Cardiovascular Dysfunction Following Burn Injury: What We Have Learned from Rat and Mouse Models

Ashley N Guillory, Robert P Clayton, David N Herndon, Celeste C Finnerty, Ashley N Guillory, Robert P Clayton, David N Herndon, Celeste C Finnerty

Abstract

Severe burn profoundly affects organs both proximal and distal to the actual burn site. Cardiovascular dysfunction is a well-documented phenomenon that increases morbidity and mortality following a massive thermal trauma. Beginning immediately post-burn, during the ebb phase, cardiac function is severely depressed. By 48 h post-injury, cardiac function rebounds and the post-burn myocardium becomes tachycardic and hyperinflammatory. While current clinical trials are investigating a variety of drugs targeted at reducing aspects of the post-burn hypermetabolic response such as heart rate and cardiac work, there is still a paucity of knowledge regarding the underlying mechanisms that induce cardiac dysfunction in the severely burned. There are many animal models of burn injury, from rodents, to sheep or swine, but the majority of burn related cardiovascular investigations have occurred in rat and mouse models. This literature review consolidates the data supporting the prevalent role that β-adrenergic receptors play in mediating post-burn cardiac dysfunction and the idea that pharmacological modulation of this receptor family is a viable therapeutic target for resolving burn-induced cardiac deficits.

Keywords: animal models; burns; cardiac dysfunction; thermal injury.

Figures

Figure 1
Figure 1
Schematic of the signaling changes that are postulated to occur downstream of β-adrenergic receptor (β-AR) stimulation following burn injury. MAPK, mitogen-activated protein kinase; Akt, protein kinase B; mTOR, mammalian target of rapamycin; SERCA2, sarcoplasmic reticulum calcium ATPase 2; RyR, ryanodine receptor.

References

    1. Association A.B. Burn incidence and treatment in the United States. [(accessed on 6 Januray 2015)]. Available online: .
    1. Herndon D.N., Hart D.W., Wolf S.E., Chinkes D.L., Wolfe R.R. Reversal of catabolism by β-blockade after severe burns. N. Engl. J. Med. 2001;345:1223–1229. doi: 10.1056/NEJMoa010342.
    1. Kulp G.A., Herndon D.N., Lee J.O., Suman O.E., Jeschke M.G. Extent and magnitude of catecholamine surge in pediatric burned patients. Shock. 2010;33:369–374. doi: 10.1097/SHK.0b013e3181b92340.
    1. Rona G. Catecholamine cardiotoxicity. J. Mol. Cell. Cardiol. 1985;17:291–306. doi: 10.1016/S0022-2828(85)80130-9.
    1. Fozzard H.A. Myocardial injury in burn shock. Ann. Surg. 1961;154:113–119. doi: 10.1097/00000658-196107000-00017.
    1. Katz A.M., Lorell B.H. Regulation of cardiac contraction and relaxation. Circulation. 2000;102 doi: 10.1161/01.CIR.102.suppl_4.IV-69.
    1. Molkentin J.D., Dorn G.W., II. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 2001;63:391–426. doi: 10.1146/annurev.physiol.63.1.391.
    1. Raab W. Key position of catecholamines in functional and degenerative cardiovascular pathology. Am. J. Cardiol. 1960;5:571–578. doi: 10.1016/0002-9149(60)90121-1.
    1. Papp A., Uusaro A., Parviainen I., Hartikainen J., Ruokonen E. Myocardial function and haemodynamics in extensive burn trauma: Evaluation by clinical signs, invasive monitoring, echocardiography and cytokine concentrations. A prospective clinical study. Acta Anaesthesiol. Scand. 2003;47:1257–1263. doi: 10.1046/j.1399-6576.2003.00235.x.
    1. Herndon D.N., Tompkins R.G. Support of the metabolic response to burn injury. Lancet. 2004;363:1895–1902. doi: 10.1016/S0140-6736(04)16360-5.
    1. Branski L.K., Herndon D.N., Byrd J.F., Kinsky M.P., Lee J.O., Fagan S.P., Jeschke M.G. Transpulmonary thermodilution for hemodynamic measurements in severely burned children. Crit. Care. 2011;15:1–10. doi: 10.1186/cc10147.
    1. Howard T.S., Hermann D.G., McQuitty A.L., Woodson L.C., Kramer G.C., Herndon D.N., Ford P.M., Kinsky M.P. Burn-induced cardiac dysfunction increases length of stay in pediatric burn patients. J. Burn Care Res. 2013;34:413–419. doi: 10.1097/BCR.0b013e3182685e11.
    1. Pereira C.T., Barrow R.E., Sterns A.M., Hawkins H.K., Kimbrough C.W., Jeschke M.G., Lee J.O., Sanford A.P., Herndon D.N. Age-dependent differences in survival after severe burns: A unicentric review of 1674 patients and 179 autopsies over 15 years. J. Am. Coll. Surg. 2006;202:536–548. doi: 10.1016/j.jamcollsurg.2005.11.002.
    1. Williams F.N., Herndon D.N., Hawkins H.K., Lee J.O., Cox R.A., Kulp G.A., Finnerty C.C., Chinkes D.L., Jeschke M.G. The leading causes of death after burn injury in a single pediatric burn center. Crit. Care. 2009;13:R183. doi: 10.1186/cc8170.
    1. Horton J.W., Garcia N.M., White D.J., Keffer J. Postburn cardiac contractile function and biochemical markers of postburn cardiac injury. J. Am. Coll. Surg. 1995;181:289–298.
    1. Mlcak R.P., Suman O.E., Murphy K., Herndon D.N. Effects of growth hormone on anthropometric measurements and cardiac function in children with thermal injury. Burns J. Int. Soc. Burn Inj. 2005;31:60–66. doi: 10.1016/j.burns.2004.08.006.
    1. Sheeran P.W., Maass D.L., White D.J., Turbeville T.D., Giroir B.P., Horton J.W. Aspiration pneumonia-induced sepsis increases cardiac dysfunction after burn trauma. J. Surg. Res. 1998;76:192–199. doi: 10.1006/jsre.1998.5352.
    1. White J., Thomas J., Maass D.L., Horton J.W. Cardiac effects of burn injury complicated by aspiration pneumonia-induced sepsis. Am. J. Physiol. Heart Circ. Physiol. 2003;285:H47–H58. doi: 10.1152/ajpheart.00833.2002.
    1. Williams F.N., Herndon D.N., Suman O.E., Lee J.O., Norbury W.B., Branski L.K., Mlcak R.P., Jeschke M.G. Changes in cardiac physiology after severe burn injury. J. Burn Care Res. 2011;32:269–274. doi: 10.1097/BCR.0b013e31820aafcf.
    1. Xia Z.F., Zhao P., Horton J.W. Changes in cardiac contractile function and myocardial. Am. J. Physiol. Heart Circ. Physiol. 2001;280:H1916–H1922.
    1. Abdullahi A., Amini-Nik S., Jeschke M.G. Animal models in burn research. Cell. Mol. Life Sci. 2014;71:3241–3255. doi: 10.1007/s00018-014-1612-5.
    1. White J., Maass D.L., Giroir B., Horton J.W. Development of an acute burn model in adult mice for studies of cardiac function and cardiomyocyte cellular function. Shock. 2001;16:122–129. doi: 10.1097/00024382-200116020-00007.
    1. Herndon D.N., Wilmore D.W., Mason A.D. Development and analysis of a small animal model simulating the human postburn hypermetabolic response. J. Surg. Res. 1978;25:394–403. doi: 10.1016/S0022-4804(78)80003-1.
    1. Pereira C.T., Herndon D.N. The pharmacologic modulation of the hypermetabolic response to burns. Adv. Surg. 2005;39:245–261. doi: 10.1016/j.yasu.2005.05.005.
    1. Loichot C., Jesel L., Tesse A., Tabernero A., Schoonjans K., Roul G., Carpusca I., Auwerx J., Andriantsitohaina R. Deletion of peroxisome proliferator-activated receptor-α induces an alteration of cardiac functions. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H161–H166. doi: 10.1152/ajpheart.01065.2004.
    1. Etzion S., Etzion Y., DeBosch B., Crawford P.A., Muslin A.J. Akt2 deficiency promotes cardiac induction of Rab4a and myocardial β-adrenergic hypersensitivity. J. Mol. Cell. Cardiol. 2010;49:931–940. doi: 10.1016/j.yjmcc.2010.08.011.
    1. Merkle D., Hoffmann R. Roles of cAMP and cAMP-dependent protein kinase in the progression of prostate cancer: Cross-talk with the androgen receptor. Cell Signal. 2011;23:507–515. doi: 10.1016/j.cellsig.2010.08.017.
    1. Ballard-Croft C., White D.J., Maass D.L., Hybki D.P., Horton J.W. Role of p38 mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokine TNF-α. Am. J. Physiol. Heart Circ. Physiol. 2001;280:H1970–H1981.
    1. Zhang J.P., Liang W.Y., Luo Z.H., Yang Z.C., Chan H.C., Huang Y.S. Involvement of p38 MAP kinase in burn-induced degradation of membrane phospholipids and upregulation of cPLA2 in cardiac myocytes. Shock. 2007;28:86–93. doi: 10.1097/SHK.0b013e31802f9d9a.
    1. Cao W., Xie Y.H., Li X.Q., Zhang X.K., Chen Y.T., Kang R., Chen X., Miao S., Wang S.W. Burn-induced apoptosis of cardiomyocytes is survivin dependent and regulated by PI3K/Akt, p38 MAPK and ERK pathways. Basic Res. Cardiol. 2011;106:1207–1220. doi: 10.1007/s00395-011-0199-3.
    1. Song H.P., Zhang L., Dang Y.M., Yan H., Chu Z.G., Huang Y.S. The phosphatidylinositol 3-kinase-Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial function. Clin. Exp. Pharmacol. Physiol. 2010;37:598–604. doi: 10.1111/j.1440-1681.2010.05355.x.
    1. Ballard-Croft C., Carlson D., Maass D.L., Horton J.W. Burn trauma alters calcium transporter protein expression in the heart. J. Appl. Physiol. 2004;97:1470–1476. doi: 10.1152/japplphysiol.01149.2003.
    1. Lang C.H., Frost R.A., Vary T.C. Thermal injury impairs cardiac protein synthesis and is associated with alterations in translation initiation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;286:R740–R750. doi: 10.1152/ajpregu.00661.2003.
    1. Koshy U.S., Burton K.P., Le T.H., Horton J.W. Altered ionic calcium and cell motion in ventricular myocytes after cutaneous thermal injury. J. Surg. Res. 1997;68:133–138. doi: 10.1006/jsre.1997.5032.
    1. Wang C., Martyn J.A. Burn injury alters β-adrenergic receptor and second messenger function in rat ventricular muscle. Crit. Care Med. 1996;24:118–124. doi: 10.1097/00003246-199601000-00020.
    1. Zhang H.G., Li X.H., Yang Z.C. Effects of Panax notoginseng saponins on myocardial Gsα mRNA expression and ATPase activity after severe scald in rats. Burns J. Int. Soc. Burn Inj. 2003;29:541–546. doi: 10.1016/S0305-4179(03)00143-8.
    1. He H.M., Sun J.W., Xiao C.R., Song Y.N. Effects of clonidine on myocardial β-adrenergic receptor-adenyl cyclase-cAMP system after scalds in rats. Zhongguo Yao Li Xue Bao. 1997;18:146–149.
    1. Cain B.S., Meldrum D.R., Meng X., Dinarello C.A., Shames B.D., Banerjee A., Harken A.H. P38 MAPK inhibition decreases TNF-α production and enhances postischemic human myocardial function. J. Surg. Res. 1999;83:7–12. doi: 10.1006/jsre.1998.5548.
    1. Kher A., Wang M., Tsai B.M., Pitcher J.M., Greenbaum E.S., Nagy R.D., Patel K.M., Wairiuko G.M., Markel T.A., Meldrum D.R. Sex differences in the myocardial inflammatory response to acute injury. Shock. 2005;23:1–10. doi: 10.1097/01.shk.0000148055.12387.15.
    1. Carlson D.L., White D.J., Maass D.L., Nguyen R.C., Giroir B., Horton J.W. IκB overexpression in cardiomyocytes prevents NF-κB translocation and provides cardioprotection in trauma. Am. J. Physiol. Heart Circ. Physiol. 2003;284:H804–H814. doi: 10.1152/ajpheart.00394.2001.
    1. Bruns B., Maass D., Barber R., Horton J., Carlson D. Alterations in the cardiac inflammatory response to burn trauma in mice lacking a functional toll-like receptor 4 gene. Shock. 2008;30:740–746. doi: 10.1097/SHK.0b013e318173f329.
    1. Horton J.W., Maass D., White J., Sanders B. Nitric oxide modulation of TNF-α-induced cardiac contractile dysfunction is concentration dependent. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H1955–H1965.
    1. Maass D.L., White J., Horton J.W. IL-1β and IL-6 act synergistically with TNF-α to alter cardiac contractile function after burn trauma. Shock. 2002;18:360–366. doi: 10.1097/00024382-200210000-00012.
    1. Barber R.C., Maass D.L., White D.J., Chang L.Y., Horton J.W. Molecular or pharmacologic inhibition of the CD14 signaling pathway protects against burn-related myocardial inflammation and dysfunction. Shock. 2008;30:705–713. doi: 10.1097/SHK.0b013e31816f6caa.
    1. Niederbichler A.D., Westfall M.V., Su G.L., Donnerberg J., Usman A., Vogt P.M., Ipaktchi K.R., Arbabi S., Wang S.C., Hemmila M.R. Cardiomyocyte function after burn injury and lipopolysaccharide exposure: Single-cell contraction analysis and cytokine secretion profile. Shock. 2006;25:176–183. doi: 10.1097/01.shk.0000192123.91166.e1.
    1. Horton J.W., Maass D.L., White D.J., Sanders B., Murphy J. Effects of burn serum on myocardial inflammation and function. Shock. 2004;22:438–445. doi: 10.1097/01.shk.0000142252.31006.c5.
    1. Enkhbaatar P., Murakami K., Shimoda K., Mizutani A., McGuire R., Schmalstieg F., Cox R., Hawkins H., Jodoin J., Lee S., et al. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole attenuates acute lung injury in an ovine model. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003;285:R366–R372. doi: 10.1152/ajpregu.00148.2003.
    1. Wang W.D., Chen Z.R., Li R., Lou S.F. Nitric oxide synthesis in myocardium following burn injury in rats. Burns J. Int. Soc. Burn Inj. 1998;24:455–459. doi: 10.1016/S0305-4179(98)80003-X.
    1. White J., Carlson D.L., Thompson M., Maass D.L., Sanders B., Giroir B., Horton J.W. Molecular and pharmacological approaches to inhibiting nitric oxide after burn trauma. Am. J. Physiol. Heart Circ. Physiol. 2003;285:H1616–H1625. doi: 10.1152/ajpheart.00061.2002.
    1. Liang W.Y., Tang L.X., Yang Z.C., Huang Y.S. Calcium induced the damage of myocardial mitochondrial respiratory function in the early stage after severe burns. Burns J. Int. Soc. Burn Inj. 2002;28:143–146. doi: 10.1016/S0305-4179(01)00088-2.
    1. Beckman J.S., Beckman T.W., Chen J., Marshall P.A., Freeman B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. Nat. Acad. Sci. USA. 1990;87:1620–1624. doi: 10.1073/pnas.87.4.1620.
    1. Ferdinandy P., Danial H., Ambrus I., Rothery R.A., Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ. Res. 2000;87:241–247. doi: 10.1161/01.RES.87.3.241.
    1. Moncada S., Palmer R.M., Higgs E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991;43:109–142.
    1. Gaboury J., Woodman R.C., Granger D.N., Reinhardt P., Kubes P. Nitric oxide prevents leukocyte adherence: Role of superoxide. Am. J. Physiol. 1993;265:H862–H867.
    1. Gauthier C., Leblais V., Kobzik L., Trochu J.N., Khandoudi N., Bril A., Balligand J.L., Le Marec H. The negative inotropic effect of β3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J. Clin. Investig. 1998;102:1377–1384. doi: 10.1172/JCI2191.
    1. Freund C., Schmidt-Ullrich R., Baurand A., Dunger S., Schneider W., Loser P., El-Jamali A., Dietz R., Scheidereit C., Bergmann M.W. Requirement of nuclear factor-κB in angiotensin ii- and isoproterenol-induced cardiac hypertrophy in vivo. Circulation. 2005;111:2319–2325. doi: 10.1161/01.CIR.0000164237.58200.5A.
    1. Klein G.L., Enkhbaatar P., Traber D.L., Buja L.M., Jonkam C.C., Poindexter B.J., Bick R.J. Cardiovascular distribution of the calcium sensing receptor before and after burns. Burns J. Int. Soc. Burn Inj. 2008;34:370–375. doi: 10.1016/j.burns.2007.04.010.
    1. White D.J., Maass D.L., Sanders B., Horton J.W. Cardiomyocyte intracellular calcium and cardiac dysfunction after burn trauma. Crit. Care Med. 2002;30:14–22. doi: 10.1097/00003246-200201000-00003.
    1. Luo X., Deng J., Liu N., Zhang C., Huang Q., Liu J. Cellular mechanism underlying burn serum-generated bidirectional regulation of excitation-contraction coupling in isolated rat cardiomyocytes. Shock. 2011;35:388–395. doi: 10.1097/SHK.0b013e3182000379.
    1. Jiang X., Liu W., Deng J., Lan L., Xue X., Zhang C., Cai G., Luo X., Liu J. Polydatin protects cardiac function against burn injury by inhibiting sarcoplasmic reticulum Ca2+ leak by reducing oxidative modification of ryanodine receptors. Free Radic. Biol. Med. 2013;60:292–299. doi: 10.1016/j.freeradbiomed.2013.02.030.
    1. Kawai K., Kawai T., Sambol J.T., Xu D.Z., Yuan Z., Caputo F.J., Badami C.D., Deitch E.A., Yatani A. Cellular mechanisms of burn-related changes in contractility and its prevention by mesenteric lymph ligation. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H2475–H2484. doi: 10.1152/ajpheart.01164.2006.
    1. Sambol J., Deitch E.A., Takimoto K., Dosi G., Yatani A. Cellular basis of burn-induced cardiac dysfunction and prevention by mesenteric lymph duct ligation. J. Surg. Res. 2013;183:678–685. doi: 10.1016/j.jss.2013.01.065.
    1. Tan J., Maass D.L., White D.J., Horton J.W. Effects of burn injury on myocardial signaling and cytokine secretion: Possible role of pkc. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R887–R896. doi: 10.1152/ajpregu.00555.2006.
    1. Ballard-Croft C., Maass D.L., Sikes P.J., Horton J.W. Sepsis and burn complicated by sepsis alter cardiac transporter expression. Burns J. Int. Soc. Burn Inj. 2007;33:72–80. doi: 10.1016/j.burns.2006.06.009.
    1. Maass D.L., White J., Sanders B., Horton J.W. Role of cytosolic vs. mitochondrial Ca2+ accumulation in burn injury-related myocardial inflammation and function. Am. J. Physiol. Heart Circ. Physiol. 2005;288:H744–H751. doi: 10.1152/ajpheart.00367.2004.
    1. George I., Sabbah H.N., Xu K., Wang N., Wang J. β-adrenergic receptor blockade reduces endoplasmic reticulum stress and normalizes calcium handling in a coronary embolization model of heart failure in canines. Cardiovasc. Res. 2011;91:447–455. doi: 10.1093/cvr/cvr106.
    1. Rehsia N.S., Dhalla N.S. Mechanisms of the beneficial effects of β-adrenoceptor antagonists in congestive heart failure. Exp. Clin. Cardiol. 2010;15:e86–e95.
    1. Zhang J.P., Ying X., Liang W.Y., Luo Z.H., Yang Z.C., Huang Y.S., Wang W.C. Apoptosis in cardiac myocytes during the early stage after severe burn. J. Trauma. 2008;65:401–408. doi: 10.1097/TA.0b013e31817cf732.
    1. Carlson D.L., Lightfoot E., Bryant D.D., Haudek S.B., Maass D., Horton J., Giroir B.P. Burn plasma mediates cardiac myocyte apoptosis via endotoxin. Am. J. Physiol. Heart Circ. Physiol. 2002;282:H1907–H1914. doi: 10.1152/ajpheart.00393.2001.
    1. Lightfoot Jr E., Horton J.W., Maass D.L., White D.J., McFarland R.D., Lipsky P.E. Major burn trauma in rats promotes cardiac and gastrointestinal apoptosis. Shock. 1999;11:29–34.
    1. Lu X., Costantini T., Lopez N.E., Wolf P.L., Hageny A.M., Putnam J., Eliceiri B., Coimbra R. Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. J. Cell. Mol. Med. 2013;17:664–671. doi: 10.1111/jcmm.12049.
    1. Lv G.F., Dong M.L., Hu D.H., Zhang W.F., Wang Y.C., Tang C.W., Zhu X.X. Insulin-mediated inhibition of p38 mitogen-activated protein kinase protects cardiomyocytes in severe burns. J. Burn Care Res. 2011;32:591–599. doi: 10.1097/BCR.0b013e31822dc3f2.
    1. Huang Y., Zheng J., Fan P., Zhang X. Transfection of antisense p38α gene ameliorates myocardial cell injury mediated by hypoxia and burn serum. Burns J. Int. Soc. Burn Inj. 2007;33:599–605. doi: 10.1016/j.burns.2006.09.009.
    1. Zhang J.P., Ying X., Chen Y., Yang Z.C., Huang Y.S. Inhibition of p38 MAP kinase improves survival of cardiac myocytes with hypoxia and burn serum challenge. Burns J. Int. Soc. Burn Inj. 2008;34:220–227. doi: 10.1016/j.burns.2007.03.009.
    1. Kita T., Ogawa M., Sato H., Kasai K., Tanaka T., Tanaka N. Role of p38 mitogen-activated protein kinase pathway on heart failure in the infant rat after burn injury. Int. J. Exp. Pathol. 2008;89:55–63. doi: 10.1111/j.1365-2613.2007.00561.x.
    1. Communal C., Singh K., Sawyer D.B., Colucci W.S. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis : Role of a pertussis toxin-sensitive G protein. Circulation. 1999;100:2210–2212. doi: 10.1161/01.CIR.100.22.2210.
    1. Gu C., Ma Y.C., Benjamin J., Littman D., Chao M.V., Huang X.Y. Apoptotic signaling through the β-adrenergic receptor. A new gs effector pathway. J. Biol. Chem. 2000;275:20726–20733. doi: 10.1074/jbc.M000152200.
    1. Horton J.W., Maass D.L., White D.J., Minei J.P. Bactericidal/permeability increasing protein attenuates the myocardial inflammation/dysfunction that occurs with burn complicated by subsequent infection. J. Appl. Physiol. 2007;103:948–958. doi: 10.1152/japplphysiol.00606.2006.
    1. Tao W., Maass D.L., Johnston W.E., Horton J.W. Murine in vivo myocardial contractile dysfunction after burn injury is exacerbated by pneumonia sepsis. Shock. 2005;24:495–499. doi: 10.1097/.
    1. Horton J.W. A model of myocardial inflammation and dysfunction in burn complicated by sepsis. Shock. 2007;28:326–333. doi: 10.1097/01.shk.0000238064.54332.c8.
    1. Goto M., Samonte V., Ravindranath T., Sayeed M.M., Gamelli R.L. Burn injury exacerbates hemodynamic and metabolic responses in rats with polymicrobial sepsis. J. Burn Care Res. 2006;27:50–59. doi: 10.1097/01.bcr.0000192568.77001.b1.
    1. Abdullahi A., Jeschke M.G. Nutrition and anabolic pharmacotherapies in the care of burn patients. Nutr. Clin. Pract. 2014;29 doi: 10.1177/0884533614533129.
    1. Rojas Y., Finnerty C.C., Radhakrishnan R.S., Herndon D.N. Burns: An update on current pharmacotherapy. Expert Opin. Pharmacother. 2012;13:2485–2494. doi: 10.1517/14656566.2012.738195.
    1. Herndon D.N., Barrow R.E., Rutan T.C., Minifee P., Jahoor F., Wolfe R.R. Effect of propranolol administration on hemodynamic and metabolic responses of burned pediatric patients. Ann. Surg. 1988;208:484–492. doi: 10.1097/00000658-198810000-00010.
    1. Minifee P.K., Barrow R.E., Abston S., Desai M., Herndon D.N. Improved myocardial oxygen utilization following propranolol infusion in adolescents with postburn hypermetabolism. J. Pediatr. Surg. 1989;24:806–811. doi: 10.1016/S0022-3468(89)80541-X.
    1. Williams F.N., Herndon D.N., Kulp G.A., Jeschke M.G. Propranolol decreases cardiac work in a dose-dependent manner in severely burned children. Surgery. 2011;149:231–239. doi: 10.1016/j.surg.2010.05.015.
    1. Herndon D.N., Rodriguez N.A., Diaz E.C., Hegde S., Jennings K., Mlcak R.P., Suri J.S., Lee J.O., Williams F.N., Meyer W., et al. Long-term propranolol use in severely burned pediatric patients: A randomized controlled study. Ann. Surg. 2012;256:402–411. doi: 10.1097/SLA.0b013e318265427e.
    1. Finnerty C.C., Herndon D.N. Is propranolol of benefit in pediatric burn patients? Adv. Surg. 2013;47:177–197. doi: 10.1016/j.yasu.2013.02.001.
    1. Herndon D.N., Nguyen T.T., Wolfe R.R., Maggi S.P., Biolo G., Muller M., Barrow R.E. Lipolysis in burned patients is stimulated by the β 2-receptor for catecholamines. Arch. Surg. 1994;129:1301–1305. doi: 10.1001/archsurg.1994.01420360091012.
    1. Baron P.W., Barrow R.E., Pierre E.J., Herndon D.N. Prolonged use of propranolol safely decreases cardiac work in burned children. J. Burn Care Rehabil. 1997;18:223–227. doi: 10.1097/00004630-199705000-00008.
    1. Gore D.C., Honeycutt D., Jahoor F., Barrow R.E., Wolfe R.R., Herndon D.N. Propranolol diminishes extremity blood flow in burned patients. Ann. Surg. 1991;213:568–574. doi: 10.1097/00000658-199106000-00006.
    1. Jeschke M.G., Finnerty C.C., Kulp G.A., Przkora R., Mlcak R.P., Herndon D.N. Combination of recombinant human growth hormone and propranolol decreases hypermetabolism and inflammation in severely burned children. Pediatr. Crit. Care Med. 2008;9:209–216. doi: 10.1097/PCC.0b013e318166d414.
    1. Jeschke M.G., Norbury W.B., Finnerty C.C., Branski L.K., Herndon D.N. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. J. Trauma. 2007;62:676–681. doi: 10.1097/TA.0b013e318031afd3.
    1. Porro L.J., Al-Mousawi A.M., Williams F., Herndon D.N., Mlcak R.P., Suman O.E. Effects of propranolol and exercise training in children with severe burns. J. Pediatr. 2013;162:799–803. doi: 10.1016/j.jpeds.2012.09.015.
    1. Barrow R.E., Dasu M.R., Ferrando A.A., Spies M., Thomas S.J., Perez-Polo J.R., Herndon D.N. Gene expression patterns in skeletal muscle of thermally injured children treated with oxandrolone. Ann. Surg. 2003;237:422–428. doi: 10.1097/01.SLA.0000055276.10357.FB.
    1. Hart D.W., Wolf S.E., Ramzy P.I., Chinkes D.L., Beauford R.B., Ferrando A.A., Wolfe R.R., Herndon D.N. Anabolic effects of oxandrolone after severe burn. Ann. Surg. 2001;233:556–564. doi: 10.1097/00000658-200104000-00012.
    1. Jeschke M.G., Finnerty C.C., Suman O.E., Kulp G., Mlcak R.P., Herndon D.N. The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn. Ann. Surg. 2007;246:351–362. doi: 10.1097/SLA.0b013e318146980e.
    1. Murphy K.D., Thomas S., Mlcak R.P., Chinkes D.L., Klein G.L., Herndon D.N. Effects of long-term oxandrolone administration in severely burned children. Surgery. 2004;136:219–224. doi: 10.1016/j.surg.2004.04.022.
    1. Pham T.N., Klein M.B., Gibran N.S., Arnoldo B.D., Gamelli R.L., Silver G.M., Jeschke M.G., Finnerty C.C., Tompkins R.G., Herndon D.N. Impact of oxandrolone treatment on acute outcomes after severe burn injury. J. Burn Care Res. 2008;29:902–906. doi: 10.1097/BCR.0b013e31818ba14d.
    1. Porro L.J., Herndon D.N., Rodriguez N.A., Jennings K., Klein G.L., Mlcak R.P., Meyer W.J., Lee J.O., Suman O.E., Finnerty C.C. Five-year outcomes after oxandrolone administration in severely burned children: A randomized clinical trial of safety and efficacy. J. Am. Coll. Surg. 2012;214:489–502. doi: 10.1016/j.jamcollsurg.2011.12.038.
    1. Przkora R., Herndon D.N., Suman O.E. The effects of oxandrolone and exercise on muscle mass and function in children with severe burns. Pediatrics. 2007;119:e109–e116. doi: 10.1542/peds.2006-1548.
    1. Przkora R., Jeschke M.G., Barrow R.E., Suman O.E., Meyer W.J., Finnerty C.C., Sanford A.P., Lee J., Chinkes D.L., Mlcak R.P., et al. Metabolic and hormonal changes of severely burned children receiving long-term oxandrolone treatment. Ann. Surg. 2005;242:384–391. doi: 10.1097/01.sla.0000180398.70103.24.
    1. Thomas S., Wolf S.E., Murphy K.D., Chinkes D.L., Herndon D.N. The long-term effect of oxandrolone on hepatic acute phase proteins in severely burned children. J. Trauma. 2004;56:37–44. doi: 10.1097/01.TA.0000108636.63225.63.
    1. Tuvdendorj D., Chinkes D.L., Zhang X.J., Suman O.E., Aarsland A., Ferrando A., Kulp G.A., Jeschke M.G., Wolfe R.R., Herndon D.N. Long-term oxandrolone treatment increases muscle protein net deposition via improving amino acid utilization in pediatric patients 6 months after burn injury. Surgery. 2011;149:645–653. doi: 10.1016/j.surg.2010.12.006.
    1. Wolf S.E., Thomas S.J., Dasu M.R., Ferrando A.A., Chinkes D.L., Wolfe R.R., Herndon D.N. Improved net protein balance, lean mass, and gene expression changes with oxandrolone treatment in the severely burned. Ann. Surg. 2003;237:801–811. doi: 10.1097/01.SLA.0000071562.12637.3E.
    1. Cree M.G., Zwetsloot J.J., Herndon D.N., Qian T., Morio B., Fram R., Sanford A.P., Aarsland A., Wolfe R.R. Insulin sensitivity and mitochondrial function are improved in children with burn injury during a randomized controlled trial of fenofibrate. Ann. Surg. 2007;245:214–221. doi: 10.1097/.
    1. Elijah I.E., Borsheim E., Maybauer D.M., Finnerty C.C., Herndon D.N., Maybauer M.O. Role of the PPAR-α agonist fenofibrate in severe pediatric burn. Burns J. Int. Soc. Burn Inj. 2012;38:481–486. doi: 10.1016/j.burns.2011.12.004.
    1. Cree M.G., Newcomer B.R., Herndon D.N., Qian T., Sun D., Morio B., Zwetsloot J.J., Dohm G.L., Fram R.Y., Mlcak R.P., et al. PPAR-α agonism improves whole body and muscle mitochondrial fat oxidation, but does not alter intracellular fat concentrations in burn trauma children in a randomized controlled trial. Nutr. Metab. 2007;4 doi: 10.1186/1743-7075-4-9.
    1. Aili Low J.F., Barrow R.E., Mittendorfer B., Jeschke M.G., Chinkes D.L., Herndon D.N. The effect of short-term growth hormone treatment on growth and energy expenditure in burned children. Burns J. Int. Soc. Burn Inj. 2001;27:447–452. doi: 10.1016/S0305-4179(00)00164-9.
    1. Barret J.P., Dziewulski P., Jeschke M.G., Wolf S.E., Herndon D.N. Effects of recombinant human growth hormone on the development of burn scarring. Plast. Reconstr. Surg. 1999;104:726–729. doi: 10.1097/00006534-199909010-00017.
    1. Branski L.K., Herndon D.N., Barrow R.E., Kulp G.A., Klein G.L., Suman O.E., Przkora R., Meyer W., III., Huang T., Lee J.O., et al. Randomized controlled trial to determine the efficacy of long-term growth hormone treatment in severely burned children. Ann. Surg. 2009;250:514–523.
    1. Chrysopoulo M.T., Jeschke M.G., Ramirez R.J., Barrow R.E., Herndon D.N. Growth hormone attenuates tumor necrosis factor α in burned children. Arch. Surg. 1999;134:283–286. doi: 10.1001/archsurg.134.3.283.
    1. Connolly C.M., Barrow R.E., Chinkes D.L., Martinez J.A., Herndon D.N. Recombinant human growth hormone increases thyroid hormone-binding sites in recovering severely burned children. Shock. 2003;19:399–403. doi: 10.1097/01.shk.0000051758.08171.bc.
    1. De Oliveira G.V., Sanford A.P., Murphy K.D., de Oliveira H.M., Wilkins J.P., Wu X., Hawkins H.K., Kitten G., Chinkes D.L., Barrow R.E., et al. Growth hormone effects on hypertrophic scar formation: A randomized controlled trial of 62 burned children. Wound Repair Regen. 2004;12:404–411. doi: 10.1111/j.1067-1927.2004.012407.x.
    1. Gilpin D.A., Barrow R.E., Rutan R.L., Broemeling L., Herndon D.N. Recombinant human growth hormone accelerates wound healing in children with large cutaneous burns. Ann. Surg. 1994;220:19–24. doi: 10.1097/00000658-199407000-00004.
    1. Herndon D.N., Hawkins H.K., Nguyen T.T., Pierre E., Cox R., Barrow R.E. Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns. Ann. Surg. 1995;221:649–659. doi: 10.1097/00000658-199506000-00004.
    1. Herndon D.N., Pierre E.J., Stokes K.N., Barrow R.E. Growth hormone treatment for burned children. Horm. Res. 1996;45:29–31. doi: 10.1159/000184825.
    1. Jarrar D., Wolf S.E., Jeschke M.G., Ramirez R.J., DebRoy M., Ogle C.K., Papaconstaninou J., Herndon D.N. Growth hormone attenuates the acute-phase response to thermal injury. Arch. Surg. 1997;132:1171–1176. doi: 10.1001/archsurg.1997.01430350021003.
    1. Jeschke M.G., Barrow R.E., Herndon D.N. Recombinant human growth hormone treatment in pediatric burn patients and its role during the hepatic acute phase response. Crit. Care Med. 2000;28:1578–1584. doi: 10.1097/00003246-200005000-00053.
    1. Low J.F., Herndon D.N., Barrow R.E. Effect of growth hormone on growth delay in burned children: A 3-year follow-up study. Lancet. 1999;354:1789. doi: 10.1016/S0140-6736(99)02741-5.
    1. Przkora R., Herndon D.N., Suman O.E., Jeschke M.G., Meyer W.J., Chinkes D.L., Mlcak R.P., Huang T., Barrow R.E. Beneficial effects of extended growth hormone treatment after hospital discharge in pediatric burn patients. Ann. Surg. 2006;243:796–803. doi: 10.1097/01.sla.0000219676.69331.fd.
    1. Suman O.E., Mlcak R.P., Herndon D.N. Effects of exogenous growth hormone on resting pulmonary function in children with thermal injury. J. Burn Care Rehabil. 2004;25:287–293. doi: 10.1097/01.BCR.0000124792.22931.D7.
    1. Suman O.E., Thomas S.J., Wilkins J.P., Mlcak R.P., Herndon D.N. Effect of exogenous growth hormone and exercise on lean mass and muscle function in children with burns. J. Appl. Physiol. 2003;94:2273–2281. doi: 10.1152/japplphysiol.00849.2002.
    1. Aarsland A., Chinkes D.L., Sakurai Y., Nguyen T.T., Herndon D.N., Wolfe R.R. Insulin therapy in burn patients does not contribute to hepatic triglyceride production. J. Clin. Investig. 1998;101:2233–2239. doi: 10.1172/JCI200.
    1. Ferrando A.A., Chinkes D.L., Wolf S.E., Matin S., Herndon D.N., Wolfe R.R. A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns. Ann. Surg. 1999;229:11–18. doi: 10.1097/00000658-199901000-00002.
    1. Fram R.Y., Cree M.G., Wolfe R.R., Mlcak R.P., Qian T., Chinkes D.L., Herndon D.N. Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children. Crit. Care Med. 2010;38:1475–1483. doi: 10.1097/CCM.0b013e3181de8b9e.
    1. Gauglitz G.G., Toliver-Kinsky T.E., Williams F.N., Song J., Cui W., Herndon D.N., Jeschke M.G. Insulin increases resistance to burn wound infection-associated sepsis. Crit. Care Med. 2010;38:202–208. doi: 10.1097/CCM.0b013e3181b43236.
    1. Gore D.C., Wolf S.E., Herndon D.N., Wolfe R.R. Relative influence of glucose and insulin on peripheral amino acid metabolism in severely burned patients. J. Parenter. Enter. Nutr. 2002;26:271–277. doi: 10.1177/0148607102026005271.
    1. Jeschke M.G., Kulp G.A., Kraft R., Finnerty C.C., Mlcak R., Lee J.O., Herndon D.N. Intensive insulin therapy in severely burned pediatric patients: A prospective randomized trial. Am. J. Respir. Crit. Care Med. 2010;182:351–359. doi: 10.1164/rccm.201002-0190OC.
    1. Wu X., Thomas S.J., Herndon D.N., Sanford A.P., Wolf S.E. Insulin decreases hepatic acute phase protein levels in severely burned children. Surgery. 2004;135:196–202. doi: 10.1016/j.surg.2003.08.018.
    1. Debroy M.A., Wolf S.E., Zhang X.J., Chinkes D.L., Ferrando A.A., Wolfe R.R., Herndon D.N. Anabolic effects of insulin-like growth factor in combination with insulin-like growth factor binding protein-3 in severely burned adults. J. Trauma. 1999;47:904–911. doi: 10.1097/00005373-199911000-00015.
    1. Huang K.F., Chung D.H., Herndon D.N. Insulinlike growth factor 1 (IGF-1) reduces gut atrophy and bacterial translocation after severe burn injury. Arch. Surg. 1993;128:47–54. doi: 10.1001/archsurg.1993.01420130051009.
    1. Jeschke M.G., Barrow R.E., Herndon D.N. Insulinlike growth factor I plus insulinlike growth factor binding protein 3 attenuates the proinflammatory acute phase response in severely burned children. Ann. Surg. 2000;231:246–252. doi: 10.1097/00000658-200002000-00014.
    1. Jeschke M.G., Barrow R.E., Suzuki F., Rai J., Benjamin D., Herndon D.N. IGF-I/IGFBP-3 equilibrates ratios of pro- to anti-inflammatory cytokines, which are predictors for organ function in severely burned pediatric patients. Mol. Med. 2002;8:238–246.
    1. Strock L.L., Singh H., Abdullah A., Miller J.A., Herndon D.N. The effect of insulin-like growth factor I on postburn hypermetabolism. Surgery. 1990;108:161–164.
    1. Wolf S.E., Barrow R.E., Herndon D.N. Growth hormone and IGF-I therapy in the hypercatabolic patient. Bailliere's Clin. Endocrinol. Metab. 1996;10:447–463. doi: 10.1016/S0950-351X(96)80575-1.
    1. Wolf S.E., Woodside K.J., Ramirez R.J., Kobayashi M., Suzuki F., Herndon D.N. Insulin-like growth factor-I/insulin-like growth factor binding protein-3 alters lymphocyte responsiveness following severe burn. J. Surg. Res. 2004;117:255–261. doi: 10.1016/S0022-4804(03)00305-6.
    1. Jeschke M.G., Williams F.N., Finnerty C.C., Rodriguez N.A., Kulp G.A., Ferrando A., Norbury W.B., Suman O.E., Kraft R., Branski L.K., et al. The effect of ketoconazole on post-burn inflammation, hypermetabolism and clinical outcomes. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0035465.
    1. Gauglitz G.G., Herndon D.N., Jeschke M.G. Insulin resistance postburn: Underlying mechanisms and current therapeutic strategies. J. Burn Care Res. 2008;29:683–694. doi: 10.1097/BCR.0b013e31818481ce.
    1. Gore D.C., Wolf S.E., Herndon D.N., Wolfe R.R. Metformin blunts stress-induced hyperglycemia after thermal injury. J. Trauma. 2003;54:555–561. doi: 10.1097/01.TA.0000026990.32856.58.
    1. Gore D.C., Wolf S.E., Sanford A., Herndon D.N., Wolfe R.R. Influence of metformin on glucose intolerance and muscle catabolism following severe burn injury. Ann. Surg. 2005;241:334–342. doi: 10.1097/01.sla.0000152013.23032.d1.
    1. Fu Q., Xu B., Parikh D., Cervantes D., Xiang Y.K. Insulin induces IRS2-dependent and GRK2-mediated β2AR internalization to attenuate βAR signaling in cardiomyocytes. Cell Signal. 2015;27:707–715. doi: 10.1016/j.cellsig.2014.11.018.
    1. Carlson D.L., Maass D.L., White J., Sikes P., Horton J.W. Caspase inhibition reduces cardiac myocyte dyshomeostasis and improves cardiac contractile function after major burn injury. J. Appl. Physiol. 2007;103:323–330. doi: 10.1152/japplphysiol.01255.2006.
    1. Horton J.W., White D.J., Maass D.L., Hybki D.P., Haudek S., Giroir B. Antioxidant vitamin therapy alters burn trauma-mediated cardiac NF-κB activation and cardiomyocyte cytokine secretion. J. Trauma. 2001;50:397–408. doi: 10.1097/00005373-200103000-00002.
    1. Horton J.W., White D.J., Hunt J.L., Purdue G.F. Effects of propranolol administration on cardiac responses to burn injury. J. Burn Care Rehabil. 1993;14:630–638. doi: 10.1097/00004630-199311000-00008.
    1. Xiao R., Lei Z.Y., Dang Y.M., Huang Y.S. Prompt myocardial damage contributes to hepatic, renal, and intestinal injuries soon after a severe burn in rats. J. Trauma. 2011;71:663–672. doi: 10.1097/TA.0b013e31822175f6.
    1. Metrich M., Lucas A., Gastineau M., Samuel J.L., Heymes C., Morel E., Lezoualc'h F. Epac mediates β-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ. Res. 2008;102:959–965. doi: 10.1161/CIRCRESAHA.107.164947.
    1. Chen C., Du J., Feng W., Song Y., Lu Z., Xu M., Li Z., Zhang Y. β-adrenergic receptors stimulate interleukin-6 production through Epac-dependent activation of PKCδ/p38 MAPK signalling in neonatal mouse cardiac fibroblasts. Br. J. Pharmacol. 2012;166:676–688. doi: 10.1111/j.1476-5381.2011.01785.x.
    1. Patel P.A., Tilley D.G., Rockman H.A. β-Arrestin-mediated signaling in the heart. Circ. J. 2008;72:1725–1729. doi: 10.1253/circj.CJ-08-0734.
    1. Noor N., Patel C.B., Rockman H.A. β-Arrestin: A signaling molecule and potential therapeutic target for heart failure. J. Mol. Cell. Cardiol. 2011;51:534–541. doi: 10.1016/j.yjmcc.2010.11.005.
    1. Luttrell L.M., Maudsley S., Bohn L.M. Fulfilling the promise of “biased” G protein-coupled receptor agonism. Mol. Pharmacol. 2015;88:579–588. doi: 10.1124/mol.115.099630.
    1. Wisler J.W., Xiao K., Thomsen A.R., Lefkowitz R.J. Recent developments in biased agonism. Curr. Opin. Cell Biol. 2014;27:18–24. doi: 10.1016/j.ceb.2013.10.008.
    1. Shannon R., Chaudhry M. Effect of α1-adrenergic receptors in cardiac pathophysiology. Am. Heart J. 2006;152:842–850. doi: 10.1016/j.ahj.2006.05.017.

Source: PubMed

3
Abonner