Mild Cognitive Impairment Is Associated with Poorer Nutritional Status on Hospital Admission and after Discharge in Acutely Hospitalized Older Patients

Olivia Bornæs, Aino L Andersen, Morten B Houlind, Thomas Kallemose, Juliette Tavenier, Anissa Aharaz, Rikke L Nielsen, Lillian M Jørgensen, Anne M Beck, Ove Andersen, Janne Petersen, Mette M Pedersen, Olivia Bornæs, Aino L Andersen, Morten B Houlind, Thomas Kallemose, Juliette Tavenier, Anissa Aharaz, Rikke L Nielsen, Lillian M Jørgensen, Anne M Beck, Ove Andersen, Janne Petersen, Mette M Pedersen

Abstract

In acutely hospitalized older patients (≥65 years), the association between mild cognitive impairment (MCI) and malnutrition is poorly described. We hypothesized that (1) MCI is associated with nutritional status on admission and after discharge; (2) MCI is associated with a change in nutritional status; and (3) a potential association is partly explained by frailty, comorbidity, medication use, and age. We combined data from a randomized controlled trial (control group data) and a prospective cohort study (ClinicalTrials.gov: NCT01964482 and NCT03052192). Nutritional status was assessed on admission and follow-up using the Mini Nutritional Assessment-Short Form. MCI or intact cognition (noMCI) was classified by three cognitive performance tests at follow-up. Data on frailty, comorbidity, medication use, and age were drawn from patient journals. MCI (n = 42) compared to noMCI (n = 47) was associated with poorer nutritional status with an average difference of -1.29 points (CI: -2.30; -0.28) on admission and -1.64 points (CI: -2.57; -0.70) at 4-week follow-up. Only age influenced the estimates of -0.85 (CI: -1.86; 0.17) and -1.29 (CI: -2.25; -0.34), respectively. In acutely hospitalized older patients, there is an association between MCI and poorer nutritional status upon admission and four weeks after discharge. The association is partly explained by higher age.

Keywords: acute admission; cognitive dysfunction; comorbidity; frailty; hospital; malnutrition; medication; nutritional status; older adults.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart. * Patients can have more than one reason for exclusion.
Figure 2
Figure 2
The prevalence of malnutrition and risk of malnutrition (assessed with MNA-SF) at baseline and 4-week follow-up for participants with mild cognitive impairment (MCI) and participants with intact cognition (noMCI). Notes to Figure 2: Malnourished = malnutrition (MNA-SF score 0–7); risk = risk of malnutrition (MNA-SF score of 8–11); normal = normal nutritional status (MNA-SF score 12–14); noMCI = intact cognition; MCI = mild cognitive impairment.
Figure 3
Figure 3
Nutritional status (MNA-SF score) at baseline and 4-week follow-up for participants with mild cognitive impairment (MCI) and participants with intact cognition (noMCI) with observation-matrix (MCI/noMCI), n = 89. MCI = Mild Cognitive Impairment; noMCI = Intact cognition, MNA-SF = Mini Nutritional Assessment—Short Form, MNA-SF score 0–7 = Malnutrition; MNA-SF score of 8–11 = risk of malnutrition; MNA-SF score 12–14 = normal nutritional status.
Figure 4
Figure 4
Distribution of sample estimates from sensitivity analysis.

References

    1. United Nations. Department of Economic and Social Affairs. Population Division . World Population Ageing, 2019 Highlights. United Nations; New York, NY, USA: 2020.
    1. Statistikbanken. [(accessed on 20 April 2021)]. Available online: .
    1. Lawson-Smith L., Petersen J., Jensen P.S., Sivertsen D.M., Pedersen M.M., Ellekilde G., Lindhardt T., Andersen O. Nutritional Risk in Acutely Admitted Older Medical Patients. Am. J. Food Nutr. 2015;3:84–89.
    1. Pereira G.F., Bulik C.M., Weaver M.A., Holland W.C., Platts-Mills T.F. Malnutrition among Cognitively Intact, Non-Critically Ill Older Adults in the Emergency Department. Ann. Emerg. Med. 2015;65:85–91. doi: 10.1016/j.annemergmed.2014.07.018.
    1. Bolado Jiménez C., Fernádez Ovalle H., Muñoz Moreno M.F., Aller de la Fuente R., de Luis Román D.A. Undernutrition Measured by the Mini Nutritional Assessment (MNA) Test and Related Risk Factors in Older Adults under Hospital Emergency Care. Nutrition. 2019;66:142–146. doi: 10.1016/j.nut.2019.04.005.
    1. Fogg C., Meredith P., Culliford D., Bridges J., Spice C., Griffiths P. Cognitive Impairment Is Independently Associated with Mortality, Extended Hospital Stays and Early Readmission of Older People with Emergency Hospital Admissions: A Retrospective Cohort Study. Int. J. Nurs. Stud. 2019;96:1–8. doi: 10.1016/j.ijnurstu.2019.02.005.
    1. Fogg C., Meredith P., Bridges J., Gould G.P., Griffiths P. The Relationship between Cognitive Impairment, Mortality and Discharge Characteristics in a Large Cohort of Older Adults with Unscheduled Admissions to an Acute Hospital: A Retrospective Observational Study. Age Ageing. 2017;46:794–801. doi: 10.1093/ageing/afx022.
    1. Reynish E.L., Hapca S.M., De Souza N., Cvoro V., Donnan P.T., Guthrie B. Epidemiology and Outcomes of People with Dementia, Delirium, and Unspecified Cognitive Impairment in the General Hospital: Prospective Cohort Study of 10,014 Admissions. BMC Med. 2017;15:140. doi: 10.1186/s12916-017-0899-0.
    1. Buurman B.M., Hoogerduijn J.G., de Haan R.J., Abu-Hanna A., Lagaay A.M., Verhaar H.J., Schuurmans M.J., Levi M., de Rooij S.E. Geriatric Conditions in Acutely Hospitalized Older Patients: Prevalence and One-Year Survival and Functional Decline. PLoS ONE. 2011;6:e26951. doi: 10.1371/journal.pone.0026951.
    1. Volkert D., Chourdakis M., Faxen-Irving G., Frühwald T., Landi F., Suominen M.H., Vandewoude M., Wirth R., Schneider S.M. ESPEN Guidelines on Nutrition in Dementia. Clin. Nutr. 2015;34:1052–1073. doi: 10.1016/j.clnu.2015.09.004.
    1. Burks C.E., Jones C.W., Braz V.A., Swor R.A., Richmond N.L., Hwang K.S., Hollowell A.G., Weaver M.A., Platts-Mills T.F. Risk Factors for Malnutrition among Older Adults in the Emergency Department: A Multicenter Study. J. Am. Geriatr. Soc. 2017;65:1741–1747. doi: 10.1111/jgs.14862.
    1. Orsitto G., Fulvio F., Tria D., Turi V., Venezia A., Manca C. Nutritional Status in Hospitalized Elderly Patients with Mild Cognitive Impairment. Clin. Nutr. 2009;28:100–102. doi: 10.1016/j.clnu.2008.12.001.
    1. Orsitto G. Different components of nutritional status in older inpatients with cognitive impairment. J. Nutr. 2012;16:4. doi: 10.1007/s12603-012-0024-1.
    1. Shawky Khater M., Fawzy Abouelezz N. Nutritional Status in Older Adults with Mild Cognitive Impairment Living in Elderly Homes in Cairo, Egypt. J. Nutr. Health Aging. 2011;15:104–108. doi: 10.1007/s12603-011-0021-9.
    1. Buhl S.F., Andersen A.L., Andersen J.R., Andersen O., Jensen J.-E.B., Rasmussen A.M.L., Pedersen M.M., Damkjær L., Gilkes H., Petersen J. The Effect of Protein Intake and Resistance Training on Muscle Mass in Acutely Ill Old Medical Patients—A Randomized Controlled Trial. Clin. Nutr. 2016;35:59–66. doi: 10.1016/j.clnu.2015.02.015.
    1. Vivanti A., Isenring E., Baumann S., Powrie D., O’Neill M., Clark D., Courtice S., Campbell K., Ferguson M. Emergency Department Malnutrition Screening and Support Model Improves Outcomes in a Pilot Randomised Controlled Trial. Emerg. Med. J. 2015;32:180–183. doi: 10.1136/emermed-2013-202965.
    1. Sharma Y., Thompson C.H., Kaambwa B., Shahi R., Hakendorf P., Miller M. Investigation of the Benefits of Early Malnutrition Screening with Telehealth Follow up in Elderly Acute Medical Admissions. QJM Int. J. Med. 2017;110:639–647. doi: 10.1093/qjmed/hcx095.
    1. Nationalt Videnscenter for Demens Mild Cognitive Impairment. [(accessed on 29 September 2021)]. Available online: .
    1. Brigola A.G., Rossetti E.S., dos Santos B.R., Neri A.L., Zazzetta M.S., Inouye K., Pavarini S.C.I. Relationship between Cognition and Frailty in Elderly: A Systematic Review. Dement. Neuropsychol. 2015;9:110–119. doi: 10.1590/1980-57642015DN92000005.
    1. Vetrano D.L., Palmer K., Marengoni A., Marzetti E., Lattanzio F., Roller-Wirnsberger R., Lopez Samaniego L., Rodríguez-Mañas L., Bernabei R., Onder G., et al. Frailty and Multimorbidity: A Systematic Review and Meta-Analysis. J. Gerontol. Ser. A. 2019;74:659–666. doi: 10.1093/gerona/gly110.
    1. Taylor C.A., Bouldin E.D., Greenlund K.J., McGuire L.C. Comorbid Chronic Conditions Among Older Adults with Subjective Cognitive Decline, United States, 2015–2017. Innov. Aging. 2020;4:igz045. doi: 10.1093/geroni/igz045.
    1. Prasad N., Gupta A., Sinha A., Sharma R.K., Saxena A., Kaul A., Bhaduria D., Gupta A. Confounding Effect of Comorbidities and Malnutrition on Survival of Peritoneal Dialysis Patients. J. Ren. Nutr. 2010;20:384–391. doi: 10.1053/j.jrn.2010.01.001.
    1. Smichenko J., Gil E., Zisberg A. Relationship Between Changes in Sedative-Hypnotic Medications Burden and Cognitive Outcomes in Hospitalized Older Adults. J. Gerontol. Ser. A. 2020;75:1699–1705. doi: 10.1093/gerona/glaa015.
    1. Bell J.S., Mezrani C., Blacker N., LeBlanc T., Frank O., Alderman C.P., Rossi S., Rowett D., Shute R. Anticholinergic and Sedative Medicines. Aust. Fam. Physician. 2012;41:45–49.
    1. Lee J.E., Ju Y.J., Chun K.H., Lee S.Y. The Frequency of Sleep Medication Use and the Risk of Subjective Cognitive Decline (SCD) or SCD With Functional Difficulties in Elderly Individuals Without Dementia. J. Gerontol. Ser. A. 2020;75:1693–1698. doi: 10.1093/gerona/glz269.
    1. Field N., Cohen T., Struelens M.J., Palm D., Cookson B., Glynn J.R., Gallo V., Ramsay M., Sonnenberg P., MacCannell D., et al. Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): An Extension of the STROBE Statement. Lancet Infect. Dis. 2014;14:341–352. doi: 10.1016/S1473-3099(13)70324-4.
    1. Pedersen M.M., Petersen J., Beyer N., Damkjær L., Bandholm T. Supervised Progressive Cross-Continuum Strength Training Compared with Usual Care in Older Medical Patients: Study Protocol for a Randomized Controlled Trial (the STAND-Cph Trial) Trials. 2016;17:176. doi: 10.1186/s13063-016-1309-1.
    1. Intranet. [(accessed on 20 April 2021)]. Available online: .
    1. Andersen A.L., Nielsen R.L., Houlind M.B., Tavenier J., Rasmussen L.J.H., Jørgensen L.M., Treldal C., Beck A.M., Pedersen M.M., Andersen O., et al. Risk of Malnutrition upon Admission and after Discharge in Acutely Admitted Older Medical Patients: A Prospective Observational Study. Nutrients. 2021;13:2757. doi: 10.3390/nu13082757.
    1. Winblad B., Palmer K., Kivipelto M., Jelic V., Fratiglioni L., Wahlund L.-O., Nordberg A., Backman L., Albert M., Almkvist O., et al. Mild Cognitive Impairment—Beyond Controversies, towards a Consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004;256:240–246. doi: 10.1111/j.1365-2796.2004.01380.x.
    1. Rubenstein L.Z., Harker J.O., Salva A., Guigoz Y., Vellas B. Screening for Undernutrition in Geriatric Practice: Developing the Short-Form Mini-Nutritional Assessment (MNA-SF) J. Gerontol. Ser. A Biol. Sci. Med Sci. 2001;56:M366–M372. doi: 10.1093/gerona/56.6.M366.
    1. Soysal P., Veronese N., Arik F., Kalan U., Smith L., Isik A.T. Mini Nutritional Assessment Scale-Short Form Can Be Useful for Frailty Screening in Older Adults. Clin. Interv. Aging. 2019;14:693–699. doi: 10.2147/CIA.S196770.
    1. Petersen R.C., Lopez O., Armstrong M.J., Getchius T.S.D., Ganguli M., Gloss D., Gronseth G.S., Marson D., Pringsheim T., Day G.S., et al. Practice Guideline Update Summary: Mild Cognitive Impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90:126–135. doi: 10.1212/WNL.0000000000004826.
    1. Petersen R.C., Smith G.E., Waring S.C., Ivnik R.J., Tangalos E.G., Kokmen E. Mild Cognitive Impairment: Clinical Characterization and Outcome. Arch. Neurol. 1999;56:303. doi: 10.1001/archneur.56.3.303.
    1. Shapiro A.M., Benedict R.H., Schretlen D., Brandt J. Construct and Concurrent Validity of the Hopkins Verbal Learning Test—Revised. Clin. Neuropsychol. 1999;13:348–358. doi: 10.1076/clin.13.3.348.1749.
    1. Benedict R.H., Schretlen D., Groninger L., Brandt J. Hopkins Verbal Learning Test—Revised: Normative Data and Analysis of Inter-Form and Test-Retest Reliability. Clin. Neuropsychol. 1998;12:43–55. doi: 10.1076/clin.12.1.43.1726.
    1. Vogel A., Stokholm J., Jørgensen K. Performances on Symbol Digit Modalities Test, Color Trails Test, and Modified Stroop Test in a Healthy, Elderly Danish Sample. Aging Neuropsychol. Cogn. 2013;20:370–382. doi: 10.1080/13825585.2012.725126.
    1. Bowie C.R., Harvey P.D. Administration and Interpretation of the Trail Making Test. Nat. Protoc. 2006;1:2277–2281. doi: 10.1038/nprot.2006.390.
    1. Ivnik R.J., Malec J.F., Smith G.E., Tangalos E.G., Petersen R.C. Neuropsychological Tests’ Norms above Age 55: COWAT, BNT, MAE Token, WRAT-R Reading, AMNART, STROOP, TMT, and JLO. Clin. Neuropsychol. 1996;10:262–278. doi: 10.1080/13854049608406689.
    1. Stokholm J., Jørgensen K., Vogel A. Performances on Five Verbal Fluency Tests in a Healthy, Elderly Danish Sample. Aging Neuropsychol. Cogn. 2013;20:22–33. doi: 10.1080/13825585.2012.656576.
    1. Fällman K., Lundgren L., Wressle E., Marcusson J., Classon E. Normative Data for the Oldest Old: Trail Making Test A, Symbol Digit Modalities Test, Victoria Stroop Test and Parallel Serial Mental Operations. Aging Neuropsychol. Cogn. 2020;27:567–580. doi: 10.1080/13825585.2019.1648747.
    1. Verghese J., Wang C., Lipton R.B., Holtzer R. Motoric Cognitive Risk Syndrome and the Risk of Dementia. J. Gerontol. Ser. A. 2013;68:412–418. doi: 10.1093/gerona/gls191.
    1. Thomas K.R., Edmonds E.C., Eppig J.S., Wong C.G., Weigand A.J., Bangen K.J., Jak A.J., Delano-Wood L., Galasko D.R., Salmon D.P., et al. MCI-to-normal Reversion Using Neuropsychological Criteria in the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Dement. 2019;15:1322–1332. doi: 10.1016/j.jalz.2019.06.4948.
    1. Petersen R. Mild Cognitive Impairment: Current Research and Clinical Implications. Semin. Neurol. 2007;27:22–31. doi: 10.1055/s-2006-956752.
    1. Klausen H.H., Petersen J., Bandholm T., Juul-Larsen H.G., Tavenier J., Eugen-Olsen J., Andersen O. Association between Routine Laboratory Tests and Long-Term Mortality among Acutely Admitted Older Medical Patients: A Cohort Study. BMC Geriatr. 2017;17:62. doi: 10.1186/s12877-017-0434-3.
    1. Charlson M.E., Pompei P., Ales K.L., MacKenzie C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic Dis. 1987;40:373–383. doi: 10.1016/0021-9681(87)90171-8.
    1. D’Hoore W., Bouckaert A., Tilquin C. Practical Considerations on the Use of the Charlson Comorbidity Index with Administrative Data Bases. J. Clin. Epidemiol. 1996;49:1429–1433. doi: 10.1016/S0895-4356(96)00271-5.
    1. Deyo R.A. Adapting A Clinical Comorbidity Index For Use With ICD-G-CM Administrative Databases. J. Clin. Epidemiol. 1992;45:613–619. doi: 10.1016/0895-4356(92)90133-8.
    1. Patrick S.R., Leslie L.R., James G. Jollis Adapting a Clinical Comorbidity Index for Use with ICD-9-CM Administrative Data: Differin Perspectives. J. Clin. Epidemiol. 1993;46:1075–1079.
    1. Quan H., Li B., Couris C.M., Fushimi K., Graham P., Hider P., Januel J.-M., Sundararajan V. Updating and Validating the Charlson Comorbidity Index and Score for Risk Adjustment in Hospital Discharge Abstracts Using Data From 6 Countries. Am. J. Epidemiol. 2011;173:676–682. doi: 10.1093/aje/kwq433.
    1. Renom-Guiteras A., Meyer G., Thürmann P.A. The EU(7)-PIM List: A List of Potentially Inappropriate Medications for Older People Consented by Experts from Seven European Countries. Eur. J. Clin. Pharm. 2015;71:861–875. doi: 10.1007/s00228-015-1860-9.
    1. Roberts H.C., Denison H.J., Martin H.J., Patel H.P., Syddall H., Cooper C., Sayer A.A. A Review of the Measurement of Grip Strength in Clinical and Epidemiological Studies: Towards a Standardised Approach. Age Ageing. 2011;40:423–429. doi: 10.1093/ageing/afr051.
    1. Mehmet H., Robinson S.R., Yang A.W.H. Assessment of Gait Speed in Older Adults. J. Geriatr. Phys. Ther. 2020;43:42–52. doi: 10.1519/JPT.0000000000000224.
    1. Jones C.J., Rikli R.E., Beam W.C. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res. Q. Exerc. Sport. 1999;70:113–119. doi: 10.1080/02701367.1999.10608028.
    1. Janssen M.F., Pickard A.S., Golicki D., Gudex C., Niewada M., Scalone L., Swinburn P., Busschbach J. Measurement Properties of the EQ-5D-5L Compared to the EQ-5D-3L across Eight Patient Groups: A Multi-Country Study. Qual. Life Res. 2013;22:1717–1727. doi: 10.1007/s11136-012-0322-4.
    1. Herdman M., Gudex C., Lloyd A., Janssen M., Kind P., Parkin D., Bonsel G., Badia X. Development and Preliminary Testing of the New Five-Level Version of EQ-5D (EQ-5D-5L) Qual. Life Res. 2011;20:1727–1736. doi: 10.1007/s11136-011-9903-x.
    1. Jørgensen K., Nielsen T.R., Nielsen A., Waldorff F.B., Høgh P., Jakobsen S., Gottrup H., Vestergaard K., Waldemar G. Brief Assessment of Impaired Cognition (BASIC)—Validation of a New Dementia Case-finding Instrument Integrating Cognitive Assessment with Patient and Informant Report. Int. J. Geriatr. Psychiatry. 2019;34:1724–1733. doi: 10.1002/gps.5188.
    1. Nielsen T.R., Andersen B.B., Gottrup H., Lützhøft J.H., Høgh P., Waldemar G. Validation of the Rowland Universal Dementia Assessment Scale for Multicultural Screening in Danish Memory Clinics. Dement. Geriatr. Cogn. Disord. 2013;36:354–362. doi: 10.1159/000354375.
    1. Schultz-Larsen K., Lomholt R.K., Kreiner S. Mini-Mental Status Examination: A Short Form of MMSE Was as Accurate as the Original MMSE in Predicting Dementia. J. Clin. Epidemiol. 2007;60:260–267. doi: 10.1016/j.jclinepi.2006.06.008.
    1. Folstein M.F., Folstein S.E., McHugh P.R. Mini-Mental State. J. Psychiatr. Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Okuno J., Yanagi H., Tomura S. Is Cognitive Impairment a Risk Factor for Poor Compliance among Japanese Elderly in the Community? Eur. J. Clin. Pharmacol. 2001;57:589–594. doi: 10.1007/s002280100347.
    1. Chudiak A., Uchmanowicz I., Mazur G. Relation between Cognitive Impairment and Treatment Adherence in Elderly Hypertensive Patients. Clin. Interv. Aging. 2018;13:1409–1418. doi: 10.2147/CIA.S162701.
    1. Laur C.V., McNicholl T., Valaitis R., Keller H.H. Malnutrition or Frailty? Overlap and Evidence Gaps in the Diagnosis and Treatment of Frailty and Malnutrition. Appl. Physiol. Nutr. Metab. 2017;42:449–458. doi: 10.1139/apnm-2016-0652.
    1. Fried L.P., Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J., Seeman T., Tracy R., Kop W.J., Burke G., et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med Sci. 2001;56:M146–M157. doi: 10.1093/gerona/56.3.M146.
    1. Nationalt Videnscenter for Demens Behandling Af MCI. [(accessed on 1 March 2022)]. Available online: .
    1. Lopez O.L., Becker J.T., Chang Y.-F., Sweet R.A., DeKosky S.T., Gach M.H., Carmichael O.T., McDade E., Kuller L.H. Incidence of Mild Cognitive Impairment in the Pittsburgh Cardiovascular Health Study–Cognition Study. Neurology. 2012;79:1599–1606. doi: 10.1212/WNL.0b013e31826e25f0.
    1. Suhr J.A., Patterson S.M., Austin A.W., Heffner K.L. The Relation of Hydration Status to Declarative Memory and Working Memory in Older Adults. J. Nutr. Health Aging. 2010;14:840–843. doi: 10.1007/s12603-010-0108-8.
    1. Alzheimer Europe . Alzheimer Europe Dementia in Europe Yearbook 2019, Estimating the Prevalence of Dementia in Europe. Alzheimer Europe; Luxembourg: 2019.
    1. Bradford A., Kunik M.E., Schulz P., Williams S.P., Singh H. Missed and Delayed Diagnosis of Dementia in Primary Care: Prevalence and Contributing Factors. Alzheimer Dis. Assoc. Disord. 2009;23:306–314. doi: 10.1097/WAD.0b013e3181a6bebc.

Source: PubMed

3
Abonner