Vitamin D status and dental caries in healthy Swedish children

Johanna Gyll, Karin Ridell, Inger Öhlund, Pia Karlsland Åkeson, Ingegerd Johansson, Pernilla Lif Holgerson, Johanna Gyll, Karin Ridell, Inger Öhlund, Pia Karlsland Åkeson, Ingegerd Johansson, Pernilla Lif Holgerson

Abstract

Background: Vitamin D is crucial for mineralized tissue formation and immunological functions. The purpose of this study was to evaluate the association between vitamin D status and dental status in healthy children with vitamin D supplementation in infancy and at 6 years of age.

Method: Eight-year-old children who had participated in a vitamin D intervention project when they were 6 years old were invited to participate in a dental follow-up study. They had fair or darker skin complexion and represented two geographically distant parts of Sweden. 25-hydroxy vitamin D in serum had been measured at 6 years of age and after a 3-month intervention with 25, 10 or 2 (placebo) μg of vitamin D<subscript>3</subscript> per day. Two years later, caries and enamel defects were scored, self-reported information on e.g., oral behavior, dietary habits and intake of vitamin D supplements was collected, and innate immunity peptide LL37 levels in saliva and cariogenic mutant streptococci in tooth biofilm were analyzed. The outcome variables were caries and tooth enamel defects.

Results: Dental status was evaluated in 85 of the 206 children in the basic intervention study. Low vitamin D levels were found in 28% at baseline compared to 11% after the intervention, and 34% reported continued intake of vitamin D supplements. Logistic regression supported a weak inverse association between vitamin D status at 6 years of age and caries 2 years later (odds ratio 0.96; p = 0.024) with minor attenuation after an adjustment for potential confounders. Multivariate projection regression confirmed that insufficient vitamin D levels correlated with caries and higher vitamin D levels correlated with being caries-free. Vitamin D status at 6 years of age was unrelated to enamel defects but was positively associated with saliva LL37 levels.

Conclusion: An association between vitamin D status and caries was supported, but it was not completely consistent. Vitamin D status at 6 years of age was unrelated to enamel defects but was positively associated with LL37 expression.

Trial registration: The basic intervention study was registered at ClinicalTrials.gov with register number NCT01741324 www.clinicaltrials.gov/ct2/show/NCT02347293 on November 26, 2012.

Keywords: Vitamin D − Children − caries − enamel defects − LL37.

Conflict of interest statement

Competing interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Approval of the study was given by the Regional Ethical Review Board in Umeå, Sweden (References 2012–158-31 M and 2014–103-32 M). Prior to inclusion, each subject got a full written and oral explanation of the purpose and procedure of the study and written informed consent was obtained from the caregivers of the children.

Consent for publication

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow diagram of the numbers of children in the basic intervention DViSUM and placebo groups at baseline, 3 month follow up and at the dental follow up at 8 years of age
Fig. 2
Fig. 2
PLS correlation coefficients from multivariate modelling with caries status (yes/no) as dependent variables. Correlation coefficients with 95% CI for the variables in the final mode are presented. Bars for which the 95% whisker do not pass zero are statistically significant

References

    1. Reichrath J, Saternus R, Vogt T. Challenge and perspective: the relevance of ultraviolet (UV) radiation and the vitamin D endocrine system (VDES) for psoriasis and other inflammatory skin diseases. Photochem Photobiol Sci. 2017;16:433–444. doi: 10.1039/C6PP00280C.
    1. Svensson D, Nebel D, Nilsson B-O. Vitamin D3 modulates the innate immune response through regulation of the hCAP-18/LL-37 gene expression and cytokine production. Inflamm Res. 2016;65:25–32. doi: 10.1007/s00011-015-0884-z.
    1. Davideau JL, Lezot F, Kato S, Bailleul-Forestier I, Berdal A. Dental alveolar bone defects related to vitamin D and calcium status. J Steroid Biochem Mol Biol. 2004;89:615–618. doi: 10.1016/j.jsbmb.2004.03.117.
    1. Raftery T, Martineau AR, Greiller CL, et al. Effects of vitamin D supplementation on intestinal permeability, cathelicidin and disease markers in Crohn's disease: results from a randomised double-blind placebo-controlled study. United European Gastroenterol J. 2015;3:294–302. doi: 10.1177/2050640615572176.
    1. Abhimanyu, Coussens A. The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochem Photobiol Sci. 2017;16:314–38.
    1. Skaaby T, Nystrup Husemoen LL, Pisinger C, et al. Vitamin D status and incident cardiovascular disease and all-mortality: a general population study. Endocrine. 2013;43:618–625. doi: 10.1007/s12020-012-9805-x.
    1. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington (DC): The National Academic Press. 2011.
    1. Greer FR. 25-Hydroxyvitamin D: functional outcomes in infants and young children. Am J Clin Nutr. 2008;88:529S–533S.
    1. Vieth R. Why the minimum desirable serum 25-hydroxyvitamin D level should be 75 nmol/L(30 ng/ml) Best Pract Res Clin Endocrinol Metab. 2011;25:681–691. doi: 10.1016/j.beem.2011.06.009.
    1. Prentice A, Goldberg GR, Schoenmakers I. Vitamin D across the lifecycle: physiology and biomarkers. Am J Clin Nutr. 2008;88:500S–506S.
    1. Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1982;1:74–76. doi: 10.1016/S0140-6736(82)90214-8.
    1. Öhlund I, Silfverdal SA, Hernell O, Lind T. Serum 25-hydroxyvitamin D levels in preschool children in northern Sweden are inadequate after summer and diminish further during winter. J Pediatr Gastroenterol Nutr. 2013;56:551–555. doi: 10.1097/MPG.0b013e3182838e5b.
    1. Schroth RJ, Lavelle C, Tate R, Bruce S, Billings RJ, Moffatt MEK, Prenatal Vitamin D. Dental caries in infants. Pediatrics. 2014;133:277. doi: 10.1542/peds.2013-2215.
    1. Schroth RJ, Rabbani R, Loewen G, Moffatt ME. Vitamin D and Dental caries in children. J Dent Res. 2016;95:173–179. doi: 10.1177/0022034515616335.
    1. Dudding T, Thomas SJ, Duncan K, Lawlor DA, Timpson NJ. Re-examining the association between vitamin D and childhood caries. PLoS One 2015;21:10:e0143769.
    1. Herzog K, Scott JM, Hujoel P, Seminario AL. Association of vitamin D and dental caries in children: findings from the National Health and nutrition examination survey, 2005-2006. J Am Dent Assoc. 2016;147:413–420. doi: 10.1016/j.adaj.2015.12.013.
    1. Theodoratou E, Tzoulaki I, Zgaga L, Ioannidis JP, Vitamin D. Multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014;348:2035. doi: 10.1136/bmj.g2035.
    1. Hujoel PP, Vitamin D. Dental caries in controlled clinical trials: systematic review and meta-analysis. Nutr Rev. 2013;71:88–97. doi: 10.1111/j.1753-4887.2012.00544.x.
    1. Karpiński M, Galicka A, Milewski R, Popko J, Badmaev V, Stohs SJ. Association between vitamin D receptor polymorphism and serum vitamin D levels in children with low-energy fractures. J Am Coll Nutr. 2017;9:1–8.
    1. Mäkinen M, Mykkänen J. Koskinen et al. serum 25-hydroxyvitamin D concentration in children progressing to autoimmunity and clinical type 1 diabetes. J Clin Endocrinol Metab. 2016;101:723–729. doi: 10.1210/jc.2015-3504.
    1. Åkeson PK, Lind T, Hernell O, Silfverdal SA, Öhlund I, Serum Vitamin D. Depends less on latitude than on skin color and dietary intake during early winter in northern Europe. J Pediatr Gastroenterol Nutr. 2016;62:643–649. doi: 10.1097/MPG.0000000000001028.
    1. Öhlund I, Lind T, Hernell O, Silfverdal SA, Karlsland Åkeson P. Increased vitamin D intake differentiated according to skin color is needed to meet requirements in young Swedish children during winter: a double-blinded randomized clinical trial. Am J Clin Nutr. 2017;jun 14. ajcn147108.
    1. (2017–06-09).
    1. World Health Organization. Oral health surveys: basic methods 4th edition 1997. World Health Organization, Geneva.
    1. A review of the developmental defects of enamel index (DDE-Index). Commission on Oral Health, Research & Epidemiology. Report of an FDI Working Group. Int Dent J. 1992; 42:411–26.
    1. Lif Holgerson P, Harnevik L, Hernell O, Tanner AC, Johansson I. Mode of birth delivery affects oral microbiota in infants. J Dent Res. 2011;90:1183–1188. doi: 10.1177/0022034511418973.
    1. Yano A, Kaneko N, Ida H, Yamaguchi T, Hanada N, Real-time PCR. For quantification of Streptococcus Mutans. FEMS Microbiol Lett. 2002;19:23–30. doi: 10.1111/j.1574-6968.2002.tb11451.x.
    1. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–667. doi: 10.2471/BLT.07.043497.
    1. Ross AC, Manson JE, Abrams SA, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96:53–58. doi: 10.1210/jc.2010-2704.
    1. Nordic Council of Ministers. Nordic Nutrition Recommendations 2012. Nordic Nutrition Recommendations 2012 2012;5(11):1.
    1. Guizar JM, Muñoz N, Amador N, Garcia G. Association of Alimentary Factors and Nutritional Status with caries in children of Leon, Mexico. Oral Health Prev Dent. 2016;14:563–569.
    1. Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun. 1995;63:1291–1297.
    1. Yamasaki K, Schauber J, Coda A, et al. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J. 2006;20:2068–2080. doi: 10.1096/fj.06-6075com.
    1. Gomes Pde S, Fernandes MH. Defensins in the oral cavity: distribution and biological role. J Oral Pathol Med. 2010;39:1–9. doi: 10.1111/j.1600-0714.2009.00832.x.
    1. Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621. doi: 10.1038/ncomms6621.
    1. Tao R, Jurevic RJ, Coulton KK. Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother. 2005;49:3883–3888. doi: 10.1128/AAC.49.9.3883-3888.2005.
    1. Phattarataratip E, Olson B, Brofitt B, et al. Streptococcus Mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol Oral Microbiol. 2011;26:187–199. doi: 10.1111/j.2041-1014.2011.00607.x.
    1. Colombo NH, Ribas LF, Pereira JA, et al. Antimicrobial peptides in saliva of children with severe early childhood caries. Arch Oral Biol. 2016;69:40–46. doi: 10.1016/j.archoralbio.2016.05.009.
    1. Malcolm J, Sherriff A, Lappin DF, et al. Salivary antimicrobial proteins associate with age-related changes in streptococcal composition in dental plaque. Mol Oral Microbiol. 2014;29:284–293. doi: 10.1111/omi.12058.
    1. Künisch J, Thiering E, Kratzsch J, Heinrich- Weltzien R, Hickel R, Heinrich J. Elevated serum 25(OH)-vitamin D levels are negatively correlated with molar-incisor hypomineralisation. J Dent Res. 2015;94:381–387. doi: 10.1177/0022034514561657.
    1. innehall/naringsamne/vitaminer-och-antioxidanter/vitamin-d/ (2017–01–27).

Source: PubMed

3
Abonner