, Wang Y, Giaccone G (2014) A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors. Nat Genet 46 (8):844–849. doi:10.1038/Ng.3016. http://Www.Nature.Com/Ng/Journal/V46/N8/Abs/Ng.3016.Html-Supplementary-I... - PMC - PubMed
Show all 67 references
MeSH terms
Supplementary concepts
Related information
Full text links [x]
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 2
Fig. 2
Heatmap showing high C19MC miRNA cluster expression in four of five type A thymomas, but virtually no expression in thymic carcinomas at a false discovery rate p-value 

Fig. 3

Heatmap showing different expression of…

Fig. 3

Heatmap showing different expression of C14MC miRNA cluster members in type A thymomas…

Fig. 3
Heatmap showing different expression of C14MC miRNA cluster members in type A thymomas and thymic carcinomas at a false discovery rate p-value 

Fig. 4

Non-clustered miRNAs with stronger expression…

Fig. 4

Non-clustered miRNAs with stronger expression in thymic carcinomas than in type A thymomas

Fig. 4
Non-clustered miRNAs with stronger expression in thymic carcinomas than in type A thymomas

Fig. 5

Non-clustered miRNAs with lower expression…

Fig. 5

Non-clustered miRNAs with lower expression in thymic carcinomas than in type A thymomas

Fig. 5
Non-clustered miRNAs with lower expression in thymic carcinomas than in type A thymomas

Fig. 6

PDGFRA protein expression in type…

Fig. 6

PDGFRA protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 6
PDGFRA protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 7

PD-L1 protein expression in type…

Fig. 7

PD-L1 protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 7
PD-L1 protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 8

p16 INK4A protein expression in…

Fig. 8

p16 INK4A protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 8
p16INK4A protein expression in type A and B3 thymomas and thymic carcinomas
All figures (8)
Similar articles
Cited by
References
    1. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (Eds.) (2015) WHO classification of tumours of the lung, pleura, thymus and heart. IARC Press, Lyon - PubMed
    1. Kelly RJ, Petrini I, Rajan A, Wang Y, Giaccone G. Thymic malignancies: from clinical management to targeted therapies. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(36):4820–4827. doi: 10.1200/JCO.2011.36.0487. - DOI - PMC - PubMed
    1. Schirosi L, Nannini N, Nicoli D, Cavazza A, Valli R, Buti S, Garagnani L, Sartori G, Calabrese F, Marchetti A, Buttitta F, Felicioni L, Migaldi M, Rea F, Di Chiara F, Mengoli M, Rossi G. Activating c-KIT mutations in a subset of thymic carcinoma and response to different c-KIT inhibitors. Ann Oncol: Off J Eur Soc Med Oncol / ESMO. 2012;23(9):2409–2414. doi: 10.1093/annonc/mdr626. - DOI - PubMed
    1. Yoh K, Nishiwaki Y, Ishii G, Goto K, Kubota K, Ohmatsu H, Niho S, Nagai K, Saijo N. Mutational status of EGFR and KIT in thymoma and thymic carcinoma. Lung Cancer. 2008;62(3):316–320. doi: 10.1016/j.lungcan.2008.03.013. - DOI - PubMed
    1. Petrini I, Meltzer PS, Kim IK, Lucchi M, Park KS, Fontanini G, Gao J, Zucali PA, Calabrese F, Favaretto A, Rea F, Rodriguez-Canales J, Walker Rl, Pineda M, Zhu YJ, Lau C, Killian KJ, Bilke S, Voeller D, Dakshanamurthy S, Wang Y, Giaccone G (2014) A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors. Nat Genet 46 (8):844–849. doi:10.1038/Ng.3016. http://Www.Nature.Com/Ng/Journal/V46/N8/Abs/Ng.3016.Html-Supplementary-I... - PMC - PubMed
Show all 67 references
MeSH terms
Supplementary concepts
Related information
Full text links [x]
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 3
Fig. 3
Heatmap showing different expression of C14MC miRNA cluster members in type A thymomas and thymic carcinomas at a false discovery rate p-value 

Fig. 4

Non-clustered miRNAs with stronger expression…

Fig. 4

Non-clustered miRNAs with stronger expression in thymic carcinomas than in type A thymomas

Fig. 4
Non-clustered miRNAs with stronger expression in thymic carcinomas than in type A thymomas

Fig. 5

Non-clustered miRNAs with lower expression…

Fig. 5

Non-clustered miRNAs with lower expression in thymic carcinomas than in type A thymomas

Fig. 5
Non-clustered miRNAs with lower expression in thymic carcinomas than in type A thymomas

Fig. 6

PDGFRA protein expression in type…

Fig. 6

PDGFRA protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 6
PDGFRA protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 7

PD-L1 protein expression in type…

Fig. 7

PD-L1 protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 7
PD-L1 protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 8

p16 INK4A protein expression in…

Fig. 8

p16 INK4A protein expression in type A and B3 thymomas and thymic carcinomas

Fig. 8
p16INK4A protein expression in type A and B3 thymomas and thymic carcinomas
All figures (8)
Fig. 4
Fig. 4
Non-clustered miRNAs with stronger expression in thymic carcinomas than in type A thymomas
Fig. 5
Fig. 5
Non-clustered miRNAs with lower expression in thymic carcinomas than in type A thymomas
Fig. 6
Fig. 6
PDGFRA protein expression in type A and B3 thymomas and thymic carcinomas
Fig. 7
Fig. 7
PD-L1 protein expression in type A and B3 thymomas and thymic carcinomas
Fig. 8
Fig. 8
p16INK4A protein expression in type A and B3 thymomas and thymic carcinomas

References

    1. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG (Eds.) (2015) WHO classification of tumours of the lung, pleura, thymus and heart. IARC Press, Lyon
    1. Kelly RJ, Petrini I, Rajan A, Wang Y, Giaccone G. Thymic malignancies: from clinical management to targeted therapies. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(36):4820–4827. doi: 10.1200/JCO.2011.36.0487.
    1. Schirosi L, Nannini N, Nicoli D, Cavazza A, Valli R, Buti S, Garagnani L, Sartori G, Calabrese F, Marchetti A, Buttitta F, Felicioni L, Migaldi M, Rea F, Di Chiara F, Mengoli M, Rossi G. Activating c-KIT mutations in a subset of thymic carcinoma and response to different c-KIT inhibitors. Ann Oncol: Off J Eur Soc Med Oncol / ESMO. 2012;23(9):2409–2414. doi: 10.1093/annonc/mdr626.
    1. Yoh K, Nishiwaki Y, Ishii G, Goto K, Kubota K, Ohmatsu H, Niho S, Nagai K, Saijo N. Mutational status of EGFR and KIT in thymoma and thymic carcinoma. Lung Cancer. 2008;62(3):316–320. doi: 10.1016/j.lungcan.2008.03.013.
    1. Petrini I, Meltzer PS, Kim IK, Lucchi M, Park KS, Fontanini G, Gao J, Zucali PA, Calabrese F, Favaretto A, Rea F, Rodriguez-Canales J, Walker Rl, Pineda M, Zhu YJ, Lau C, Killian KJ, Bilke S, Voeller D, Dakshanamurthy S, Wang Y, Giaccone G (2014) A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors. Nat Genet 46 (8):844–849. doi:10.1038/Ng.3016.
    1. Wang Y, Thomas A, Lau C, Rajan A, Zhu Y, Killian JK, Petrini I, Pham T, Morrow B, Zhong X, Meltzer PS, Giaccone G (2014) Mutations of epigenetic regulatory genes are common in thymic carcinomas. Sci Rep 4:7336. doi:10.1038/Srep07336
    1. Moreira AL, Won HH, McMillan R, Huang J, Riely GJ, Ladanyi M, Berger MF (2015) Massively parallel sequencing identifies recurrent mutations in TP53 in thymic carcinoma associated with poor prognosis. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer 10(2):373–380. doi:10.1097/Jto.0000000000000397
    1. Shitara M, Okuda K, Suzuki A, Tatematsu T, Hikosaka Y, Moriyama S, Sasaki H, Fujii Y, Yano M. Genetic profiling of thymic carcinoma using targeted next-generation sequencing. Lung Cancer. 2014;86(2):174–179. doi: 10.1016/j.lungcan.2014.08.020.
    1. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi: 10.1093/bioinformatics/btp616.
    1. Nonaka D, Rosai J. Is there a spectrum of cytologic atypia in type A thymomas analogous to that seen in type B thymomas? A pilot study of 13 cases. Am J Surg Pathol. 2012;36(6):889–894. doi: 10.1097/PAS.0b013e31824fff50.
    1. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer. 2011;11(8):558–572. doi: 10.1038/nrc3090.
    1. Petrini I, Meltzer PS, Zucali PA, Luo J, Lee C, Santoro A, Lee HS, Killian KJ, Wang Y, Tsokos M, Roncalli M, Steinberg SM, Wang Y, Giaccone G (2012) Copy number aberrations of BCL2 and CDKN2A/B identified by array-CGH in thymic epithelial tumors. Cell Death Dis 3:E351.
    1. Yamamoto H, Oda Y. Gastrointestinal stromal tumor: recent advances in pathology and genetics. Pathol Int. 2015;65(1):9–18. doi: 10.1111/pin.12230.
    1. Ströbel P, Hartmann M, Jakob A, Mikesch K, Brink I, Dirnhofer S, Marx A. Thymic carcinoma with overexpression of mutated KIT and the response to imatinib. N Engl J Med. 2004;350(25):2625–2626. doi: 10.1056/NEJM200406173502523.
    1. Bisagni G, Rossi G, Cavazza A, Sartori G, Gardini G, Boni C. Long lasting response to the multikinase inhibitor bay 43-9006 (Sorafenib) in a heavily pretreated metastatic thymic carcinoma. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer. 2009;4(6):773–775. doi: 10.1097/JTO.0b013e3181a52e25.
    1. Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, Cortes J, Iafrate AJ, Nuciforo P, Tabernero J. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann Oncol: Off J Eur Soc Med Oncol / ESMO. 2014;25(3):552–563. doi: 10.1093/annonc/mdt419.
    1. Liu X, Zhang W, Geng D, He J, Zhao Y, Yu L. Clinical significance of fibroblast growth factor receptor-3 mutations in bladder cancer: a systematic review and meta-analysis. Genet Mol Res: Gmr. 2014;13(1):1109–1120. doi: 10.4238/2014.February.20.12.
    1. Ho HK, Yeo AH, Kang TS, Chua BT. Current strategies for inhibiting FGFR activities in clinical applications: opportunities, challenges and toxicological considerations. Drug Discov Today. 2014;19(1):51–62. doi: 10.1016/j.drudis.2013.07.021.
    1. Hallberg B, Palmer RH. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer. 2013;13(10):685–700. doi: 10.1038/nrc3580.
    1. Epstein LF, Chen H, Emkey R, Whittington DA. The R1275Q neuroblastoma mutant and certain ATP-competitive inhibitors stabilize alternative activation loop conformations of anaplastic lymphoma kinase. J Biol Chem. 2012;287(44):37447–37457. doi: 10.1074/jbc.M112.391425.
    1. Modjtahedi H, Cho BC, Michel MC, Solca F. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. Naunyn Schmiedeberg’s Arch Pharmacol. 2014;387(6):505–521. doi: 10.1007/s00210-014-0967-3.
    1. Prickett TD, Agrawal NS, Wei X, Yates KE, Lin JC, Wunderlich JR, Cronin JC, Cruz P, Rosenberg SA, Samuels Y. Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4. Nat Genet. 2009;41(10):1127–1132. doi: 10.1038/ng.438.
    1. Michels J, Vitale I, Saparbaev M, Castedo M, Kroemer G. Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene. 2014;33(30):3894–3907. doi: 10.1038/onc.2013.352.
    1. Williamson CT, Muzik H, Turhan AG, Zamo A, O’Connor MJ, Bebb DG, Lees-Miller SP (2010) ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther 9(2):347–357. doi:10.1158/1535-7163.Mct-09-0872
    1. Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ, Smith G, Powell JE, Rudzki Z, Kearns P, Moss PA, Taylor AM, Stankovic T (2010) The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood 116(22):4578–4587. doi:10.1182/Blood-2010-01-265769
    1. Stephen AG, Esposito D, Bagni RR, McCormick F. Dragging ras back in the ring. Cancer Cell. 2014;25(3):272–281. doi: 10.1016/j.ccr.2014.02.017.
    1. Singh H, Longo DL, Chabner BA. Improving prospects for targeting RAS. J Clin Oncol: Off J Am Soc Clin Oncol. 2015;33(31):3650–3659. doi: 10.1200/JCO.2015.62.1052.
    1. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, Cavaille J. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Hum Mol Genet. 2010;19(18):3566–3582. doi: 10.1093/hmg/ddq272.
    1. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. J Reprod Immunol. 2013;97(1):51–61. doi: 10.1016/j.jri.2012.11.001.
    1. Kleinman CL, Gerges N, Papillon-Cavanagh S, Sin-Chan P, Pramatarova A, Quang DAK, Adoue V, Busche S, Caron M, Djambazian H, Bemmo A, Fontebasso AM, Spence T, Schwartzentruber J, Albrecht S, Hauser P, Garami M, Klekner A, Bognar L, Montes JL, Staffa A, Montpetit A, Berube P, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel PM, Duchaine T, Perotti C, Fleming A, Faury D, Remke M, Gallo M, Dirks P, Taylor MD, Sladek R, Pastinen T, Chan JA, Huang A, Majewski J, Jabado N (2014) Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet 46 (1):39–44. doi:10.1038/Ng.2849.
    1. Korshunov A, Remke M, Gessi M, Ryzhova M, Hielscher T, Witt H, Tobias V, Buccoliero AM, Sardi I, Gardiman MP, Bonnin J, Scheithauer B, Kulozik AE, Witt O, Mork S, Von Deimling A, Wiestler OD, Giangaspero F, Rosenblum M, Pietsch T, Lichter P, Pfister SM. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol. 2010;120(2):253–260. doi: 10.1007/s00401-010-0688-8.
    1. Cairo S, Wang Y, De Reynies A, Duroure K, Dahan J, Redon MJ, Fabre M, McClelland M, Wang XW, Croce CM, Buendia MA. Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proc Natl Acad Sci U S A. 2010;107(47):20471–20476. doi: 10.1073/pnas.1009009107.
    1. Flor I, Bullerdiek J. The dark side of a success story: microRNAs of the C19MC cluster in human tumours. J Pathol. 2012;227(3):270–274. doi: 10.1002/path.4014.
    1. Rippe V, Dittberner L, Lorenz VN, Drieschner N, Nimzyk R, Sendt W, Junker K, Belge G, Bullerdiek J. The two stem cell microRNA gene clusters C19MC and miR-371-3 are activated by specific chromosomal rearrangements in a subgroup of thyroid adenomas. PLoS One. 2010;5(3) doi: 10.1371/journal.pone.0009485.
    1. Vaira V, Elli F, Forno I, Guarnieri V, Verdelli C, Ferrero S, Scillitani A, Vicentini L, Cetani F, Mantovani G, Spada A, Bosari S, Corbetta S. The microRNA cluster C19MC is deregulated in parathyroid tumours. J Mol Endocrinol. 2012;49(2):115–124. doi: 10.1530/JME-11-0189.
    1. Radovich M, Solzak JP, Hancock BA, Conces ML, Atale R, Porter RR, Zhu J, Glasscock J, Kesler KA, Badve SS, Schneider BP, Loehrer PJ. A large microRNA cluster on chromosome 19 is a transcriptional hallmark of WHO type A and AB thymomas. Br J Cancer. 2016;114(4):477–484. doi: 10.1038/bjc.2015.425.
    1. Ucar O, Tykocinski LO, Dooley J, Liston A, Kyewski B. An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression. Eur J Immunol. 2013;43(7):1769–1778. doi: 10.1002/eji.201343343.
    1. Haller F, Von Heydebreck A, Zhang JD, Gunawan B, Langer C, Ramadori G, Wiemann S, Sahin O. Localization-and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol. 2010;220(1):71–86. doi: 10.1002/path.2610.
    1. Lavon I, Zrihan D, Granit A, Einstein O, Fainstein N, Cohen M, Cohen M, Zelikovitch B, Shoshan Y, Spektor S, Reubinoff BE, Felig Y, Gerlitz O, Ben-Hur T, Smith Y, Siegal T. Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro-Oncology. 2010;12(5):422–433. doi: 10.1093/neuonc/nop061.
    1. Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW (2016) PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 108(1). doi:10.1093/Jnci/Djv303
    1. Li B, Huang P, Qiu J, Liao Y, Hong J, Yuan Y. MicroRNA-130a is down-regulated in hepatocellular carcinoma and associates with poor prognosis. Med Oncol. 2014;31(10):230. doi: 10.1007/s12032-014-0230-2.
    1. Jia LF, Wei SB, Gong K, Gan YH, Yu GY. Prognostic implications of micoRNA miR-195 expression in human tongue squamous cell carcinoma. PLoS One. 2013;8(2) doi: 10.1371/journal.pone.0056634.
    1. Liu L, Chen L, Xu Y, Li R, Du X. MicroRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun. 2010;400(2):236–240. doi: 10.1016/j.bbrc.2010.08.046.
    1. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13(1):39–53. doi: 10.1111/j.1582-4934.2008.00556.x.
    1. Shen L, Wan Z, Ma Y, Wu L, Liu F, Zang H, Xin S. The clinical utility of microRNA-21 as novel biomarker for diagnosing human cancers. Tumour Biol: J Int Soc Oncodevelop Biol Med. 2015;36(3):1993–2005. doi: 10.1007/s13277-014-2806-z.
    1. Heller G, Weinzierl M, Noll C, Babinsky V, Ziegler B, Altenberger C, Minichsdorfer C, Lang G, Döme B, End-Pfützenreuter A, Arns BM, Grin Y, Klepetko W, Zielinski C, Zöchbauer-Müller S. Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clin Cancer Res: Off J Am Assoc Cancer Res. 2012;18(6):1619–1629. doi: 10.1158/1078-0432.CCR-11-2450.
    1. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, MacDonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–230. doi: 10.1038/nature03076.
    1. Yan JW, Lin JS, He XX (2014) The emerging role of miR-375 in cancer. Int J Cancer 135 (5):1011–1018. doi:10.1002/ijc.28563
    1. Weissferdt A, Lin H, Woods D, Tang X, Fujimoto J, Wistuba II, Moran CA. HER family receptor and ligand status in thymic carcinoma. Lung Cancer. 2012;77(3):515–521. doi: 10.1016/j.lungcan.2012.05.108.
    1. Pan CC, Chen PCH, Wang LS, Lee JY, Chiang H. Expression of apoptosis-related markers and HER-2/neu in thymic epithelial tumours. Histopathology. 2003;43(2):165–172. doi: 10.1046/j.1365-2559.2003.01663.x.
    1. Zhang Y, Du Z, Zhang M (2016) Biomarker development in MET-targeted therapy. Oncotarget 7(24):37370–37389 doi:10.18632/Oncotarget.8276
    1. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, Heng JC, Dahlberg SE, Janne PA, Verma S, Christensen J, Hammerman PS, Sholl LM. MET exon 14 mutations in non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-MET overexpression. J Clin Oncol: Off J Am Soc Clin Oncol. 2016;34(7):721–730. doi: 10.1200/JCO.2015.63.4600.
    1. Xu K, Liu P, Wei W. mTOR signaling in tumorigenesis. Biochimica Et Biophysica Acta. 2014;1846(2):638–654.
    1. Cimpean AM, Ceausu R, Encica S, Gaje PN, Ribatti D, Raica M. Platelet-derived growth factor and platelet-derived growth factor receptor-alpha expression in the normal human thymus and thymoma. Int J Exp Pathol. 2011;92(5):340–344. doi: 10.1111/j.1365-2613.2011.00777.x.
    1. Meister M, Kahl P, Muley T, Morresi-Hauf A, Sebening C, Kern MA, Breinig M, Schnabel P, Dienemann H, Schirmacher P, Rieker RJ. Expression and mutational status of PDGFR in thymic tumours. Anticancer Res. 2009;29(10):4057–4061.
    1. Ströbel P, Bargou R, Wolff A, Spitzer D, Manegold C, Dimitrakopoulou-Strauss A, Strauss L, Sauer C, Mayer F, Hohenberger P, Marx A. Sunitinib in metastatic thymic carcinomas: laboratory findings and initial clinical experience. Br J Cancer. 2010;103(2):196–200. doi: 10.1038/sj.bjc.6605740.
    1. Pagano M, Sierra NM, Panebianco M, Rossi G, Gnoni R, Bisagni G, Boni C. Sorafenib efficacy in thymic carcinomas seems not to require c-KIT or PDGFR-alpha mutations. Anticancer Res. 2014;34(9):5105–5110.
    1. Witkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES. The meaning of p16(Ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle. 2011;10(15):2497–2503. doi: 10.4161/cc.10.15.16776.
    1. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv324. doi: 10.1126/scitranslmed.aad7118.
    1. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–287. doi: 10.1038/nrc.2016.36.
    1. Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015;125(9):3384–3391. doi: 10.1172/JCI80011.
    1. Padda SK, Riess JW, Schwartz EJ, Tian L, Kohrt HE, Neal JW, West RB, Wakelee HA. Diffuse high intensity PD-L1 staining in thymic epithelial tumors. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer. 2015;10(3):500–508. doi: 10.1097/JTO.0000000000000429.
    1. Katsuya Y, Fujita Y, Horinouchi H, Ohe Y, Watanabe S, Tsuta K. Immunohistochemical status of PD-L1 in thymoma and thymic carcinoma. Lung Cancer. 2015;88(2):154–159. doi: 10.1016/j.lungcan.2015.03.003.
    1. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–856. doi: 10.1158/1535-7163.MCT-14-0983.
    1. Carracedo A, Alimonti A, Pandolfi PP. PTEN level in tumor suppression: how much is too little? Cancer Res. 2011;71(3):629–633. doi: 10.1158/0008-5472.CAN-10-2488.
    1. Roh MR, Gupta S, Park KH, Chung KY, Lauss M, Flaherty KT, Jönsson G, Rha SY, Tsao H. Promoter methylation of PTEN is a significant prognostic factor in melanoma survival. J Invest Dermatol. 2016;136(5):1002–1011. doi: 10.1016/j.jid.2016.01.024.
    1. Ye M, Zhang X, Li N, Zhang Y, Jing P, Chang N, Wu J, Ren X, Zhang J. ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance. Oncotarget. 2016;7(11):12289–12304.

Source: PubMed

3
Abonner