Preliminary Neurophysiological Evidence of Altered Cortical Activity and Connectivity With Neurologic Music Therapy in Parkinson's Disease

Isabelle Buard, William B Dewispelaere, Michael Thaut, Benzi M Kluger, Isabelle Buard, William B Dewispelaere, Michael Thaut, Benzi M Kluger

Abstract

Neurologic Music Therapy (NMT) is a novel impairment-focused behavioral intervention system whose techniques are based on the clinical neuroscience of music perception, cognition, and production. Auditory Stimulation (RAS) is one of the NMT techniques, which aims to develop and maintain a physiological rhythmic motor activity through rhythmic auditory cues. In a series of breakthrough studies beginning in the mid-nineties, we discovered that RAS durably improves gait velocity, stride length, and cadence in Parkinson's disease (PD). No study to date reports the neurophysiological evidence of auditory-motor frequency entrainment after a NMT intervention in the Parkinson's community. We hypothesized that NMT-related motor improvements in PD are due to entrainment-related coupling between auditory and motor activity resulting from an increased functional communication between the auditory and the motor cortices. Spectral analysis in the primary motor and auditory cortices during a cued finger tapping task showed a simultaneous increase in evoked power in the beta-range along with an increased functional connectivity after a course of NMT in a small sample of three older adults with PD. This case study provides preliminary evidence that NMT-based motor rehabilitation may enhance cortical activation in the auditory and motor areas in a synergic manner. With a lack of both control subjects and control conditions, this neuroimaging case-proof of concept series of visible changes suggests potential mechanisms and offers further education on the clinical applications of musical interventions for motor impairments.

Keywords: auditory-motor; entrainment; fine motor; rehabilitation; therapy.

Figures

Figure 1
Figure 1
Left primary auditory and motor areas evoked power time-frequency results. Grand average evoked power in the beta range increased simultaneously in the auditory (A) and motor (B) cortices between pre-NMT (top) and post-NMT (bottom) during a cued right hand finger tapping.
Figure 2
Figure 2
Coherence results. Coherence spectra show increased functional connectivity between the auditory and motor cortices after (light gray shade) compared to before NMT (dark gray shade).

References

    1. Alves Da Rocha P., McClelland J., Morris M. E. (2015). Complementary physical therapies for movement disorders in parkinson's disease: a systematic review. Eur. J. Phys. Rehabil. Med. 51, 693–704.
    1. Bryden P. J., Roy E. A. (2005). A new method of administering the grooved pegboard test: performance as a function of handedness and sex. Brain Cogn. 58, 258–268. 10.1016/j.bandc.2004.12.004‘
    1. Buchanan R. W., Heinrichs D. W. (1989). The neurological evaluation scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res. 27, 335–350. 10.1016/0165-1781(89)90148-0
    1. Chen J. L., Zatorre R. J., Penhune V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage 32, 1771–1781. 10.1016/j.neuroimage.2006.04.207
    1. Cui J., Xu L., Bressler S. L., Ding M., Liang H. (2008). BSMART: a matlab/C toolbox for analysis of multichannel neural time series. Neural Netw. 21, 1094–1104. 10.1016/j.neunet.2008.05.007
    1. Cunnington R., Lalouschek W., Dirnberger G., Walla P., Lindinger G., Asenbaum S., et al. . (2001). A medial to lateral shift in pre-movement cortical activity in hemi-parkinson's disease. Clin. Neurophysiol. 112, 608–618. 10.1016/S1388-2457(01)00467-9
    1. Debaere F., Wenderoth N., Sunaert S., Van Hecke P., Swinnen S. P. (2003). Internal vs. external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19, 764–776. 10.1016/S1053-8119(03)00148-4
    1. Doyle L. M., Kühn A. A., Hariz M., Kupsch A., Schneider G. H., Brown P. (2005). Levodopa-induced modulation of subthalamic beta oscillations during self-paced movements in patients with parkinson's disease. Eur. J. Neurosci. 21, 1403–1412. 10.1111/j.1460-9568.2005.03969.x
    1. Fahn S. M. C., Calne D. B., Goldstein M. (1987). Unified Parkinson Disease Rating Scale. Recent developments in Parkinson's Disease. New York, NY: Macmillan; 2, 153–163.
    1. Friston K. J. (2007). Statistical parametric mapping: the analysis of funtional brain images, 1st Edn. Amsterdam; Boston: Elsevier/Academic Press; 10.1016/B978-012372560-8/50002-4
    1. Fujioka T., Trainor L. J., Large E. W., Ross B. (2009). Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann. N. Y. Acad. Sci. 1169, 89–92. 10.1111/j.1749-6632.2009.04779.x
    1. Grahn J. A., Brett M. (2009). Impairment of beat-based rhythm discrimination in parkinson's disease. Cortex 45, 54–61. 10.1016/j.cortex.2008.01.005
    1. Haas C. T., Turbanski S., Kessler K., Schmidtbleicher D. (2006). The effects of random whole-body-vibration on motor symptoms in parkinson's disease. NeuroRehabilitation 21, 29–36. 10.1007/3-540-36741-1_8
    1. Heinrichs-Graham E., Wilson T. W., Santamaria P. M., Heithoff S. K., Torres-Russotto D., Hutter-Saunders J. A., et al. . (2014). Neuromagnetic evidence of abnormal movement-related beta desynchronization in parkinson's disease. Cereb. Cortex 24, 2669–2678. 10.1093/cercor/bht121
    1. Hove M. J., Keller P. E. (2015). Impaired movement timing in neurological disorders: rehabilitation and treatment strategies. Ann. N. Y. Acad. Sci. 1337, 111–117. 10.1111/nyas.12615
    1. Hughes A. J., Daniel S. E., Kilford L., Lees A. J. (1992). Accuracy of clinical diagnosis of idiopathic parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatr. 55, 181–184. 10.1136/jnnp.55.3.181
    1. Jäncke L. (2012). The dynamic audio-motor system in pianists. Ann. N. Y. Acad. Sci. 1252, 246–252. 10.1111/j.1749-6632.2011.06416.x
    1. Jenkinson N., Brown P. (2011). New insights into the relationship between dopamine, beta oscillations and motor function. Trends Neurosci. 34, 611–618. 10.1016/j.tins.2011.09.003
    1. Jung T. P., Makeig S., Humphries C., Lee T. W., McKeown M. J., Iragui V., et al. . (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178. 10.1111/1469-8986.3720163
    1. Litvak V., Mattout J., Kiebel S., Phillips C., Henson R., Kilner J., et al. (2011). EEG and MEG data analysis in SPM8. Comput. Intell. Neurosci. 201:852961 10.1155/2011/852961
    1. Manly T. H. J, Davidson B., Gaynord B., Greenfield E., Parr A., et al. (2004). An electronic knot in the handkerchief: “Content free cueing” and the maintenance of attentive control. Neuropsychol. Rehabil. 14, 89–116. 10.1080/09602010343000110
    1. McIntosh G. C., Brown S. H., Rice R. R., Thaut M. H. (1997). Rhythmic auditory-motor facilitation of gait patterns in patients with parkinson's disease. J. Neurol. Neurosurg. Psychiatr. 62, 22–26. 10.1136/jnnp.62.1.22
    1. Michely J., Volz L. J., Barbe M. T., Hoffstaedter F., Viswanathan S., Timmermann L., et al. . (2015). Dopaminergic modulation of motor network dynamics in parkinson's disease. Brain 138, 664–678. 10.1093/brain/awu381
    1. Mierau A., Schneider S., Abel T., Askew C., Werner S., Strüder H. K. (2009). Improved sensorimotor adaptation after exhaustive exercise is accompanied by altered brain activity. Physiol. Behav. 96, 115–121. 10.1016/j.physbeh.2008.09.002
    1. Oostenveld R., Fries P., Maris E., Schoffelen J. M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011:156869. 10.1155/2011/156869
    1. Praamstra P., Pope P. (2007). Slow brain potential and oscillatory EEG manifestations of impaired temporal preparation in parkinson's disease. J. Neurophysiol. 98, 2848–2857. 10.1152/jn.00224.2007
    1. Rochester L., Nieuwboer A., Baker K., Hetherington V., Willems A. M., Chavret F., et al. . (2007). The attentional cost of external rhythmical cues and their impact on gait in parkinson's disease: effect of cue modality and task complexity. J. Neural Transm. 114, 1243–1248. 10.1007/s00702-007-0756-y
    1. Ross B., Borgmann C., Draganova R., Roberts L. E., Pantev C. (2000). A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J. Acoust. Soc. Am. 108, 679–691. 10.1121/1.429600
    1. Schneider T., Neumaier A. (2001). Algorithm 808: ARfit – A matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27, 58–65. 10.1145/382043.382316
    1. Snyder J. S., Large E. W. (2005). Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res. Cogn. Brain Res. 24, 117–126. 10.1016/j.cogbrainres.2004.12.014
    1. Stegemöller E. L., Allen D. P., Simuni T., MacKinnon C. D. (2016). Motor cortical oscillations are abnormally suppressed during repetitive movement in patients with parkinson's disease. Clin. Neurophysiol. 127, 664–674. 10.1016/j.clinph.2015.05.014
    1. te Woerd E. S., Oostenveld R., Bloem B. R., de Lange F. P., Praamstra P. (2015). Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in parkinson's disease. Neuroimage Clin. 9, 300–309. 10.1016/j.nicl.2015.08.018
    1. te Woerd E. S., Oostenveld R., de Lange F. P., Praamstra P. (2014). A shift from prospective to reactive modulation of beta-band oscillations in parkinson's disease. Neuroimage 100, 507–519. 10.1016/j.neuroimage.2014.06.039
    1. Tesche C. D., Uusitalo M. A., Ilmoniemi R. J., Huotilainen M., Kajola M., Salonen O. (1995). Signal-space projections of MEG data characterize both distributed and well-localized neuronal sources. Electroencephalogr. Clin. Neurophysiol. 95, 189–200. 10.1016/0013-4694(95)00064-6
    1. Thaut M. H. (2015). The discovery of human auditory-motor entrainment and its role in the development of neurologic music therapy. Prog. Brain Res. 217, 253–266. 10.1016/bs.pbr.2014.11.030
    1. Thaut M. H., Kenyon G. P., Schauer M. L., McIntosh G. C. (1999). The connection between rhythmicity and brain function. IEEE Eng. Med. Biol. Mag. 18, 101–108. 10.1109/51.752991
    1. Thaut M. H., McIntosh G. C., Rice R. R., Miller R. A., Rathbun J., Brault J. M. (1996). Rhythmic auditory stimulation in gait training for parkinson's disease patients. Mov. Disord. 11, 193–200. 10.1002/mds.870110213
    1. Thaut M. H., Trimarchi P. D., Parsons L. M. (2014). Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern. Brain Sci. 4, 428–452. 10.3390/brainsci4020428
    1. Thaut M. H. V. (2014). Oxford Handbook of Neurologic Music Therapy. New York, NY: Oxford University Press.
    1. Todd N. P., Lee C. S. (2015). The sensory-motor theory of rhythm and beat induction 20 years on: a new synthesis and future perspectives. Front. Hum. Neurosci. 9:444. 10.3389/fnhum.2015.00444
    1. Trites R. (1989). Grooved Pegboard Test. Lafayette, IN: Lafayette Instruments.

Source: PubMed

3
Abonner