The Deoxynucleoside Triphosphate Triphosphohydrolase Activity of SAMHD1 Protein Contributes to the Mitochondrial DNA Depletion Associated with Genetic Deficiency of Deoxyguanosine Kinase

Elisa Franzolin, Cristiano Salata, Vera Bianchi, Chiara Rampazzo, Elisa Franzolin, Cristiano Salata, Vera Bianchi, Chiara Rampazzo

Abstract

The dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase. The deoxyguanosine released by SAMHD1 from dGTP can be phosphorylated inside mitochondria by deoxyguanosine kinase (dGK) or degraded in the cytosol by purine nucleoside phosphorylase. Genetic mutations of dGK cause mitochondrial (mt) DNA depletion in noncycling cells and hepato-cerebral mtDNA depletion syndrome in humans. We studied if SAMHD1 and dGK interact in the regulation of the dGTP pool during quiescence employing dGK-mutated skin fibroblasts derived from three unrelated patients. In the presence of SAMHD1 quiescent mutant fibroblasts manifested mt dNTP pool imbalance and mtDNA depletion. When SAMHD1 was silenced by siRNA transfection the composition of the mt dNTP pool approached that of the controls, and mtDNA copy number increased, compensating the depletion to various degrees in the different mutant fibroblasts. Chemical inhibition of purine nucleoside phosphorylase did not improve deoxyguanosine recycling by dGK in WT cells. We conclude that the activity of SAMHD1 contributes to the pathological phenotype of dGK deficiency. Our results prove the importance of SAMHD1 in the regulation of all dNTP pools and suggest that dGK inside mitochondria has the function of recycling the deoxyguanosine derived from endogenous dGTP degraded by SAMHD1 in the nucleus.

Keywords: dGTP pool; gene silencing; mitochondrial DNA (mtDNA); mitochondrial deoxynucleoside salvage; mitochondrial disease; mtDNA precursors; nucleoside/nucleotide metabolism; phosphatase; ribonucleotide reductase.

© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

Figures

FIGURE 1.
FIGURE 1.
Interaction between SAMHD1 and deoxyguanosine kinase activities in the regulation of mitochondrial dGTP. Synthesis of dGTP occurs in the cytosol by de novo synthesis catalyzed by RNR and by salvage of GdR catalyzed by dCK. The two synthetic pathways are counteracted by catabolic activities distributed between the nucleus and cytoplasm. SAMHD1 degrades dGTP to GdR in the nucleus, whereas in the cytosol 5′-nucleotidases (cdN and cN-II) dephosphorylate dGMP to GdR, and PNP degrades GdR to free guanine. Due to the permeability of the nuclear envelope to nucleotides and nucleosides, nuclear and cytosolic pools represent a single kinetic compartment. The mitochondrial dGTP pool derives most of its components from the cytosol via nucleotide and nucleoside carriers in the inner mt membrane. In mitochondria, a separate salvage pathway, depending on dGK, recycles GdR, creating a dGTP pool protected from the catabolic activity of SAMHD1.
FIGURE 2.
FIGURE 2.
mtDNA copy number and mitochondrial mass in WT and dGK-mutated fibroblasts.A, we measured mtDNA copy number per nuclear genome in proliferating (48 and 72 h) and quiescent cultures of three lines of wt skin fibroblasts (C1, C2, C3) and three dGK-mutated lines (P1, P2, P3). Control values were combined (wt). All data are the means ± S.E. from at least two experiments for each cell line analyzed in triplicate. B, mitochondrial mass was evaluated by measuring citrate synthase activity (units (U) = nmol/min) in whole cell extracts and by normalizing the nonyl acridine orange (NAO) fluorescence of each line determined by flow cytometry by that of control C1. Data are the means ± S.E. from two experiments.
FIGURE 3.
FIGURE 3.
Cytosolic and mitochondrial dNTP pool sizes in quiescent skin fibroblasts. Cytosolic (A) and mitochondrial (B) dNTP pools were measured in quiescent cultures of two WT (C1, C2) and three dGK-mutated (P1, P2, P3) lines of skin fibroblasts. To compare the two groups we calculated the mean ratios between the size of each dNTP pool and that of dGTP in the cytosol (C) and mitochondria (D) of WT or dGK-mutated fibroblasts. Data are the means ± S.E. from two experiments for each cell line analyzed in duplicate. Asterisks indicate a significant difference (***, p < 0.001) of the dCTP/dGTP ratio in mutant fibroblasts relative to controls.
FIGURE 4.
FIGURE 4.
Expression of ribonucleotide reductase subunits and SAMHD1 in untreated quiescent skin fibroblasts. Ribonucleotide reductase subunits (R2, p53R2, and R1) and SAMHD1 were detected by immunoblotting in extracts from one proliferating WT control culture (C1p) and quiescent cultures of three WT (C1, C2, and C3) and three dGK-mutated (P1, P2, and P3) lines of skin fibroblasts. To compare R2 or R1 in proliferating and quiescent extracts, different amounts of proteins were loaded in the respective lanes of the gels: 4 and 40 μg for R2 and 20 and 40 μg for R1. In the case of p53R2 we used 2 μg of quiescent extracts and 20 μg for SAMHD1. Loading controls for R1, R2, and SAMHD1 were two unspecific bands (asterisks), whereas GAPDH was used as the control for p53R2.
FIGURE 5.
FIGURE 5.
Effect of SAMHD1 silencing on mtDNA content of quiescent skin fibroblasts. mtDNA copy number normalized per nuclear genome was determined in WT and dGK-mutated fibroblasts at confluence, i.e. before starting the transfections with siRNAs in low serum medium and after 10 days of transfection during quiescence with control siRNA or anti-SAMHD1 siRNA. The values of three WT lines (C1, C2, and C3) were averaged, whereas those of the patient lines (P1, P2, P3) are reported separately. The percent residual level of SAMHD1 mRNA in the silenced cultures is indicated. Data are the means ± S.E. from three to six experiments for each cell line analyzed in triplicate.
FIGURE 6.
FIGURE 6.
Quantitative variations of mtDNA during siRNA silencing of SAMHD1 in quiescent WT and dGK-mutated fibroblasts.A, expression of SAMHD1 protein during transfection with control or anti-SAMHD1 siRNA in quiescent cultures of WT (C2) or dGK-mutated (P1, P2) fibroblasts. The arrow indicates the SAMHD1 signal. An unspecific band appeared just above SAMHD1 and remained stable during silencing. B, residual level of SAMHD1 mRNA in the silenced cultures relative to that in the cultures transfected with control siRNA was determined at the indicated days of transfection during quiescence. Red, C2; green, P1; blue, P2. C, mtDNA content per nuclear genome was measured at 1- or 2-day intervals in cultures treated with control siRNA (continuous line) or anti-SAMHD1 siRNA (broken line) during 10 days of quiescence. Color coding is in B.
FIGURE 7.
FIGURE 7.
Effects of SAMHD1 silencing on cytosolic and mitochondrial dNTP pools in quiescent WT and dGK-mutated fibroblasts. Shown is the increase of cytosolic (A) and mitochondrial (B) dNTP pools induced by SAMHD1 silencing in WT and dGK-mutated skin fibroblasts incubated during 10 days of quiescence with anti-SAMHD1 siRNA or control siRNA. The increases measured in three WT lines were averaged as well as those of the P2 and P3 mutant lines. Values of the P1 mutant are reported separately. C, percentage of dGTP relative to the total dNTPs in the cytosolic and mt pools in WT and dGK-mutated fibroblasts transfected with control siRNA (black) or with anti-SAMHD1 siRNA (gray). D and E, composition of cytosolic (D) and mitochondrial (E) dNTP pools in cultures transfected with control siRNA or with anti-SAMHD1 siRNA, expressed as ratios between the sizes of the individual dNTP pools and the corresponding dGTP pool. The ratios of WT cells were averaged. Mutant P1 values are reported separately from those of the other two mutants (P2/P3). Data are the means ± S.E. from two experiments for each cell line analyzed in duplicate. Asterisks indicate that in nonsilenced cultures significant differences exist in the dTTP/dGTP and dCTP/dGTP ratios of dGK-mutated fibroblasts (P1, P2/P3) relative to controls (wt). **, p < 0.01; *, p < 0.05.

References

    1. Rampazzo C., Miazzi C., Franzolin E., Pontarin G., Ferraro P., Frangini M., Reichard P., and Bianchi V. (2010) Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances. Mutat. Res. 703, 2–10
    1. Reichard P. (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57, 349–374
    1. Eriksson S., Munch-Petersen B., Johansson K., and Eklund H. (2002) Structure and function of cellular deoxyribonucleoside kinases. Cell. Mol. Life Sci. 59, 1327–1346
    1. Bianchi V., and Spychala J. (2003) Mammalian 5′-nucleotidases. J. Biol. Chem. 278, 46195–46198
    1. Markert M. L. (1991) Purine nucleoside phosphorylase deficiency. Immunodefic. Rev. 3, 45–81
    1. Resta R., and Thompson L. F. (1997) SCID: the role of adenosine deaminase deficiency. Immunol. Today 18, 371–374
    1. Goldstone D. C., Ennis-Adeniran V., Hedden J. J., Groom H. C., Rice G. I., Christodoulou E., Walker P. A., Kelly G., Haire L. F., Yap M. W., de Carvalho L. P., Stoye J. P., Crow Y. J., Taylor I. A., and Webb M. (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382
    1. Powell R. D., Holland P. J., Hollis T., and Perrino F. W. (2011) Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 286, 43596–43600
    1. Lahouassa H., Daddacha W., Hofmann H., Ayinde D., Logue E. C., Dragin L., Bloch N., Maudet C., Bertrand M., Gramberg T., Pancino G., Priet S., Canard B., Laguette N., Benkirane M., Transy C., Landau N. R., Kim B., and Margottin-Goguet F. (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 13, 223–228
    1. Franzolin E., Pontarin G., Rampazzo C., Miazzi C., Ferraro P., Palumbo E., Reichard P., and Bianchi V. (2013) The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 110, 14272–14277
    1. Rehwinkel J., Maelfait J., Bridgeman A., Rigby R., Hayward B., Liberatore R. A., Bieniasz P. D., Towers G. J., Moita L. F., Crow Y. J., Bonthron D. T., and Reis e Sousa C. (2013) SAMHD1-dependent retroviral control and escape in mice. EMBO J. 32, 2454–2462
    1. Behrendt R., Schumann T., Gerbaulet A., Nguyen L. A., Schubert N., Alexopoulou D., Berka U., Lienenklaus S., Peschke K., Gibbert K., Wittmann S., Lindemann D., Weiss S., Dahl A., Naumann R., Dittmer U., Kim B., Mueller W., Gramberg T., and Roers A. (2013) Mouse SAMHD1 has antiretroviral activity and suppresses a spontaneous cell-intrinsic antiviral response. Cell Rep. 4, 689–696
    1. Kim B., Nguyen L. A., Daddacha W., and Hollenbaugh J. A. (2012) Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J. Biol. Chem. 287, 21570–21574
    1. DeLucia M., Mehrens J., Wu Y., and Ahn J. (2013) HIV-2 and SIVmac accessory virulence factor Vpx down-regulates SAMHD1 enzyme catalysis prior to proteasome-dependent degradation. J. Biol. Chem. 288, 19116–19126
    1. Cribier A., Descours B., Valadão A. L., Laguette N., and Benkirane M. (2013) Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep. 3, 1036–1043
    1. White T. E., Brandariz-Nuñez A., Valle-Casuso J. C., Amie S., Nguyen L. A., Kim B., Tuzova M., and Diaz-Griffero F. (2013) The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 13, 441–451
    1. Pauls E., Ruiz A., Badia R., Permanyer M., Gubern A., Riveira-Muñoz E., Torres-Torronteras J., Alvarez M., Mothe B., Brander C., Crespo M., Menéndez-Arias L., Clotet B., Keppler O. T., Martí R., Posas F., Ballana E., and Esté J. A. (2014) Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. J. Immunol. 193, 1988–1997
    1. Yan J., Hao C., DeLucia M., Swanson S., Florens L., Washburn M. P., Ahn J., and Skowronski J. (2015) CyclinA2-cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain. J. Biol. Chem. 290, 13279–13292
    1. Ji X., Wu Y., Yan J., Mehrens J., Yang H., DeLucia M., Hao C., Gronenborn A. M., Skowronski J., Ahn J., and Xiong Y. (2013) Mechanism of allosteric activation of SAMHD1 by dGTP. Nat. Struct. Mol. Biol. 20, 1304–1309
    1. Zhu C., Gao W., Zhao K., Qin X., Zhang Y., Peng X., Zhang L., Dong Y., Zhang W., Li P., Wei W., Gong Y., and Yu X. F. (2013) Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat. Commun. 4, 2722.
    1. Ji X., Tang C., Zhao Q., Wang W., and Xiong Y. (2014) Structural basis of cellular dNTP regulation by SAMHD1. Proc. Natl. Acad. Sci. U.S.A. 111, E4305–EE4314
    1. Koharudin L. M., Wu Y., DeLucia M., Mehrens J., Gronenborn A. M., and Ahn J. (2014) Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates. J. Biol. Chem. 289, 32617–32627
    1. Miazzi C., Ferraro P., Pontarin G., Rampazzo C., Reichard P., and Bianchi V. (2014) Allosteric regulation of the human and mouse deoxyribonucleotide triphosphohydrolase sterile α-motif/histidine-aspartate domain-containing protein 1 (SAMHD1). J. Biol. Chem. 289, 18339–18346
    1. Beloglazova N., Flick R., Tchigvintsev A., Brown G., Popovic A., Nocek B., and Yakunin A. F. (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J. Biol. Chem. 288, 8101–8110
    1. Ryoo J., Choi J., Oh C., Kim S., Seo M., Kim S. Y., Seo D., Kim J., White T. E., Brandariz-Nuñez A., Diaz-Griffero F., Yun C. H., Hollenbaugh J. A., Kim B., Baek D., and Ahn K. (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat. Med. 20, 936–941
    1. Rice G. I., Bond J., Asipu A., Brunette R. L., Manfield I. W., Carr I. M., Fuller J. C., Jackson R. M., Lamb T., Briggs T. A., Ali M., Gornall H., Couthard L. R., Aeby A., Attard-Montalto S. P., Bertini E., Bodemer C., Brockmann K., Brueton L. A., Corry P. C., Desguerre I., Fazzi E., Cazorla A. G., Gener B., Hamel B. C., Heiberg A., Hunter M., van der Knaap M. S., Kumar R., Lagae L., Landrieu P. G., Lourenco C. M., Marom D., McDermott M. F., van der Merwe W., Orcesi S., Prendiville J. S., Rasmussen M., Shalev S. A., Soler D. M., Shinawi M., Spiegel R., Tan T. Y., Vanderver A., Wakeling E. L., Wassmer E., Whittaker E., Lebon P., Stetson D. B., Bonthron D. T., and Crow Y. J. (2009) Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832
    1. Rampazzo C., Ferraro P., Pontarin G., Fabris S., Reichard P., and Bianchi V. (2004) Mitochondrial deoxyribonucleotides, pool sizes, synthesis, and regulation. J. Biol. Chem. 279, 17019–17026
    1. Ferraro P., Pontarin G., Crocco L., Fabris S., Reichard P., and Bianchi V. (2005) Mitochondrial deoxynucleotide pools in quiescent fibroblasts: a possible model for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). J. Biol. Chem. 280, 24472–24480
    1. Darè E., Zhang L. H., Jenssen D., and Bianchi V. (1995) Molecular analysis of mutations in the hprt gene of V79 hamster fibroblasts: effects of imbalances in the dCTP, dGTP, and dTTP pools. J. Mol. Biol. 252, 514–521
    1. Nakabeppu Y., Oka S., Sheng Z., Tsuchimoto D., and Sakumi K. (2010) Programmed cell death triggered by nucleotide pool damage and its prevention by MutT homolog-1 (MTH1) with oxidized purine nucleoside triphosphatase. Mutat. Res. 703, 51–58
    1. Pursell Z.F., McDonald J.T., Mathews C.K., and Kunkel T.A. (2008) Trace amounts of 8-oxo-dGTP in mitochondrial dNTP pools reduce DNA polymerase γ replication fidelity. Nucleic Acids Res. 36, 2174–2181
    1. Song S., Pursell Z.F., Copeland W.C., Longley M.J., Kunkel T.A., Mathews C.K. (2005) DNA precursor asymmetries in mammalian tissue mitochondria and possible contribution to mutagenesis through reduced replication fidelity. Proc. Natl. Acad. Sci. U.S.A. 102, 4990–4995
    1. Di Noia M. A., Todisco S., Cirigliano A., Rinaldi T., Agrimi G., Iacobazzi V., and Palmieri F. (2014) The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J. Biol. Chem. 289, 33137–33148
    1. Franzolin E., Miazzi C., Frangini M., Palumbo E., Rampazzo C., and Bianchi V. (2012) The pyrimidine nucleotide carrier PNC1 and mitochondrial trafficking of thymidine phosphates in cultured human cells. Exp. Cell Res. 318, 2226–2236
    1. Lai Y., Tse C. M., and Unadkat J. D. (2004) Mitochondrial expression of the human equilibrative nucleoside transporter 1 (hENT1) results in enhanced mitochondrial toxicity of antiviral drugs. J. Biol. Chem. 279, 4490–4497
    1. Govindarajan R., Leung G. P., Zhou M., Tse C. M., Wang J., and Unadkat J. D. (2009) Facilitated mitochondrial import of antiviral and anticancer nucleoside drugs by human equilibrative nucleoside transporter-3. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G910–G922
    1. Leanza L., Ferraro P., Reichard P., and Bianchi V. (2008) Metabolic interrelations within guanine deoxynucleotide pools for mitochondrial and nuclear DNA maintenance. J. Biol. Chem. 283, 16437–16445
    1. Mandel H., Szargel R., Labay V., Elpeleg O., Saada A., Shalata A., Anbinder Y., Berkowitz D., Hartman C., Barak M., Eriksson S., and Cohen N. (2001) The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat. Genet. 29, 337–341
    1. Saada A. (2008) Mitochondrial deoxyribonucleotide pools in deoxyguanosine kinase deficiency. Mol. Genet. Metab. 95, 169–173
    1. Del Toro M., Martì R., Raspall M., Macaya A., Andreu A. L., Garcia-Arumi E., and Roig M. (2005) New DGUOK gene mutation in twins with mitochondrial DNA depletion syndrome. J. Inherit. Metab. Dis. 28, Suppl.1, 135
    1. Spinazzola A., Invernizzi F., Carrara F., Lamantea E., Donati A., Dirocco M., Giordano I., Meznaric-Petrusa M., Baruffini E., Ferrero I., and Zeviani M. (2009) Clinical and molecular features of mitochondrial DNA depletion syndromes. J. Inherit. Metab. Dis. 32, 143–158
    1. Wang L., Limongelli A., Vila M. R., Carrara F., Zeviani M., and Eriksson S. (2005) Molecular insight into mitochondrial DNA depletion syndrome in two patients with novel mutations in the deoxyguanosine kinase and thymidine kinase 2 genes. Mol. Genet. Metab. 84, 75–82
    1. Laguette N., Sobhian B., Casartelli N., Ringeard M., Chable-Bessia C., Ségéral E., Yatim A., Emiliani S., Schwartz O., and Benkirane M. (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657
    1. Pontarin G., Gallinaro L., Ferraro P., Reichard P., and Bianchi V. (2003) Origins of mitochondrial thymidine triphosphate: dynamic relations to cytosolic pools. Proc. Natl. Acad. Sci. U.S.A. 100, 12159–12164
    1. Sherman P. A., and Fyfe J. A. (1989) Enzymatic assay for deoxyribonucleoside triphosphates using synthetic oligonucleotides as template primers. Anal. Biochem. 180, 222–226
    1. Ferraro P., Franzolin E., Pontarin G., Reichard P., and Bianchi V. (2010) Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res. 38, e85.
    1. Kicska G. A., Long L., Hörig H., Fairchild C., Tyler P. C., Furneaux R. H., Schramm V. L., and Kaufman H. L. (2001) Immucillin H, a powerful transition-state analog inhibitor of purine nucleoside phosphorylase, selectively inhibits human T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 98, 4593–4598
    1. Franzolin E., Rampazzo C., Pérez-Pérez M. J., Hernández A. I., Balzarini J., and Bianchi V. (2006) Bromovinyl-deoxyuridine: A selective substrate for mitochondrial thymidine kinase in cell extracts. Biochem. Biophys. Res. Commun. 344, 30–36
    1. Shepherd D., and Garland P. B. (1969) Citrate synthase from rat liver: [EC 4.1.3.7 citrate oxaloacetage-lyase (CoA-acetylating)]. Methods Enzymol. 13, 11–16
    1. Andreu A. L., Martinez R., Marti R., and García-Arumí E. (2009) Quantification of mitochondrial DNA copy number: pre-analytical factors. Mitochondrion 9, 242–246
    1. Taanman J. W., Muddle J. R., and Muntau A. C. (2003) Mitochondrial DNA depletion can be prevented by dGMP and dAMP supplementation in a resting culture of deoxyguanosine kinase-deficient fibroblasts. Hum. Mol. Genet. 12, 1839–1845
    1. Saada A., Shaag A., and Elpeleg O. (2003) mtDNA depletion myopathy: elucidation of the tissue specificity in the mitochondrial thymidine kinase (TK2) deficiency. Mol. Genet. Metab. 79, 1–5
    1. Frangini M., Franzolin E., Chemello F., Laveder P., Romualdi C., Bianchi V., and Rampazzo C. (2013) Synthesis of mitochondrial DNA precursors during myogenesis, an analysis in purified C2C12 myotubes. J. Biol. Chem. 288, 5624–5635
    1. Pontarin G., Ferraro P., Håkansson P., Thelander L., Reichard P., and Bianchi V. (2007) p53R2-dependent ribonucleotide reduction provides deoxyribonucleotides in quiescent human fibroblasts in the absence of induced DNA damage. J. Biol. Chem. 282, 16820–16828
    1. Frangini M., Rampazzo C., Franzolin E., Lara M. C., Vilà M. R., Martí R., and Bianchi V. (2009) Unchanged thymidine triphosphate pools and thymidine metabolism in two lines of thymidine kinase 2-mutated fibroblasts. FEBS J. 276, 1104–1113
    1. Saada A., Ben-Shalom E., Zyslin R., Miller C., Mandel H., and Elpeleg O. (2003) Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency. Biochem. Biophys. Res. Commun. 310, 963–966
    1. Gazziola C., Ferraro P., Moras M., Reichard P., and Bianchi V. (2001) Cytosolic high K(m) 5′-nucleotidase and 5′(3′)-deoxyribonucleotidase in substrate cycles involved in nucleotide metabolism. J. Biol. Chem. 276, 6185–6190
    1. Arnér E. S., Spasokoukotskaja T., and Eriksson S. (1992) Selective assays for thymidine kinase 1 and 2 and deoxycytidine kinase and their activities in extracts from human cells and tissues. Biochem. Biophys. Res. Commun. 188, 712–718
    1. Spasokoukotskaja T., Arnér E. S. J., Brosjo O., Gunven P., Juliusson G., Liliemark J., and Eriksson S. (1995) Expression of deoxycytidine kinase and phosphorylation of 2-chlorodeoxyadenosine in human normal and tumour cells and tissues. Eur. J. Cancer 31, 202–208
    1. Li N., Zhang W., and Cao X. (2000) Identification of human homologue of mouse IFN-γ induced protein from human dendritic cells. Immunol. Lett. 74, 221–224
    1. Schmidt S., Schenkova K., Adam T., Erikson E., Lehmann-Koch J., Sertel S., Verhasselt B., Fackler O. T., Lasitschka F., and Keppler O. T. (2015) SAMHD1's protein expression profile in humans. J. Leukoc. Biol. 98, 5–14
    1. Cámara Y., González-Vioque E., Scarpelli M., Torres-Torronteras J., Caballero A., Hirano M., and Martí R. (2014) Administration of deoxyribonucleosides or inhibition of their catabolism as a pharmacological approach for mitochondrial DNA depletion syndrome. Hum. Mol. Genet. 23, 2459–2467

Source: PubMed

3
Abonner