Pathophysiology of spasticity: implications for neurorehabilitation

Carlo Trompetto, Lucio Marinelli, Laura Mori, Elisa Pelosin, Antonio Currà, Luigi Molfetta, Giovanni Abbruzzese, Carlo Trompetto, Lucio Marinelli, Laura Mori, Elisa Pelosin, Antonio Currà, Luigi Molfetta, Giovanni Abbruzzese

Abstract

Spasticity is the velocity-dependent increase in muscle tone due to the exaggeration of stretch reflex. It is only one of the several components of the upper motor neuron syndrome (UMNS). The central lesion causing the UMNS disrupts the balance of supraspinal inhibitory and excitatory inputs directed to the spinal cord, leading to a state of disinhibition of the stretch reflex. However, the delay between the acute neurological insult (trauma or stroke) and the appearance of spasticity argues against it simply being a release phenomenon and suggests some sort of plastic changes, occurring in the spinal cord and also in the brain. An important plastic change in the spinal cord could be the progressive reduction of postactivation depression due to limb immobilization. As well as hyperexcitable stretch reflexes, secondary soft tissue changes in the paretic limbs enhance muscle resistance to passive displacements. Therefore, in patients with UMNS, hypertonia can be divided into two components: hypertonia mediated by the stretch reflex, which corresponds to spasticity, and hypertonia due to soft tissue changes, which is often referred as nonreflex hypertonia or intrinsic hypertonia. Compelling evidences state that limb mobilisation in patients with UMNS is essential to prevent and treat both spasticity and intrinsic hypertonia.

Figures

Figure 1
Figure 1
Rectified electromyographic activity recorded from the flexor carpi radialis of a patient with left spastic hemiparesis from right cerebral ischaemic stroke. The muscle has been stretched throughout a range of 60° (dynamic phase) and maintained elongated afterward (static phase). The electromyographic activity not only is present during the dynamic phase, reflecting the typical stretch reflex, but persists also during the static phase.
Figure 2
Figure 2
Schematic representation of the descending pathways modulating the stretch reflex circuitry (see text).

References

    1. Lance J. W. Symposium synopsis. In: Feldman R. G., Young R. R., Koella W. P., editors. Spasticity: Disordered Motor Control. 1980. pp. 485–494.
    1. Burke D., Gillies J. D., Lance J. W. The quadriceps stretch reflex in human spasticity. Journal of Neurology Neurosurgery and Psychiatry. 1970;33(2):216–223. doi: 10.1136/jnnp.33.2.216.
    1. Tardieu G., Tardieu C., Colbeau Justin P., Bret M. D. Effects of muscle length on an increased stretch reflex in children with cerebral palsy. Journal of Neurology Neurosurgery and Psychiatry. 1982;45(4):348–352. doi: 10.1136/jnnp.45.4.348.
    1. Rymer W. Z., Houk J. C., Crago P. E. Mechanisms of the clasp-knife reflex studied in an animal model. Experimental Brain Research. 1979;37(1):93–113. doi: 10.1007/BF01474257.
    1. Kamper D. G., Schmit B. D., Rymer W. Z. Effect of muscle biomechanics on the quantification of spasticity. Annals of Biomedical Engineering. 2001;29(12):1122–1134. doi: 10.1114/1.1424918.
    1. Thilmann A. F., Fellows S. J., Garms E. The mechanism of spastic muscle hypertonus. Variation in reflex gain over the time course of spasticity. Brain. 1991;114(1):233–244.
    1. Tabary J. C., Tabary C., Tardieu C., Tardieu G., Goldspink G. Physiological and structural changes in the cat's soleus muscle due to immobilization at different lengths by plaster casts. Journal of Physiology. 1972;224(1):231–244.
    1. Järvinen T. A. H., Józsa L., Kannus P., Järvinen T. L. N., Järvinen M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. Journal of Muscle Research and Cell Motility. 2002;23(3):245–254. doi: 10.1023/A:1020904518336.
    1. McLachlan E. M., Chua M. Rapid adjustment of sarcomere length in tenotomized muscles depends on an intact innervation. Neuroscience Letters. 1983;35(2):127–133. doi: 10.1016/0304-3940(83)90539-6.
    1. Herbert R. D., Balnave R. J. Effect of position of immobilization on resting length, resting stiffness, and weight of the soleus muscle of the rabbit. Journal of Orthopaedic Research. 1993;11(3):358–366. doi: 10.1002/jor.1100110307.
    1. Maier A., Eldred E., Edgerton V. R. The effects on spindles of muscle atrophy and hypertrophy. Experimental Neurology. 1972;37(1):100–123. doi: 10.1016/0014-4886(72)90229-4.
    1. Dietz V., Berger W. Normal and impaired regulation of muscle stiffess in gait: a new hypothesis about muscle hypertonia. Experimental Neurology. 1983;79(3):680–687. doi: 10.1016/0014-4886(83)90032-8.
    1. Galiana L., Fung J., Kearney R. Identification of intrinsic and reflex ankle stiffness components in stroke patients. Experimental Brain Research. 2005;165(4):422–434. doi: 10.1007/s00221-005-2320-z.
    1. Vattanasilp W., Ada L., Crosbie J. Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. Journal of Neurology Neurosurgery and Psychiatry. 2000;69(1):34–39. doi: 10.1136/jnnp.69.1.34.
    1. Malhotra S., Cousins E., Ward A., Day C., Jones P., Roffe C., Pandyan A. An investigation into the agreement between clinical, biomechanical and neurophysiological measures of spasticity. Clinical Rehabilitation. 2008;22(12):1105–1115. doi: 10.1177/0269215508095089.
    1. O'Dwyer N. J., Ada L. Reflex hyperexcitability and muscle contracture in relation to spastic hypertonia. Current Opinion in Neurology. 1996;9(6):451–455. doi: 10.1097/00019052-199612000-00010.
    1. Biering-Sørensen F., Nielsen J. B., Klinge K. Spasticity-assessment: a review. Spinal Cord. 2006;44(12):708–722. doi: 10.1038/sj.sc.3101928.
    1. Gracies J.-M. Pathophysiology of spastic paresis. I: paresis and soft tissue changes. Muscle and Nerve. 2005;31(5):535–551. doi: 10.1002/mus.20284.
    1. Eldred E., Granit R., Merton P. A. Supraspinal control of the muscle spindles and its significance. The Journal of Physiology. 1953;122(3):498–523.
    1. Wilson L. R., Gracies J.-M., Burke D., Gandevia S. C. Evidence for fusimotor drive in stroke patients based on muscle spindle thixotropy. Neuroscience Letters. 1999;264(1–3):109–112. doi: 10.1016/S0304-3940(99)00181-0.
    1. Marque P., Simonetta-Moreau M., Maupas E., Roques C. F. Facilitation of transmission in heteronymous group II pathways in spastic hemiplegic patients. Journal of Neurology Neurosurgery and Psychiatry. 2001;70(1):36–42. doi: 10.1136/jnnp.70.1.36.
    1. Nardone A., Schieppati M. Reflex contribution of spindle group Ia and II afferent input to leg muscle spasticity as revealed by tendon vibration in hemiparesis. Clinical Neurophysiology. 2005;116(6):1370–1381. doi: 10.1016/j.clinph.2005.01.015.
    1. Sheean G., McGuire J. R. Spastic hypertonia and movement disorders: pathophysiology, clinical presentation, and quantification. PM and R. 2009;1(9):827–833. doi: 10.1016/j.pmrj.2009.08.002.
    1. Sheean G. The pathophysiology of spasticity. European Journal of Neurology. 2002;9(supplement 1):3–61.
    1. Crone C., Petersen N. T., Nielsen J. E., Hansen N. L., Nielsen J. B. Reciprocal inhibition and corticospinal transmission in the arm and leg in patients with autosomal dominant pure spastic paraparesis (ADPSP) Brain. 2004;127(part 12):2693–2702. doi: 10.1093/brain/awh319.
    1. Bhakta B. B., O'Connor R. J., Cozens J. A. Associated reactions after stroke: a randomized controlled trial of the effect of botulinum toxin type A. Journal of Rehabilitation Medicine. 2008;40(1):36–41. doi: 10.2340/16501977-0120.
    1. Zijdewind I., Thomas C. K. Motor unit firing during and after voluntary contractions of human thenar muscles weakened by spinal cord injury. Journal of Neurophysiology. 2003;89(4):2065–2071. doi: 10.1152/jn.00492.2002.
    1. Magoun H. W., Rhines R. An inhibitory mechanism in the bulbar reticular formation. Journal of Neurophysiology. 1946;9:165–171.
    1. Fulton J. F., Kennard M. A. A study of flaccid and spastic paralyses produced by lesions of the cerebral cortex in primates. Research Publications of the Association for Research in Nervous and Mental Disease. 1934;13:158–210.
    1. Tower S. S. Pyramidal lesion in the monkey. Brain. 1940;63(1):36–90. doi: 10.1093/brain/63.1.36.
    1. Woolsey C. N. Discussion on experimental hypertonia in the monkey: interruption of pyramidal or pyramidal-extra pyramidal cortical projections. Transactions of the American Neurological Association. 1971;96:164–166.
    1. Engberg I., Lundberg A., Ryall R. W. Reticulospinal inhibition of interneurones. Journal of Physiology. 1968;194(1):225–236.
    1. Andrews C., Knowles L., Hancock J. Control of the tonic vibration reflex by the brain stem reticular formation in the cat. Journal of the Neurological Sciences. 1973;18(2):217–226. doi: 10.1016/0022-510X(73)90008-7.
    1. Ward A. A., Jr. Decerebrate rigidity. Journal of Neurophysiology. 1947;10(2):89–103.
    1. Bucy P. C., Keplinger J. E., Siqueira E. B. Destruction of the “pyramidal tract” in man. Journal of neurosurgery. 1964;21:285–298.
    1. Sherman S. J., Koshland G. F., Laguna J. F. Hyper-reflexia without spasticity after unilateral infarct of the medullary pyramid. Journal of the Neurological Sciences. 2000;175(2):145–155. doi: 10.1016/S0022-510X(00)00299-9.
    1. Putnam T. J. Treatment on unilateral paralysis agitans by section of the lateral pyramidal tract. Arch Neurol Psychiat. 1940;44:950–976.
    1. Bucy P. C. Studies on the human neuromuscular mechanism. II. Effect of ventromedial chordotomy on muscular spasticity in man. Archives of Neurology & Psychiatry. 1938;40:639–662.
    1. Hyndman O. R., Jarvis F. J. Gastric crises of tabes dorsalis; treatment by anterior chordotomy in eight cases. Archives of Surgery. 1940;40(5):997–1013.
    1. Fries W., Danek A., Scheidtmann K., Hamburger C. Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain. 1993;116(part 2):369–382. doi: 10.1093/brain/116.2.369.
    1. Brown P. Pathophysiology of spasticity. Journal of Neurology Neurosurgery and Psychiatry. 1994;57(7):773–777. doi: 10.1136/jnnp.57.7.773.
    1. Eccles S. J. C. The Inhibitory Pathways of the Central Nervous System. Liverpool, UK: Liverpool University Press; 1969.
    1. Katz R. Presynaptic inhibition in humans: a comparison between normal and spastic patients. Journal of Physiology Paris. 1999;93(4):379–385. doi: 10.1016/S0928-4257(00)80065-0.
    1. Schieppati M. The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Progress in Neurobiology. 1987;28(4):345–376. doi: 10.1016/0301-0082(87)90007-4.
    1. Delwaide P. J., Oliver E. Short-latency autogenic inhibition (IB inhibition) in human spasticity. Journal of Neurology Neurosurgery and Psychiatry. 1988;51(12):1546–1550. doi: 10.1136/jnnp.51.12.1546.
    1. Crone C., Nielsen J., Petersen N., Ballegaard M., Hultborn H. Disynaptic reciprocal inhibition of ankle extensors in spastic patients. Brain. 1994;117(5):1161–1168. doi: 10.1093/brain/117.5.1161.
    1. Mazzocchio R., Rossi A. Involvement of spinal recurrent inhibition in spasticity. Further insight into the regulation of Renshaw cell activity. Brain. 1997;120(part 6):991–1003. doi: 10.1093/brain/120.6.991.
    1. Faist M., Mazevet D., Dietz V., Pierrot-Deseilligny E. A quantitative assessment of presynaptic inhibition of Ia afferents in spastics: Differences in hemiplegics and paraplegics. Brain. 1994;117(6):1449–1455. doi: 10.1093/brain/117.6.1449.
    1. Nakashima K., Rothwell J. C., Day B. L., Thompson P. D., Shannon K., Marsden C. D. Reciprocal inhibition between forearm muscles in patients with writer's cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke. Brain. 1989;112(3):681–697. doi: 10.1093/brain/112.3.681.
    1. Hultborn H., Illert M., Nielsen J., Paul A., Ballegaard M., Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Experimental Brain Research. 1996;108(3):450–462.
    1. Kohn A. F., Floeter M. K., Hallett M. Presynaptic inhibition compared with homosynaptic depression as an explanation for soleus H-reflex depression in humans. Experimental Brain Research. 1997;116(2):375–380. doi: 10.1007/PL00005765.
    1. Curtis D. R., Eccles J. C. Synaptic action during and after repetitive stimulation. The Journal of physiology. 1960;150:374–398.
    1. Nielsen J., Petersen N., Ballegaard M., Biering-Sørensen F., Kiehn O. H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects. Experimental Brain Research. 1993;97(1):173–176. doi: 10.1016/S0079-6123(08)62275-X.
    1. Lamy J.-C., Wargon I., Mazevet D., Ghanim Z., Pradat-Diehl P., Katz R. Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain. 2009;132(3):734–748. doi: 10.1093/brain/awn310.
    1. Achache V., Roche N., Lamy J. C., Boakye M., Lackmy A., Gastal A., Quentin V., Katz R. Transmission within several spinal pathways in adults with cerebral palsy. Brain. 2010;133(5):1470–1483. doi: 10.1093/brain/awq053.
    1. Schindler-Ivens S., Shields R. K. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Experimental Brain Research. 2000;133(2):233–241. doi: 10.1007/s002210000377.
    1. Reese N. B., Skinner R. D., Mitchell D., Yates C., Barnes C. N., Kiser T. S., Garcia-Rill E. Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats. Spinal Cord. 2006;44(1):28–34. doi: 10.1038/sj.sc.3101810.
    1. Lundbye-Jensen J., Nielsen J. B. Immobilization induces changes in presynaptic control of group Ia afferents in healthy humans. Journal of Physiology. 2008;586(17):4121–4135. doi: 10.1113/jphysiol.2008.156547.
    1. Meunier S., Kwon J., Russmann H., Ravindran S., Mazzocchio R., Cohen L. Spinal use-dependent plasticity of synaptic transmission in humans after a single cycling session. Journal of Physiology. 2007;579(part 2):375–388. doi: 10.1113/jphysiol.2006.122911.
    1. Phadke C. P., Flynn S. M., Thompson F. J., Behrman A. L., Trimble M. H., Kukulka C. G. Comparison of single bout effects of bicycle training versus locomotor training on paired reflex depression of the soleus h-reflex after motor incomplete spinal cord injury. Archives of Physical Medicine and Rehabilitation. 2009;90(7):1218–1228. doi: 10.1016/j.apmr.2009.01.022.
    1. Kiser T. S., Reese N. B., Maresh T., Hearn S., Yates C., Skinner R. D., Pait T. G., Garcia-Rill E. Use of a motorized bicycle exercise trainer to normalize frequency-dependent habituation of the H-reflex in spinal cord injury. Journal of Spinal Cord Medicine. 2005;28(3):241–245.
    1. Shields R. K., Dudley-Javoroski S., Oza P. D. Low-frequency H-reflex depression in trained human soleus after spinal cord injury. Neuroscience Letters. 2011;499(2):88–92. doi: 10.1016/j.neulet.2011.05.040.
    1. Trimble M. H., Kukulka C. G., Behrman A. L. The effect of treadmill gait training on low-frequency depression of the soleus H-reflex: comparison of a spinal cord injured man to normal subjects. Neuroscience Letters. 1998;246(3):186–188. doi: 10.1016/S0304-3940(98)00259-6.
    1. Trompetto C., Marinelli L., Mori L., Cossu E., Zilioli R., Simonini M., Abbruzzese G., Baratto L. Postactivation depression changes after robotic-assisted gait training in hemiplegic stroke patients. Gait and Posture. 2013;38(4):729–733. doi: 10.1016/j.gaitpost.2013.03.011.
    1. Roper S. The acetylcholine sensitivity of the surface membrane of multiply innervated parasympathetic ganglion cells in the mudpuppy before and after partial denervation. Journal of Physiology. 1976;254(2):455–473.
    1. Maier I. C., Baumann K., Thallmair M., Weinmann O., Scholl J., Schwab M. E. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury. Journal of Neuroscience. 2008;28(38):9386–9403. doi: 10.1523/JNEUROSCI.1697-08.2008.
    1. Weidner N., Ner A., Salimi N., Tuszynski M. H. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(6):3513–3518. doi: 10.1073/pnas.051626798.
    1. Raineteau O., Schwab M. E. Plasticity of motor systems after incomplete spinal cord injury. Nature Reviews Neuroscience. 2001;2(4):263–273. doi: 10.1038/35067570.
    1. Truini A., Barbanti P., Pozzilli C., Cruccu G. A mechanism-based classification of pain in multiple sclerosis. Journal of Neurology. 2013;260(2):351–367. doi: 10.1007/s00415-012-6579-2.
    1. Chang Y.-J., Liang J.-N., Hsu M.-J., Lien H.-Y., Fang C.-Y., Lin C.-H. Effects of continuous passive motion on reversing the adapted spinal circuit in humans with chronic spinal cord injury. Archives of Physical Medicine and Rehabilitation. 2013;94(5):822–828. doi: 10.1016/j.apmr.2012.11.035.
    1. Ward A. B., Kadies M. The management of pain in spasticity. Disability and Rehabilitation. 2002;24(8):443–453. doi: 10.1080/09638280110108878.
    1. Smania N., Picelli A., Munari D., Geroin C., Ianes P., Waldner A., Gandolfi M. Rehabilitation procedures in the management of spasticity. European Journal of Physical and Rehabilitation Medicine. 2010;46(3):423–438.

Source: PubMed

3
Abonner