Xanthohumol microbiome and signature in healthy adults (the XMaS trial): a phase I triple-masked, placebo-controlled clinical trial

Ryan Bradley, Blake O Langley, Jennifer J Ryan, John Phipps, Douglas A Hanes, Emily Stack, Janet K Jansson, Thomas O Metz, Jan Frederik Stevens, Ryan Bradley, Blake O Langley, Jennifer J Ryan, John Phipps, Douglas A Hanes, Emily Stack, Janet K Jansson, Thomas O Metz, Jan Frederik Stevens

Abstract

Background: Natural products may provide a source for the discovery and development of adjunctive pharmacological interventions to modulate the inflammatory pathways contributing to chronic disease. Xanthohumol, a flavonoid from the hops plant (Humulus lupulus), has antioxidant and anti-inflammatory properties and may act as a prebiotic to the intestinal microbiota. Xanthohumol is not currently approved as a drug by the US Food and Drug Administration (FDA), but is available as a dietary supplement and ingredient in medical foods. To formally test the safety of xanthohumol, a phase I clinical trial ("XMaS") was designed and approved under an Investigational New Drug application to the US FDA. The main objective is to examine the clinical safety and subjective tolerability of xanthohumol in healthy adults compared to placebo. Additional aims are to monitor biomarkers related to inflammation, gut permeability, bile acid metabolism, routes, and in vivo products of xanthohumol metabolism, and to evaluate xanthohumol's impact on gut microbial composition.

Methods: The safety and tolerability of xanthohumol in healthy adults will be evaluated in a triple-masked, randomized, placebo-controlled trial. Participants will be randomized to either 24 mg/day of xanthohumol or placebo for 8 weeks. Blood cell counts, hepatic and renal function tests, electrolytes, and self-reported health-related quality of life measures will be collected every 2 weeks. Participants will be queried for adverse events throughout the trial. Xanthohumol metabolites in blood, urine, and stool will be measured. Biomarkers to be evaluated include plasma tumor necrosis factor-alpha, various interleukins, soluble CD14, lipopolysaccharide-binding protein, fecal calprotectin, and bile acids to assess impact on inflammatory and gut permeability-related mechanisms in vivo. Stool samples will be analyzed to determine effects on the gut microbiome.

Discussion: This phase I clinical trial of xanthohumol will assess safety and tolerability in healthy adults, collect extensive biomarker data for assessment of potential mechanism(s), and provide comparison data necessary for future phase II trials in chronic disease(s). The design and robustness of the planned safety and mechanistic evaluations planned provide a model for drug discovery pursuits from natural products.

Trial registration: ClinicalTrials.gov NCT03735420 . Registered on November 8, 2018.

Keywords: Human; Inflammation; Microbiome; RCT; Safety; Xanthohumol.

Figures

Fig. 1
Fig. 1
Enrollment and allocation
Fig. 2
Fig. 2
Flow of study procedures

References

    1. Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry. 2004;65(10):1317–1330. doi: 10.1016/j.phytochem.2004.04.025.
    1. Gerhäuser C, Frank N. Xanthohumol, a new all-rounder? Mol Nutr Food Res. 2005;49(9):821–823. doi: 10.1002/mnfr.200590033.
    1. Stevens JF, Revel JS. ACS Symposium Series. 2018. Xanthohumol, what a delightful problem child! pp. 283–304.
    1. Zhang Y, Bobe G, Revel JS, et al. Improvements in metabolic syndrome by xanthohumol derivatives are linked to altered gut microbiota and bile acid metabolism. Mol Nutr Food Res. 2020;64(1). 10.1002/mnfr.201900789.
    1. Stevens JF, Maier CS. The chemistry of gut microbial metabolism of polyphenols. Phytochem Rev. 2016;15(3):425–444. doi: 10.1007/s11101-016-9459-z.
    1. Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650–665. doi: 10.1016/j.cell.2018.01.029.
    1. Monteghirfo S, Tosetti F, Ambrosini C, et al. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-κB and p53 modulation. Mol Cancer Ther. 2008;7(9):2692–2702. doi: 10.1158/1535-7163.MCT-08-0132.
    1. Saito K, Matsuo Y, Imafuji H, et al. Xanthohumol inhibits angiogenesis by suppressing nuclear factor-κB activation in pancreatic cancer. Cancer Sci. 2018;109(1):132–140. doi: 10.1111/cas.13441.
    1. Tanrikut C, Goldstein M, Rosoff JS, Lee RK, Nelson CJ, Mulhall JP. Varicocele as a risk factor for androgen deficiency and effect of repair. BJU Int. 2011. 10.1111/j.1464-410X.2010.10030.x.
    1. Albini A, Dell’Eva R, Vené R, et al. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-κB and Akt as targets. FASEB J. 2006;20(3):527–529. doi: 10.1096/fj.05-5128fje.
    1. Krajka-Kuźniak V, Paluszczak J, Baer-Dubowska W. Xanthohumol induces phase II enzymes via Nrf2 in human hepatocytes in vitro. Toxicol Vitr. 2013;27(1):149–156. doi: 10.1016/j.tiv.2012.10.008.
    1. Lee IS, Lim J, Gal J, et al. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochem Int. 2011;58(2):153–160. doi: 10.1016/j.neuint.2010.11.008.
    1. Yang L, Broderick D, Campbell Y, et al. Conformational modulation of the farnesoid X receptor by prenylflavonoids: insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. Biochim Biophys Acta - Proteins Proteomics. 2016;1864(12):1667–1677. doi: 10.1016/j.bbapap.2016.08.019.
    1. Nozawa H. Xanthohumol, the chalcone from beer hops (Humulus lupulus L.), is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-Ay mice. Biochem Biophys Res Commun. 2005;336(3):754–761. doi: 10.1016/j.bbrc.2005.08.159.
    1. Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183(10):6251–6261. doi: 10.4049/jimmunol.0803978.
    1. Stojancevic M, Stankov K, Mikov M. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. Can J Gastroenterol. 2012;26(9):627–630. doi: 10.1155/2012/538452.
    1. van Schaik FDM, Gadaleta RM, Schaap FG, et al. Pharmacological activation of the bile acid nuclear farnesoid X receptor is feasible in patients with quiescent Crohn’s colitis. PLoS One. 2012;7(11). 10.1371/journal.pone.0049706.
    1. Stevens JF, Taylor AW, Deinzer ML. Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 1999;832(1–2):97–107. doi: 10.1016/S0021-9673(98)01001-2.
    1. Hall RL, Oser BL. Recent progress in the consideration of flavoring ingredients under the food additives amendment: III.GRAS substances. Food Technol. 1965;19(2):28. .
    1. Hussong R, Frank N, Knauft J, et al. A safety study of oral xanthohumol administration and its influence on fertility in Sprague Dawley rats. Mol Nutr Food Res. 2005;49(9):861–867. doi: 10.1002/mnfr.200500089.
    1. Vanhoecke BW, Delporte F, Van Braeckel E, et al. A safety study of oral tangeretin and xanthohumol administration to laboratory mice. In Vivo (Brooklyn) 2005;19(1):103–108.
    1. Legette LL, Moreno Luna AY, Reed RL, et al. Xanthohumol lowers body weight and fasting plasma glucose in obese male Zucker fa/fa rats. Phytochemistry. 2013;91:236–241. doi: 10.1016/j.phytochem.2012.04.018.
    1. Legette L, Karnpracha C, Reed RL, et al. Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops. Mol Nutr Food Res. 2014;58(2):248–255. doi: 10.1002/mnfr.201300333.
    1. Peluso MR, Miranda CL, Hobbs DJ, Proteau RR, Stevens JF. Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: structure-activity relationships and in silico binding to myeloid differentiation protein-2 (MD-2) Planta Med. 2010;76(14):1536–1543. doi: 10.1055/s-0029-1241013.
    1. Colgate EC, Miranda CL, Stevens JF, Bray TM, Ho E. Xanthohumol, a prenylflavonoid derived from hops induces apoptosis and inhibits NF-kappaB activation in prostate epithelial cells. Cancer Lett. 2007;246(1–2):201–209. doi: 10.1016/j.canlet.2006.02.015.
    1. O’Connor A, Konda V, Reed RL, Christensen JM, Stevens JF, Contractor N. Rice protein matrix enhances circulating levels of xanthohumol following acute oral intake of spent hops in humans. Mol Nutr Food Res. 2018;62(6). 10.1002/mnfr.201700692.
    1. Bowman MA, Maxwell RA. A beginner’s guide to avoiding protected health information (PHI) issues in clinical research – with how-to’s in REDCap data management software. J Biomed Inform. 2018;85:49–55. doi: 10.1016/j.jbi.2018.07.008.
    1. Katz P, Pedro S, Michaud K. Performance of the patient-reported outcomes measurement information system 29-item profile in rheumatoid arthritis, osteoarthritis, fibromyalgia, and systemic lupus erythematosus. Arthritis Care Res. 2017;69(9):1312–1321. doi: 10.1002/acr.23183.
    1. Matzke MM, Waters KM, Metz TO et al. Improved quality control processing of peptide-centric LC-MS proteomics data. Bioinformatics. 2011;27(20):2866–2872. doi: 10.1093/bioinformatics/btr479.
    1. Webb-Robertson BJM, Matzke MM, Jacobs JM, Pounds JG, Waters KM. A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors. Proteomics. 2011;11(24):4736–4741. doi: 10.1002/pmic.201100078.
    1. Webb-Robertson BJM, McCue LA, Waters KM, et al. Combined statistical analyses of peptide intensities and peptide occurrences improves identification of significant peptides from MS-based proteomics data. J Proteome Res. 2010;9(11):5748–5756. doi: 10.1021/pr1005247.
    1. Gaulke CA, Barton CL, Proffitt S, Tanguay RL, Sharpton TJ. Triclosan exposure is associated with rapid restructuring of the microbiome in adult zebrafish. PLoS One. 2016;11(5). 10.1371/journal.pone.0154632.
    1. Ott RL, Longnecker M. An introduction to statistical methods and data analysis sixth edition. 2010.
    1. Miller RG. Simultaneous statistical inference. New York, NY: Springer; 1981.
    1. Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003;17(3):166–173. doi: 10.1002/cem.785.
    1. Nocairi H, Qannari EM, Vigneau E, Bertrand D. Discrimination on latent components with respect to patterns. Application to multicollinear data. Comput Stat Data Anal. 2005;48(1):139–147. doi: 10.1016/j.csda.2003.09.008.
    1. Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One. 2014;9(1). 10.1371/journal.pone.0084689.
    1. Conley MN, Wong CP, Duyck KM, Hord N, Ho E, Sharpton TJ. Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ. 2016;2016(3). 10.7717/peerj.1854.
    1. Kirkwood JS, Legette LCL, Miranda CL, Jiang Y, Stevens JF. A metabolomics-driven elucidation of the anti-obesity mechanisms of xanthohumol. J Biol Chem. 2013;288(26):19000–19013. doi: 10.1074/jbc.M112.445452.
    1. ATLAS (Automatic Tool for Local Assembly Structures) - a comprehensive infrastructure for assembly, annotation, and genomic binning of metagenomic and metatranscriptomic data. PeerJ. 2017;5. 10.7287/peerj.preprints.2843v1.
    1. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9(8):811–814. doi: 10.1038/nmeth.2066.
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12). 10.1186/s13059-014-0550-8.
    1. Sharpton T, Lyalina S, Luong J, et al. Development of inflammatory bowel disease is linked to a longitudinal restructuring of the gut metagenome in mice. mSystems. 2017. 10.1128/mSystems.00036-17.
    1. Walters W, Hyde ER, Berg-Lyons D, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2016. 10.1128/mSystems.00009-15.
    1. Nayfach S, Bradley PH, Wyman SK, et al. Automated and accurate estimation of gene family abundance from shotgun metagenomes. PLoS Comput Biol. 2015;11(11). 10.1371/journal.pcbi.1004573.
    1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869.
    1. McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4). 10.1371/journal.pone.0061217.
    1. Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol. 2017;13(2). 10.1371/journal.pcbi.1005404.
    1. Sharpton TJ, Riesenfeld SJ, Kembel SW, et al. PhyLOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol. 2011;7(1). 10.1371/journal.pcbi.1001061.
    1. CFR - Code of Federal Regulations Title 21 Current good manufacturing practice for finished pharmaceuticals. Part 211 Curr Good Manuf Pract Finish Pharm. 2013;21:CFR Part 211.
    1. Tambuwala MM. Natural nuclear factor kappa beta inhibitors: safe therapeutic options for inflammatory bowel disease. Inflamm Bowel Dis. 2015;22(3):719–723. doi: 10.1097/MIB.0000000000000655.
    1. Calabrese EJ. Hormesis: path and progression to significance. Int J Mol Sci. 2018. 10.3390/ijms19102871.

Source: PubMed

3
Abonner