Stimulation of subthalamic nuclei restores a near normal planning strategy in Parkinson's patients

Giovanni Mirabella, Sara Iaconelli, Nicola Modugno, Giorgio Giannini, Francesco Lena, Gianpaolo Cantore, Giovanni Mirabella, Sara Iaconelli, Nicola Modugno, Giorgio Giannini, Francesco Lena, Gianpaolo Cantore

Abstract

A fundamental function of the motor system is to gather key information from the environment in order to implement behavioral strategies appropriate to the context. Although several lines of evidence indicate that Parkinson's disease affects the ability to modify behavior according to task requirements, it is currently unknown whether deep brain stimulation (DBS) of the subthalamic nucleus (STN) affects context-related planning. To explore this issue, we asked 12 Parkinson's patients with bilateral STN DBS and 13 healthy subjects to execute similar arm reaching movements in two different paradigms: go-only and countermanding tasks. In the former task patients had to perform speeded reaching movements to a peripheral target. In contrast, in the countermanding task participants had to perform the same reaches unless an infrequent and unpredictable stop-signal was shown during the reaction time (RT) indicating that they should withhold the ongoing action. We compared the performance of Parkinson's patients in different DBS conditions. We found that patients with both DBS-ON behaved similarly to healthy subjects, in that RTs of no-stop trial increased while movement times (MTs) decreased with respect to those of go-only-trials. However, when both DBS were off, both RTs and MTs were longer in no-stop trials than in go-only trials. These findings indicate that bilateral DBS of STN can partially restore the appropriate motor strategy according to the given cognitive contexts.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Temporal sequence of the visual…
Figure 1. Temporal sequence of the visual displays for no-stop and stop trials in the countermanding reaching task.
Temporal sequence of the visual displays for each task. All trials began with the appearance of a central stimulus. The subject had to reach and hold it with the index of the right (dominant) hand for a variable period of 500–800 ms. In the go-only task and in the no-stop trials of the countermanding task, the central stimulus disappeared and, simultaneously, a target appeared to the right, acting as a go-signal. Subjects were instructed to perform a speeded reaching movement toward the peripheral target. Randomly, in the 33% of trials of the countermanding task (stop trials), the central stimulus (stop signal) reappeared at variable delays after the go signal (SSDs), indicating that the subject should cancel the pending movement. If subjects executed the reaching movement the trial was scored as a stop-failure trial (not shown). The dotted circle (which was not visible to the subjects) indicates the size of the tolerance window for the touches (3.5 cm diameter).
Figure 2. Reaction times (RTs) and movement…
Figure 2. Reaction times (RTs) and movement times (MTs) for reaching movements in Parkinson’s patients with right- and left-side body onset of the disease.
A. Cumulative distributions of RTs and MTs. These distributions were obtained by considering separately, according to laterality of onset of motor symptoms, the single RTs and MTs of no-stop and of go-only trials of subjects with right-body onset(n = 7; upper row) with left-body onset of the disease (n = 5; lower row). Bold lines represent RTs, dotted lines represent MTs. For each condition the p-value of Kolmogorov–Smirnov test is given, both for RTs and for MTs. B. Histograms of average RTs (upper row) and of MTs (lower row) of no-stop and go-only trials in each DBS condition. Bars represent the standard error of the mean.
Figure 3. Reaction times (RTs) and movement…
Figure 3. Reaction times (RTs) and movement times (MTs) for reaching movements across the populations of Parkinson’s patients and control subjects.
A. Cumulative distribution of RTs (solid lines) and MTs (dotted lines) of healthy subjects (n = 13) for go-only (grey) and no-stop trials (black). B. Cumulative distributions of RTs (solid lines) and MTs (dotted lines) of DBS patients (n = 12) in DBS-ON and DBF-OFF conditions for both go-only (grey lines) and no-stop (black lines) trials. For each condition the p-value of Kolmogorov-Smirnov test is given, both for RTs and for MTs. C. Histograms of average RTs of no-stop and go-only trials in DBS-ON and DBF-OFF conditions. Bars represent the standard error of the mean. D. Histograms of average MTs of no-stop and go-only trials in each DBS-ON and DBF-OFF conditions. Bars represent the standard error of the mean.
Figure 4. Magnitude and modulation of the…
Figure 4. Magnitude and modulation of the context effect.
(see Results for more details) A. Percentage of PD patients (in each DBS state) and healthy subjects showing simultaneously a significant increase in reaction times (RTs) and a significant decrease in movements times (MTs) in no-stop trials with respect to go-only-trials (black bars), and a significant lengthening of both RTs and MTs in no-stop-trials with respect to go-only trials (gray bars). B. Percentage change (±SEM) for both RTs (black bars) and MTs (grey bars) of no-stop-trials with respect to go-only trials in PD patients (in each DBS state) and control subjects.

References

    1. Benecke R, Rothwell JC, Dick JP, Day BL, Marsden CD (1987) Disturbance of sequential movements in patients with Parkinson’s disease. Brain 110 (Pt 2): 361–379.
    1. Agostino R, Berardelli A, Formica A, Accornero N, Manfredi M (1992) Sequential arm movements in patients with Parkinson’s disease, Huntington’s disease and dystonia. Brain 115 (Pt 5): 1481–1495.
    1. Rand MK, Van Gemmert AW, Stelmach GE (2002) Segment difficulty in two-stroke movements in patients with Parkinson’s disease. Exp Brain Res 143: 383–393.
    1. Stelmach GE, Worringham CJ, Strand EA (1987) The programming and execution of movement sequences in Parkinson’s disease. Int J Neurosci 36: 55–65.
    1. Weiss P, Stelmach GE, Hefter H (1997) Programming of a movement sequence in Parkinson’s disease. Brain 120 (Pt 1): 91–102.
    1. Smiley-Oyen AL, Lowry KA, Kerr JP (2007) Planning and control of sequential rapid aiming in adults with Parkinson’s disease. J Mot Behav 39: 103–114.
    1. Sternberg S, Monsell S, Knoll RL, Wright CE (1978) The latency and duration of rapid movement sequence: comparison of speech and typewriting. 117–152.
    1. Klapp ST (1996) Reaction time analysis of central motor control. 13–35.
    1. Henry FM, Rogers DE (1960) Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Research Quarterly 31: 448–458.
    1. Rosenbaum DA, Hindorff V, Munro EM (1987) Scheduling and programming of rapid finger sequences: tests and elaborations of the hierarchical editor model. J Exp Psychol Hum Percept Perform 13: 193–203.
    1. Khan MA, Lawrence GP, Buckolz E, Franks IM (2006) Programming strategies for rapid aiming movements under simple and choice reaction time conditions. Q J Exp Psychol (Hove ) 59: 524–542.
    1. Leis BC, Rand MK, Van Gemmert AW, Longstaff MG, Lou JS, et al. (2005) Movement precues in planning and execution of aiming movements in Parkinson’s disease. Exp Neurol 194: 393–409.
    1. Mirabella G, Pani P, Ferraina S (2008) Context influences on the preparation and execution of reaching movements. Cogn Neuropsychol 25: 996–1010.
    1. Logan GD (1981) Attention, automacity, and the ability to stop a speeded choice response. 205–222.
    1. Mirabella G, Pani P, Paré M, Ferraina S (2006) Inhibitory control of reaching movements in humans. Exp Brain Res 174: 240–255.
    1. Verbruggen F, Logan GD (2009) Proactive adjustments of response strategies in the stop-signal paradigm. J Exp Psychol Hum Percept Perform 35: 835–854.
    1. Zandbelt BB, Vink M (2010) On the role of the striatum in response inhibition. PLoS One 5: e13848–.
    1. Mirabella G, Iaconelli S, Romanelli P, Modugno N, Lena F, et al. (2012) Deep Brain Stimulation of Subthalamic Nuclei Affects Arm Response Inhibition In Parkinson’s Patients. Cereb Cortex 22: 1124–323.
    1. Mungas D (1991) In-office mental status testing: a practical guide. Geriatrics 46: 54–8, 63, 66.
    1. Moro E, Scerrati M, Romito LM, Roselli R, Tonali P, et al. (1999) Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology 53: 85–90.
    1. Lopiano L, Torre E, Benedetti F, Bergamasco B, Perozzo P, et al. (2003) Temporal changes in movement time during the switch of the stimulators in Parkinson’s disease patients treated by subthalamic nucleus stimulation. Eur Neurol 50: 94–99.
    1. Temperli P, Ghika J, Villemure JG, Burkhard PR, Bogousslavsky J, et al. (2003) How do parkinsonian signs return after discontinuation of subthalamic DBS? Neurology 60: 78–81.
    1. Sturman MM, Vaillancourt DE, Shapiro MB, Metman LV, Bakay RA, et al. (2008) Effect of short and long term STN stimulation periods on parkinsonian signs. Mov Disord 23: 866–874.
    1. Stancanello J, Romanelli P, Modugno N, Cerveri P, Ferrigno G, et al. (2006) Atlas-based identification of targets for functional radiosurgery. Med Phys 33: 1603–1611.
    1. Stancanello J, Muacevic A, Sebastiano F, Modugno N, Cerveri P, et al. (2008) 3T MRI evaluation of the accuracy of atlas-based subthalamic nucleus identification. Med Phys 35: 3069–3077.
    1. Mirabella G, Pani P, Ferraina S (2009) The presence of visual gap affects the duration of stopping process. Exp Brain Res 192: 199–209.
    1. Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:Suppl.
    1. Osman A, Kornblum S, Meyer DE (1986) The point of no return in choice reaction time: controlled and ballistic stages of response preparation. J Exp Psychol Hum Percept Perform 12: 243–258.
    1. Osman A, Kornblum S, Meyer DE (1990) Does motor programming necessitate response execution? J Exp Psychol Hum Percept Perform 16: 183–198.
    1. Toth C, Rajput M, Rajput AH (2004) Anomalies of asymmetry of clinical signs in parkinsonism. Mov Disord 19: 151–157.
    1. Eidelberg D, Moeller JR, Dhawan V, Sidtis JJ, Ginos JZ, et al. (1990) The metabolic anatomy of Parkinson’s disease: complementary [18F] fluorodeoxyglucose and [18F] fluorodopa positron emission tomographic studies. Mov Disord 5: 203–213.
    1. Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, et al. (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27: 11860–11864.
    1. Fitts PM (1954) The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol 47: 381–391.
    1. Adam JJ, Nieuwenstein JH, Huys R, Paas FG, Kingma H, et al. (2000) Control of rapid aimed hand movements: the one-target advantage. J Exp Psychol Hum Percept Perform 26: 295–312.
    1. Vindras P, Viviani P (2005) Planning short pointing sequences. Exp Brain Res 160: 141–153.
    1. Brown LA, Doan JB, Whishaw IQ, Suchowersky O (2007) Parkinsonian deficits in context-dependent regulation of standing postural control. Neurosci Lett. 418: 292–7.
    1. Doan JB, Whishaw IQ, Pellis SM, Suchowersky O, de Bruin N, et al. (2010) Challenging context affects standing reach kinematics among Parkinson’s disease patients. Behav Brain Res. 214: 135–41.
    1. Mazzoni P, Hristova A, Krakauer JW (2007) Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. J Neurosci 27: 7105–7116.
    1. Garcia L, D’Alessandro G, Bioulac B, Hammond C (2005) High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci. 28: 209–216.
    1. Swann N, Poizner H, Houser M, Gould S, Greenhouse I, et al. (2011) Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease. J Neurosci 31: 5721–5729.
    1. van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, et al. (2006) Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. J Cogn Neurosci 18: 626–636.
    1. Ray NJ, Jenkinson N, Brittain J, Holland P, Joint C, et al. (2009) The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson’s disease. Neuropsychologia. 47: 2828–2834.
    1. Frank MJ, Samanta J, Moustafa AA, Sherman SJ (2007) Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318: 1309–1312.
    1. Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J, et al. (2011) Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat Neurosci 14: 1462–1467.
    1. Forstmann BU, Dutilh G, Brown S, Neumann J, von Cramon DY, et al. (2008) Striatum and pre-SMA facilitate decision-making under time pressure. Proc Natl Acad Sci U S A 105: 17538–17542.
    1. Wylie SA, Ridderinkhof KR, Elias WJ, Frysinger RC, Bashore TR, et al. (2010) Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson’s disease. Brain 133: 3611–3624.
    1. Stuphorn V, Schall JD (2006) Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci 9: 925–931.
    1. De Jong R, Coles MG, Logan GD, Gratton G (1990) In search of the point of no return: the control of response processes. J Exp Psychol Hum Percept Perform 16: 164–182.
    1. Scangos KW, Stuphorn V (2010) Medial frontal cortex motivates but does not control movement initiation in the countermanding task. J Neurosci 30: 1968–1982.
    1. Zandbelt BB, Vink M (2010) On the role of the striatum in response inhibition. PLoS One 11: e13848.
    1. Zandbelt BB, van Buuren M, Kahn RS, Vink M (2011) Reduced proactive inhibition in schizophrenia is related to corticostriatal dysfunction and poor working memory. Biol Psychiatry 70: 1151–1158.

Source: PubMed

3
Abonner