Azeliragon ameliorates Alzheimer's disease via the Janus tyrosine kinase and signal transducer and activator of transcription signaling pathway

Lijuan Yang, Yepei Liu, Yuanyuan Wang, Junsheng Li, Na Liu, Lijuan Yang, Yepei Liu, Yuanyuan Wang, Junsheng Li, Na Liu

Abstract

Objectives: TTP488, an antagonist of the receptor for advanced glycation end-products, was evaluated as a potential treatment for patients with mild-to-moderate Alzheimer's disease (AD). However, the mechanism underlying the protective action of TTP488 against AD has not yet been fully explored.

Methods: Healthy male rats were exposed to aberrant amyloid β (Aβ) 1-42. Lipopolysaccharide (LPS) and the NOD-like receptor family pyrin domain containing 1 (NLRP1) overexpression lentivirus were injected to activate the NLRP1 inflammasome and exacerbate AD. TTP488 was administered to reverse AD injury. Finally, tofacitinib and fludarabine were used to inhibit the activity of Janus tyrosine kinase (JAK) and signal transducer and activator of transcription (STAT) to prove the relationship between the JAK/STAT signaling pathway and TTP488.

Results: LPS and NLRP1 overexpression significantly increased the NLRP1 levels, reduced neurological function, and aggravated neuronal damage, as demonstrated by the impact latency time of, time spent by, and length of the platform covered by, the mice in the Morris water maze assay, Nissl staining, and immunofluorescence staining in rats with AD.

Conclusions: TTP488 administration successfully reduced AD injury and reversed the aforementioned processes. Additionally, tofacitinib and fludarabine administration could further reverse AD injury after the TTP488 intervention. These results suggest a new potential mechanism underlying the TTP488-mediated alleviation of AD injury.

Conflict of interest statement

No potential conflict of interest was reported.

Figures

Figure 1. (A) Western blotting assay for…
Figure 1. (A) Western blotting assay for detecting the expression of NLRP1 and NeuN. (B, C) Quantification of the expression of NLRP1 and NeuN. (D) NLRP1/NeuN ratio. (E) Immunofluorescence assay for detecting the expression of NLRP1 and NeuN (×400) and (F) NLRP1/NeuN (+) cells in samples from the sham, Aβ1-42, and Aβ1-42+LPS groups. Protein levels were normalized to those of β-actin (Aβ1-42 vs. sham group, **p<0.05; Aβ1-42+LPS vs. Aβ1-4 group, ## p<0.05, n=6 per group. All data were represented as the mean±standard error).
Figure 2. (A) The latency time of,…
Figure 2. (A) The latency time of, (B) the time spent by, and (C) the length covered by, the mice from the sham, Aβ1-42+Vehicle, Aβ1-42+5 mg/d TTP488, Aβ1-42+20 mg/d TTP488, and Aβ1-42+50 mg/d TTP488 groups in the platform quadrant in the Morris water maze. (D) Immunofluorescence assay for detecting the expression of NLRP1 and NeuN (×400) and (E) NLRP1/NeuN (+) cells. (F) Nissl staining and (G) Nissl (+) cells in samples from the sham, Aβ1-42+Vehicle, and Aβ1-42+20 mg/d TTP488 groups (Aβ1-42+Vehicle vs. Sham group, **p<0.05; Aβ1-42+20 mg/d TTP488 vs. Aβ1-4+Vehicle group, ## p<0.05, n=6 per group).
Figure 3. (A) The latency time of,…
Figure 3. (A) The latency time of, (B) the time spent by, and (C) the length covered by, the mice in the platform quadrant in the Morris water maze. (D) TUNEL Immunofluorescence assay (×400). (E) TUNEL (+) cells in samples from the sham, Aβ1-42, Aβ1-42+LPS, and Aβ1-42+LPS+TTP488 groups. (F) The latency time, (G) the time, and (H) the length covered in the platform quadrant in the Morris water maze. (I) TUNEL immunofluorescence assay (×400) and (J) TUNEL (+) cells in samples from the sham, Aβ1-42, Aβ1-42+control oeNLRP1, Aβ1-42+oeNLRP1, and Aβ1-42+oeNLRP1+TTP488 groups (Aβ1-42+LPS or Aβ1-42+oeNLRP1 vs. Aβ1-42 group, **p<0.05; Aβ1-42+LPS+TTP488 or Aβ1-42+oeNLRP1+TTP488 vs. Aβ1-42+LPS or Aβ1-42+oeNLRP1 group, ## p<0.05, n=6 per group).
Figure 4. (A) Western blot assay for…
Figure 4. (A) Western blot assay for detecting the expression of caspase-1, IL-1β, and IL-18. (B) Quantification of the expression levels of caspase-1, IL-1β, and IL-18. (C) ELISA assay for quantifying the expression levels of caspase-1, IL-1β, and IL-18 in the sham, Aβ1-42, Aβ1-42+LPS, and Aβ1-42+LPS+TTP488 groups. (D) Western blot assay for detecting the expression of caspase-1, IL-1β, and IL-18. (E) Quantification of the expression levels of caspase-1, IL-1β, and IL-18. (F) ELISA assay for quantifying the expression levels of caspase-1, IL-1β, and IL-18 in the sham, Aβ1-42, Aβ1-42+control oeNLRP1, Aβ1-42+oeNLRP1, and Aβ1-42+oeNLRP1+TTP488 groups. Protein levels were normalized to those of β-actin (Aβ1-42+LPS or Aβ1-42+oeNLRP1 vs. Aβ1-42 group, **p<0.05; Aβ1-42+LPS+TTP488 or Aβ1-42+oeNLRP1+TTP488 vs. Aβ1-42+LPS or Aβ1-42+oeNLRP1 group, ## p<0.05, n=6 per group).
(A) The latency time of, (B) the…
(A) The latency time of, (B) the time spent by, and (C) the length covered by, mice in the platform quadrant in the Morris water maze. (D) Western blot assay for detecting the expression of caspase-1, IL-1β, and IL-18. (E-G) Quantification of the levels of caspase-1, IL-1β, and IL-18. (H-J) ELISA assay for quantifying the expression levels of caspase-1, IL-1β, and IL-18 in the sham, Aβ1-42, Aβ1-42+oeNLRP1, Aβ1-42+oeNLRP1+TTP488, Aβ1-42+oeNLRP1+TTP488+Tofacitinib, and Aβ1-42+oeNLRP1+TTP488+Fludarabine groups. Protein levels were normalized to those of β-actin (Aβ1-42+oeNLRP1 vs. Aβ1-42 group, **p<0.05; Aβ1-42+oeNLRP1+TTP488 vs. Aβ1-42+oeNLRP1 group, ## p<0.05; Aβ1-42+oeNLRP1+TTP488+Tofacitinib or Aβ1-42+oeNLRP1+TTP488+Fludarabine vs. Aβ1-42+oeNLRP1+TTP488 group, && p<0.05, n=6 per group).

References

    1. Liesz A. The vascular side of Alzheimer's disease. Science. 2019;365(6450):223–4. doi: 10.1126/science.aay2720.
    1. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6. doi: 10.1126/science.1072994.
    1. Schmidt AM, Sahagan B, Nelson RB, Selmber J, Rothlein R, Bell JM. The role of RAGE in amyloid-beta peptide-mediated pathology in Alzheimer's disease. Curr Opin Investig Drugs. 2009;10(7):672–80.
    1. Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh MF. Impact of HMGB1, RAGE, and TLR4 in Alzheimer’s Disease (AD): From Risk Factors to Therapeutic Targeting. Cells. 2020;9(2):383. doi: 10.3390/cells9020383.
    1. Pimplikar SW. Neuroinflammation in Alzheimer's disease: from pathogenesis to a therapeutic target. J Clin Immunol. 2014;34(Suppl 1):S64–9. doi: 10.1007/s10875-014-0032-5.
    1. Tanaka M, Saito S, Inoue T, Satoh-Asahara N, Ihara M. Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer’s Disease. Int J Mol Sci. 2020;21(6):1992. doi: 10.3390/ijms21061992.
    1. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem. 2007;55(5):443–52. doi: 10.1369/jhc.6A7101.2006.
    1. Cao Y, Zhang H, Lu X, Wang J, Zhang X, Sun S, et al. Overexpression of MicroRNA-9a-5p Ameliorates NLRP1 Inflammasome-mediated Ischemic Injury in Rats Following Ischemic Stroke. Neuroscience. 2020;444:106–17. doi: 10.1016/j.neuroscience.2020.01.008.
    1. Tan MS, Tan L, Jiang T, Xhu XC, Wang HF, Jia CD, et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. Cell Death Dis. 2014;5(8):e1382. doi: 10.1038/cddis.2014.348.
    1. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–22. doi: 10.1016/j.cell.2014.04.007.
    1. Li L, Chan C. The role of inflammasome in Alzheimer's disease. Ageing Res Rev. 2014;15:6–15. doi: 10.1016/j.arr.2013.12.007.
    1. Wang Y, He G, Tang H, Shi Y, Kang X, Lyu J, et al. Aspirin inhibits inflammation and scar formation in the injury tendon healing through regulating JNK/STAT-3 signalling pathway. Cell Prolif. 2019;52(4):e12650. doi: 10.1111/cpr.12650.
    1. Chintapaludi SR, Uyar A, Jackson HM, Acklin CJ, Wang X, Sasner M, et al. Staging Alzheimer's Disease in the Brain and Retina of B6.APP/PS1 Mice by Transcriptional Profiling. J Alzheimers Dis. 2020;73(4):1421–34. doi: 10.3233/JAD-190793.
    1. Furuya MY, Asano T, Sumichika Y, Sato S, Kobayashi H, Watanabe H, et al. Tofacitinib inhibits granulocyte-macrophage colony-stimulating factor-induced NLRP3 inflammasome activation in human neutrophils. Arthritis Res Ther. 2018;20(1):196. doi: 10.1186/s13075-018-1685-x.
    1. Godyn J, Jonczyk J, Panek D, Malawska B. Therapeutic strategies for Alzheimer's disease in clinical trials. Pharmacol Rep. 2016;68(1):127–38. doi: 10.1016/j.pharep.2015.07.006.
    1. Panza F, Seripa D, Solfrizzi V, Imbimbo BP, Lozupone M, Leo A, et al. Emerging drugs to reduce abnormal β-amyloid protein in Alzheimer's disease patients. Expert Opin Emerg Drugs. 2016;21(4):377–91. doi: 10.1080/14728214.2016.1241232.
    1. Burstein AH, Grimes I, Galasko DR, Aisen PS, Sabbagh M, Mjalli AM. Effect of TTP488 in patients with mild to moderate Alzheimer's disease. BMC Neurol. 2014;14:12. doi: 10.1186/1471-2377-14-12.
    1. Naldini L. Gene therapy returns to centre stage. Nature. 2015;526(7573):351–60. doi: 10.1038/nature15818.
    1. Zhang Y, Liu M, Sun H, Yin K. Matrine improves cognitive impairment and modulates the balance of Th17/Treg cytokines in a rat model of Aβ1-42-induced Alzheimer's disease. Cent Eur J Immunol. 2015;40(4):411–9. doi: 10.5114/ceji.2015.56961.
    1. Wang S, Zhou Y, Yang B, Li L, Yu S, Chen Y, et al. C1q/Tumor Necrosis Factor-Related Protein-3 Attenuates Brain Injury after Intracerebral Hemorrhage via AMPK-Dependent Pathway in Rat. Front Cell Neurosci. 2016;10:237. doi: 10.3389/fncel.2016.00237.
    1. Shaw KN, Commins S, O'Mara SM. Lipopolysaccharide causes deficits in spatial learning in the watermaze but not in BDNF expression in the rat dentate gyrus. Behav Brain Res. 2001;124(1):47–54. doi: 10.1016/S0166-4328(01)00232-7.
    1. Bako HY, Ibrahim MA, Isah MS, Ibrahim S. Inhibition of JAK-STAT and NF-kB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes. Life Sci. 2019;239:117045. doi: 10.1016/j.lfs.2019.117045.
    1. Feng Z, Zheng W, Tang Q, Cheng L, Li H, Ni W, et al. Fludarabine inhibits STAT1-mediated up-regulation of caspase-3 expression in dexamethasone-induced osteoblasts apoptosis and slows the progression of steroid-induced avascular necrosis of the femoral head in rats. Apoptosis. 2017;22(8):1001–12. doi: 10.1007/s10495-017-1383-1.
    1. Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 2006;1(2):848–58. doi: 10.1038/nprot.2006.116.
    1. Zhao N, Ren Y, Yamazaki Y, Qiao W, Li F, Felton LM, et al. Alzheimer's Risk Factors Age, APOE Genotype, and Sex Drive Distinct Molecular Pathways. Neuron. 2020;106(5):727–742.e6. doi: 10.1016/j.neuron.2020.02.034.
    1. Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, et al. IFN-? and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res. 2014;34(11):839–47. doi: 10.1089/jir.2013.0085.
    1. Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci. 2019;20(3):558. doi: 10.3390/ijms20030558.
    1. Hu Z, Chai J. Structural Mechanisms in NLR Inflammasome Assembly and Signaling. Curr Top Microbiol Immunol. 2016;397:23–42.
    1. Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis. 2013;4(9):e790. doi: 10.1038/cddis.2013.326.
    1. Mawhinney LJ, de Rivero Vaccari JP, Dale GA, Keane RW, Bramlett HM. Heightened inflammasome activation is linked to age-related cognitive impairment in Fischer 344 rats. BMC Neurosci. 2011;12:123. doi: 10.1186/1471-2202-12-123.
    1. Pontillo A, Catamo E, Arosio B, Mari D, Crovella S. NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord. 2012;26(3):277–81. doi: 10.1097/WAD.0b013e318231a8ac.
    1. Saito S, Ihara M. New therapeutic approaches for Alzheimer's disease and cerebral amyloid angiopathy. Front Aging Neurosci. 2014;6:290. doi: 10.3389/fnagi.2014.00290.
    1. Olsen I, Singhrao SK. Inflammasome Involvement in Alzheimer's Disease. J Alzheimers Dis. 2016;54(1):45–53. doi: 10.3233/JAD-160197.
    1. Montoya T, Aparicio-Soto M, Castejon ML, Rosillo MA, Sanchez-Hidalgo M, Begines P, et al. Peracetylated hydroxytyrosol, a new hydroxytyrosol derivate, attenuates LPS-induced inflammatory response in murine peritoneal macrophages via regulation of non-canonical inflammasome, Nrf2/HO1 and JAK/STAT signaling pathways. J Nutr Biochem. 2018;57:110–20. doi: 10.1016/j.jnutbio.2018.03.014.

Source: PubMed

3
Abonner