External Counterpulsation Improves Angiogenesis by Preserving Vascular Endothelial Growth Factor-A and Vascular Endothelial Growth Factor Receptor-2 but Not Regulating MicroRNA-92a Expression in Patients With Refractory Angina

Ade Meidian Ambari, Gracia Lilihata, Ervan Zuhri, Elok Ekawati, Shoma Adhi Wijaya, Bambang Dwiputra, Renan Sukmawan, Basuni Radi, Sofia Mubarika Haryana, Suko Adiarto, Dicky A Hanafy, Dian Zamroni, Elen Elen, Arwin S Mangkuanom, Anwar Santoso, Ade Meidian Ambari, Gracia Lilihata, Ervan Zuhri, Elok Ekawati, Shoma Adhi Wijaya, Bambang Dwiputra, Renan Sukmawan, Basuni Radi, Sofia Mubarika Haryana, Suko Adiarto, Dicky A Hanafy, Dian Zamroni, Elen Elen, Arwin S Mangkuanom, Anwar Santoso

Abstract

Objective: External counterpulsation (ECP) provides long-term benefits of improved anginal frequency and exercise tolerance in patients with refractory angina (RA). This is postulated as a result of improved angiogenesis and endothelial function through an increase in shear stress. Angiogenesis is mainly represented by vascular endothelial growth factor-A (VEGF-A) and its receptor, vascular endothelial growth factor receptor-2 (VEGFR-2). The microRNA-92a (miR-92a) is a flow-sensitive miRNA that regulates atherosclerosis and angiogenesis in response to shear stress. Thus, ECP beneficial effect might be achieved through interaction between VEGF-A, VEGFR-2, and miR-92a. This study aims to evaluate the ECP effect on VEGF-A, VEGFR-2, and miR-92a in patients with RA in a sham-controlled manner. Methods: This was a randomized sham-controlled trial, enrolling 50 patients with RA who have coronary artery disease (CAD). Participants were randomized (1:1 ratio) to 35 sessions of either ECP (n = 25) or sham (n = 25), each session lasting for 1 h. Plasma levels of VEGF-A and VEGFR-2 were assayed by the ELISA technique. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to measure miR-92a circulating levels in plasma. Result: External counterpulsation significantly preserved VEGF-A and VEGFR-2 level compared to sham [ΔVEGF-A: 1 (-139 to 160) vs.-136 (-237 to 67) pg/ml, p = 0.026; ΔVEGFR-2: -171(-844 to +1,166) vs. -517(-1,549 to +1,407) pg/ml, p = 0.021, respectively]. Circulating miR-92a increased significantly in ECP [5.1 (4.2-6.4) to 5.9 (4.8-6.4), p < 0.001] and sham [5.2 (4.1-9.4) to 5.6 (4.8-6.3), p = 0.008] post-intervention. The fold changes tended to be higher in ECP group, although was not statistically different from sham [fold changes ECP = 4.6 (0.3-36.5) vs. sham 2.8 (0-15), p = 0.33)]. Conclusion: External counterpulsation improved angiogenesis by preserving VEGF-A and VEGFR-2 levels. Both ECP and sham increased miR-92a significantly, yet the changes were not different between the two groups. (Study registered on www.clinicaltrials.gov, no: NCT03991871, August 8, 2019, and received a grant from the National Health Research and Development of Ministry of Health of Indonesia, No: HK.02.02/I/27/2020).

Keywords: angiogenesis; external counter pulsation (ECP); micro RNA-92a (miR-92a); vascular endothelial growth factor (VEGF); vascular endothelial growth factor receptor-2 (VEGFR-2); vascular endothelial growth factor-A (VEGF-A).

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ambari, Lilihata, Zuhri, Ekawati, Wijaya, Dwiputra, Sukmawan, Radi, Haryana, Adiarto, Hanafy, Zamroni, Elen, Mangkuanom and Santoso.

Figures

Figure 1
Figure 1
CONSORT flow diagram.
Figure 2
Figure 2
Boxplot of vascular endothelial growth factor receptor-2 (VEGFR-2) concentration before and after intervention in external counter pulsation (ECP) group (A) and sham group (B). *Analysis by Wilcoxon test.
Figure 3
Figure 3
Boxplot of microRNA-92a (miR-92A) expression before and after intervention in ECP group (A) and sham group (B). *Analysis by Wilcoxon test.

References

    1. Waltenberger J. Chronic refractory angina pectoris: Recent progress and remaining challenges. Eur Heart J. (2017) 38:2556–8. 10.1093/eurheartj/ehx421
    1. Mannheimer C, Camici P, Chester MR, Collins A, DeJongste M, Eliasson T, et al. . The problem of chronic refractory angina; report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J. (2002) 23:355–70. 10.1053/euhj.2001.2706
    1. McGillion M, Arthur HM, Cook A, Carroll SL, Victor JC, L'allier PL, et al. . Canadian Cardiovascular Society; Canadian Pain Society. Management of patients with refractory angina: Canadian Cardiovascular Society/Canadian Pain Society joint guidelines. Can J Cardiol. (2012) 28:S20–41. 10.1016/j.cjca.2011.07.007
    1. Cheng K, de Silva R. New Advances in the management of refractory angina pectoris. Eur Cardiol. (2018) 13:70–9. 10.15420/ecr.2018:1:2
    1. Loh PH, Cleland JG, Louis AA, Kennard ED, Cook JF, Caplin JL, et al. . Enhanced external counterpulsation in the treatment of chronic refractory angina: a long-term follow-up outcome from the International Enhanced External Counterpulsation Patient Registry. Clin Cardiol. (2008) 31:159–64. 10.1002/clc.20117
    1. Kim MC, Kini A, Sharma SK. Refractory angina pectoris: Mechanism and therapeutic options. J Am Coll Cardiol. (2002) 39:923–34. 10.1016/s0735-1097(02)01716-3
    1. Nichols WW, Estrada JC, Braith RW, Owens K, Conti CR. Enhanced external counterpulsation treatment improves arterial wall properties and wave reflection characteristics in patients with refractory angina. J Am Coll Cardiol. (2006) 48:1208–14. 10.1016/j.jacc.2006.04.094
    1. Lawson WE, Hui JC, Cohn PF. Long-term prognosis of patients with angina treated with enhanced external counterpulsation: five-year follow-up study. Clin Cardiol. (2000) 23:254–8. 10.1002/clc.4960230406
    1. Buschmann EE, Utz W, Pagonas N, Schulz-Menger J, Busjahn A, Monti J, et al. . Arteriogenesis Network (Art. Net) Improvement of fractional flow reserve and collateral flow by treatment with external counterpulsation (ArtNet-2 Trial). Eur J Clin Invest. (2009) 39:866–75. 10.1111/j.1365-2362.2009.02192.x
    1. Eslamian F, Aslanabadi N, Mahmoudian B, Shakouri SK. Therapeutic effects of enhanced external counterpulsation on clinical sumptoms, echocardiographic measurements, perfusion scan parameters and exercise tolerance test in coronary artery disease patients with refractory angina. Int J Med Sci Public Health. (2013) 2:179–87. 10.5455/ijmsph.2013.2.179-187
    1. Wu G, Du Z, Hu C, Zheng Z, Zhan C, Ma H, et al. . Angiogenic effects of long-term enchanced external counterpulsation in a dog model of myocardial infarction. Am J Physiol Heart Circ Physiol. (2006) 290: H248–5. 10.1152/ajpheart.01225.2004
    1. Barsheshet A, Hod H, Shechter M, Sharabani-Yosef O, Rosenthal E, Barbash IM, et al. . The effects of external counter pulsation therapy on circulating endothelial progenitor cells in patients with angina pectoris. Cardiology. (2008) 110:160–6. 10.1159/000111925
    1. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. (2011) 2:1097–105. 10.1177/1947601911423031
    1. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, et al. . Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci. (2018) 19:1264. 10.3390/ijms19041264
    1. Arora R, Chen HJ, Rabbani L. Effects of enhanced counterpulsation on vascular cell release of coagulation factors. Heart Lung. (2005) 34:252–6. 10.1016/j.hrtlng.2005.03.005
    1. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G Jr, Wang KC, Geary GG, et al. . Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a. Circulation. (2011) 124:633–41. 10.1161/CIRCULATIONAHA.110.005108
    1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. . ESC Scientific document group. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. (2020) 41:407–477. 10.1093/eurheartj/ehz425
    1. Topp CW, Ostergaard SD, SØndergaard S, Bech P. The WHO-5 well-being index: A systematic review of the literature. PsychotherPsychosom. (2015) 84:167–76. 10.1159/000376585
    1. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. (2010) 50:298–301. 10.1016/j.ymeth.2010.01.032
    1. Marfella R, Di Filippo C, Potenza N, Sardu C, Rizzo MR, Siniscalchi M, et al. . Circulating microRNA changes in heart failure patients treated with cardiac resynchronization therapy: responders vs. non-responders. Eur J Heart Fail. (2013) 15:1277–88. 10.1093/eurjhf/hft088
    1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. (2001) 25:402–8. 10.1006/meth.2001.1262
    1. Simionescu N, Niculescu LS, Carnuta MG, Sanda GM, Stancu CS, Popescu AC, et al. . Hyperglycemia determines increased specific microRNAs levels in sera and HDL of acute coronary syndrome patients and stimulates microRNAs production in human macrophages. PLoS ONE. (2016) 11:e0161201. 10.1371/journal.pone.0161201
    1. Whitehead AL, Julious SA, Cooper CL, Campbell MJ. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat Methods Med Res. (2016) 25:1057–73. 10.1177/0962280215588241
    1. Ebos JM, Lee CR, Bogdanovic E, Alami J, Van Slyke P, Francia G, et al. . Vascular endothelial growth factor-mediated decrease in plasma soluble vascular endothelial growth factor receptor-2 levels as a surrogate biomarker for tumor growth. Cancer Res. (2008) 68:521–9. 10.1158/0008-5472.CAN-07-3217
    1. Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, et al. . VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol. (2019) 234:17690–703. 10.1002/jcp.28395
    1. Bonetti PO, Barsness GW, Keelan PC, Schnell TI, Pumper GM, Kuvin JT, et al. . Enhanced external counterpulsation improves endothelial function in patients with symptomatic coronary artery disease. J Am Coll Cardiol. (2003) 41:1761–68. 10.1016/s0735-1097(03)00329-2
    1. Michaels AD, Kennard ED, Kelsey SF, Holubkov R, Soran O, Spence S, et al. . Does higher diastolic augmentation predict clinical benefit from enhanced external counterpulsation? Data from the International EECP Patient Registry (IEPR). Clin Cardiol. (2001) 24:453–58. 10.1002/clc.4960240607
    1. Yang DY, Wu GF. Vasculoprotective properties of enhanced external counterpulsation for coronary artery disease: Beyond the hemodynamics. Int J Cardiol. (2013) 166:38–43. 10.1016/j.ijcard.2012.04.003
    1. Zhang Y, He X, Chen X, Ma H, Liu D, Luo J, et al. . Enhanced external counterpulsation inhibits intimal hyperplasia by modifying shear stress responsive gene expression in hypercholesterolemic pigs. Circulation. (2007) 116:526–34. 10.1161/CIRCULATIONAHA.106.647248
    1. Kwak BR, Bäck M, Bochaton-Piallat ML, Caligiuri G, Daemen MJ, Davies PF, et al. . Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. (2014) 35:3013–20. 10.1093/eurheartj/ehu353
    1. Akhtar M, Wu GF, Du ZM, Zheng ZS, Michaels AD. Effect of external counterpulsation on plasma nitric oxide and endothelin-1 levels. Am J Cardiol. (2006) 98:28–30. 10.1016/j.amjcard.2006.01.053
    1. Pourmoghadas M, Nourmohamamadi H, Tabesh F, Haghjoo S, Tabesh E. Effect of enhanced external counter pulsation on plasma level of nitric oxide and vascular endothelial growth factor. ARYA Atheroscler J. (2009) 5:59–63. 10.1016/j.ijcard.2010.08.020
    1. Van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. (2007) 117:2369–76. 10.1172/JCI33099
    1. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. . MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. (2009) 324:1710–3. 10.1126/science.1174381
    1. Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu QF, et al. . Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation. (2013) 128:1066–75. 10.1161/CIRCULATIONAHA.113.001904
    1. Loyer X, Potteaux S, Vion AC, Guérin CL, Boulkroun S, Rautou PE, et al. . Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. (2014) 114:434–43. 10.1161/CIRCRESAHA.114.302213
    1. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. (2014) 34:2206–16. 10.1161/ATVBAHA.114.303425
    1. Wang KC, Garmire LX, Young A, Nguyen P, Trinh A, Subramaniam S, et al. . Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proc Natl Acad Sci U S A. (2010) 107:3234–9. 10.1073/pnas.0914825107
    1. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. . Circulating microRNAs in patients with coronary artery disease. Circ Res. (2010) 107:677–84. 10.1161/CIRCRESAHA.109.215566
    1. Lu C, Shan Z, Hong J, Yang L. MicroRNA-92a promotes epithelial-mesenchymal transition through activation of PTEN/PI3K/AKT signaling pathway in non-small cell lung cancer metastasis. Int J Oncol. (2017) 51:235–44. 10.3892/ijo.2017.3999
    1. Ke TW, Wei PL, Yeh KT, Chen WT, Cheng YW. MiR-92a promotes cell metastasis of colorectal cancer through PTEN-mediated PI3K/AKT pathway. Ann Surg Oncol. (2015) 22:2649–55. 10.1245/s10434-014-4305-2
    1. Carnero A, Paramio JM. The PTEN/PI3K/AKT Pathway in vivo, cancer mouse models. Front Oncol. (2014) 4:252. 10.3389/fonc.2014.00252
    1. Song YS, Joo HW, Park IH, Shen GY, Lee Y, Shin JH, et al. . Bone marrow mesenchymal stem cell-derived vascular endothelial growth factor attenuates cardiac apoptosis via regulation of cardiac miRNA-23a and miRNA-92a in a rat model of myocardial infarction. PLoS ONE. (2017) 12:e0179972. 10.1371/journal.pone.0179972
    1. Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. (2006) 580:2879–87. 10.1016/j.febslet.2006.03.087
    1. Braith RW, Casey DP, Beck DT. Enhanced external counterpulsation for ischemic heart disease: a look behind the curtain. Exerc Sport Sci Rev. (2012) 40:145–152. 10.1097/JES.0b013e318253de5e
    1. Arora RR, Chou TM, Jain D, Fleishman B, Crawford L, McKiernan T, et al. . Effects of enhanced external counterpulsation on Health-Related Quality of Life continue 12 months after treatment: a substudy of the Multicenter Study of Enhanced External Counterpulsation. J Investig Med. (2002) 50:25–32. 10.2310/6650.2002.33514
    1. Soran O, Kennard ED, Kfoury AG, Kelsey SF; IEPR Investigators. Two-year clinical outcomes after enhanced external counterpulsation (EECP) therapy in patients with refractory angina pectoris and left ventricular dysfunction (report from The International EECP Patient Registry). Am J Cardiol. (2006) 97:17–20. 10.1016/j.amjcard.2005.07.122
    1. Zhang C, Liu X, Wang X, Wang Q, Zhang Y, Ge Z. Efficacy of enhanced external counterpulsation in patients with chronic refractory angina on canadian cardiovascular society (CCS) angina class: an updated meta-analysis. Medicine (Baltimore). (2015) 94:e2002. 10.1097/MD.0000000000002002
    1. Braith RW, Conti CR, Nichols WW, Choi CY, Khuddus MA, Beck DT, et al. . Enhanced external counterpulsation improves peripheral artery flow-mediated dilation in patients with chronic angina: a randomized sham-controlled study. Circulation. (2010) 122:1612–20. 10.1161/CIRCULATIONAHA.109.923482
    1. Pravian D, Soesanto AM, Ambari AM, Kuncoro BRMAS, Dwiputra B, Muliawan HS, et al. . The effect of external counterpulsation on intrinsic myocardial function evaluated by speckle tracking echocardiography in refractory angina patients: a randomized controlled trial. Int J Cardiovasc Imaging. (2021) 37:2483–90. 10.1007/s10554-021-02289-x

Source: PubMed

3
Abonner