Training program-induced skeletal muscle adaptations in two men with myotonic dystrophy type 1

Marie-Pier Roussel, Marika Morin, Mélina Girardin, Anne-Marie Fortin, Mario Leone, Jean Mathieu, Cynthia Gagnon, Elise Duchesne, Marie-Pier Roussel, Marika Morin, Mélina Girardin, Anne-Marie Fortin, Mario Leone, Jean Mathieu, Cynthia Gagnon, Elise Duchesne

Abstract

Objective: The purpose of this side product of another unpublished research project, was to address the effects of a training program on skeletal muscle adaptations of people with myotonic dystrophy type 1 (DM1), under a multifaceted perspective. The objective of this study was to look at training induced muscular adaptations by evaluating changes in muscle strength, myofiber cross-sectional area (CSA), proportion of myofiber types and with indirect markers of muscle growth [proportion of centrally nucleated fibers (CNF) and density of neutrophils and macrophages]. Two men with DM1 underwent a 12-week strength/endurance training program (18 sessions). Two muscle biopsies were obtained pre- and post-training program.

Results: Muscular adaptations occurred only in Patient 1, who attended 72% of the training sessions compared to 39% for Patient 2. These adaptations included increase in the CSA of type I and II myofibers and changes in their proportion. No changes were observed in the percentage of CNF, infiltration of neutrophils and macrophages and muscle strength. These results illustrate the capacity of skeletal muscle cells to undergo adaptations linked to muscle growth in DM1 patients. Also, these adaptations seem to be dependent on the attendance. Trial registration Clinicaltrials.gov NCT04001920 retrospectively registered on June 26th, 2019.

Keywords: Leukocytes; Muscle growth; Muscle plasticity; Myogenesis; Myotonic dystrophy type 1; Training program.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Histological analysis of Vastus lateralis muscle biopsies pre- and post-training program for DM1 patients. a Immunohistochemical staining of myofibers allowed the identification of fiber type II with anti-skeletal myosin fast primary antibody (#). Unstained cells correspond to fiber type I (*). b Haematoxylin/eosin allowed the identification of CNF (*). Immunochemistry allowed the identification of neutrophils (c) and macrophages (d), as indicated by the arrows

References

    1. Theadom A, Rodrigues M, Roxburgh R, Balalla S, Higgins C, Bhattacharjee R, et al. Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology. 2014;43(3–4):259–268. doi: 10.1159/000369343.
    1. Fu YH, Pizzuti A, Fenwick RG, Jr, King J, Rajnarayan S, Dunne PW, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992;255(5049):1256–1258. doi: 10.1126/science.1546326.
    1. Gagnon C, Petitclerc E, Kierkegaard M, Mathieu J, Duchesne E, Hebert LJ. A 9-year follow-up study of quantitative muscle strength changes in myotonic dystrophy type 1. J Neurol. 2018;265(7):1698–1705. doi: 10.1007/s00415-018-8898-4.
    1. Halliday D, Ford GC, Edwards RH, Rennie MJ, Griggs RC. In vivo estimation of muscle protein synthesis in myotonic dystrophy. Ann Neurol. 1985;17(1):65–69. doi: 10.1002/ana.410170115.
    1. Griggs RC, Rennie MJ. Muscle wasting in muscular dystrophy: decreased protein synthesis or increased degradation? Ann Neurol. 1983;13(2):125–132. doi: 10.1002/ana.410130204.
    1. Griggs RC, Halliday D, Kingston W, Moxley RT., 3rd Effect of testosterone on muscle protein synthesis in myotonic dystrophy. Ann Neurol. 1986;20(5):590–596. doi: 10.1002/ana.410200506.
    1. Furling D, Coiffier L, Mouly V, Barbet JP, St Guily JL, Taneja K, et al. Defective satellite cells in congenital myotonic dystrophy. Hum Mol Genet. 2001;10(19):2079–2087. doi: 10.1093/hmg/10.19.2079.
    1. Sabourin LA, Tamai K, Narang MA, Korneluk RG. Overexpression of 3'-untranslated region of the myotonic dystrophy kinase cDNA inhibits myoblast differentiation in vitro. J Biol Chem. 1997;272(47):29626–29635. doi: 10.1074/jbc.272.47.29626.
    1. Bigot A, Klein AF, Gasnier E, Jacquemin V, Ravassard P, Butler-Browne G, et al. Large CTG repeats trigger p16-dependent premature senescence in myotonic dystrophy type 1 muscle precursor cells. Am J Pathol. 2009;174(4):1435–1442. doi: 10.2353/ajpath.2009.080560.
    1. Bhagwati S, Shafiq SA, Xu W. (CTG)n repeats markedly inhibit differentiation of the C2C12 myoblast cell line: implications for congenital myotonic dystrophy. Biochim Biophys Acta. 1999;1453(2):221–229. doi: 10.1016/S0925-4439(98)00104-5.
    1. Furling D, Lemieux D, Taneja K, Puymirat J. Decreased levels of myotonic dystrophy protein kinase (DMPK) and delayed differentiation in human myotonic dystrophy myoblasts. Neuromuscul Disord. 2001;11(8):728–735. doi: 10.1016/S0960-8966(01)00226-7.
    1. Zhang L, Lee JE, Wilusz J, Wilusz CJ. The RNA-binding protein CUGBP1 regulates stability of tumor necrosis factor mRNA in muscle cells: implications for myotonic dystrophy. J Biol Chem. 2008;283(33):22457–22463. doi: 10.1074/jbc.M802803200.
    1. Fernandez-Real JM, Molina A, Broch M, Ricart W, Gutierrez C, Casamitjana R, et al. Tumor necrosis factor system activity is associated with insulin resistance and dyslipidemia in myotonic dystrophy. Diabetes. 1999;48(5):1108–1112. doi: 10.2337/diabetes.48.5.1108.
    1. Nadaj-Pakleza A, Lusakowska A, Sulek-Piatkowska A, Krysa W, Rajkiewicz M, Kwiecinski H, et al. Muscle pathology in myotonic dystrophy: light and electron microscopic investigation in eighteen patients. Folia Morphol (Warsz) 2011;70(2):121–129.
    1. Tohgi H, Utsugisawa K, Kawamorita A, Yamagata M, Saitoh K, Hashimoto K. Effects of CTG trinucleotide repeat expansion in leukocytes on quantitative muscle histopathology in myotonic dystrophy. Muscle Nerve. 1997;20(2):232–234. doi: 10.1002/(SICI)1097-4598(199702)20:2<232::AID-MUS16>;2-4.
    1. Gagnon C, Mathieu J, Jean S, Laberge L, Perron M, Veillette S, et al. Predictors of disrupted social participation in myotonic dystrophy type 1. Arch Phys Med Rehabil. 2008;89(7):1246–1255. doi: 10.1016/j.apmr.2007.10.049.
    1. Voet NB, van der Kooi EL, Riphagen II, Lindeman E, van Engelen BG, Geurts AC, et al. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev. 2013;7:CD003907.
    1. Smith HK, Maxwell L, Rodgers CD, McKee NH, Plyley MJ. Exercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle. J Appl Physiol. 2001;90(4):1407–1414. doi: 10.1152/jappl.2001.90.4.1407.
    1. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–1069. doi: 10.1084/jem.20070075.
    1. Martinez CO, McHale MJ, Wells JT, Ochoa O, Michalek JE, McManus LM, et al. Regulation of skeletal muscle regeneration by CCR20-activating chemokines is directly related to macrophage recruitment. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R832–R842. doi: 10.1152/ajpregu.00797.2009.
    1. Summan M, Warren GL, Mercer RR, Chapman R, Hulderman T, Van Rooijen N, et al. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1488–R1495. doi: 10.1152/ajpregu.00465.2005.
    1. Sun D, Martinez CO, Ochoa O, Ruiz-Willhite L, Bonilla JR, Centonze VE, et al. Bone marrow-derived cell regulation of skeletal muscle regeneration. FASEB J. 2009;23(2):382–395. doi: 10.1096/fj.07-095901.
    1. Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol. 2007;578(Pt 1):327–336. doi: 10.1113/jphysiol.2006.118265.
    1. Toumi H, F'Guyer S, Best TM. The role of neutrophils in injury and repair following muscle stretch. J Anat. 2006;208(4):459–470. doi: 10.1111/j.1469-7580.2006.00543.x.
    1. Roussel MP, Morin M, Gagnon C, Duchesne E. What is known about the effects of exercise or training to reduce skeletal muscle impairments of patients with myotonic dystrophy type 1? A scoping review. BMC Musculoskelet Disord. 2019;20(1):101. doi: 10.1186/s12891-019-2458-7.
    1. Mathieu J, Boivin H, Meunier D, Gaudreault M, Begin P. Assessment of a disease-specific muscular impairment rating scale in myotonic dystrophy. Neurology. 2001;56(3):336–340. doi: 10.1212/WNL.56.3.336.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Bergström J, et al. Muscle electrolytes in man: determination by neutron activation analysis on needle biopsy specimens: a study on normal subjects, kidney patients and patients with chronic diarrhoea. Scand J Clin Lab Invest. 1962;14(Suppl 68):1–10.
    1. Jones EJ, Bishop PA, Woods AK, Green JM. Cross-sectional area and muscular strength: a brief review. Sports Med. 2008;38(12):987–994. doi: 10.2165/00007256-200838120-00003.
    1. Tollbäck A, Eriksson S, Wredenberg A, Jenner G, Vargas R, Borg K, et al. Effects of high resistance training in patients with myotonic dystrophy. Scand J Rehabil Med. 1999;31(1):9–16. doi: 10.1080/003655099444678.
    1. Mendias CL, Tatsumi R, Allen RE. Role of cyclooxygenase-1 and -2 in satellite cell proliferation, differentiation, and fusion. Muscle Nerve. 2004;30(4):497–500. doi: 10.1002/mus.20102.
    1. Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209–238. doi: 10.1152/physrev.00019.2003.

Source: PubMed

3
Abonner