Does Pentaerytrithyltetranitrate reduce fetal growth restriction in pregnancies complicated by uterine mal-perfusion? Study protocol of the PETN-study: a randomized controlled multicenter-trial

T Groten, T Lehmann, E Schleußner, PETN Study Group, Ulrich Pecks, Constantin von Kaisenberg, Mateja Condic, Stefan Verlohren, Dietmar Schlembach, Clinic Neukoelln, Gregor Seliger, Sven Seeger, Anne Tauscher, Matej Komar, Karl Oliver Kagan, Ulrike Friebe-Hoffmann, Christoph Hübener, Laura de Vries, T Groten, T Lehmann, E Schleußner, PETN Study Group, Ulrich Pecks, Constantin von Kaisenberg, Mateja Condic, Stefan Verlohren, Dietmar Schlembach, Clinic Neukoelln, Gregor Seliger, Sven Seeger, Anne Tauscher, Matej Komar, Karl Oliver Kagan, Ulrike Friebe-Hoffmann, Christoph Hübener, Laura de Vries

Abstract

Background: Affecting approximately 10% of pregnancies, fetal growth restriction (FGR), is the most important cause of perinatal mortality and morbidity. Impaired placental function and consequent mal-perfusion of the placenta is the leading cause of FGR. Although, screening for placental insufficiency based on uterine artery Doppler measurement is well established, there is no treatment option for pregnancies threatened by FGR. The organic nitrate pentaerithrityl tetranitrate (PETN) is widely used for the treatment of cardiovascular disease and has been shown to have protective effects on human endothelial cells. In a randomized placebo controlled pilot-study our group could demonstrate a risk reduction of 39% for the development of FGR, and FGR or death, by administering PETN to patients with impaired uterine artery Doppler at mid gestation. To confirm these results a prospective randomized placebo controlled double-blinded multicentre trial was now initiated.

Method: The trial has been initiated in 14 centres in Germany. Inclusion criteria are abnormal uterine artery Doppler, defined by mean PI > 1.6, at 190 to 226 weeks of gestation in singleton pregnancies. Included patients will be monitored in 4-week intervals. Primary outcome measures are development of FGR (birth weight < 10th percentile), severe FGR (birth weight < 3rd centile) and perinatal death. Placental abruption, birth weight below the 3rd, 5th and 10th centile, development of FGR requiring delivery before 34 weeks` gestation, neonatal intensive care unit admission, and spontaneous preterm delivery < 34 weeks` and 37 weeks` gestation will be assessed as secondary endpoints. Patient enrolment was started in August 2017. Results are expected in 2020.

Discussion: During the past decade therapeutic agents with possible perfusion optimizing potential have been evaluated in clinical trials to treat FGR. Meta-analysis and sub-analysis of trials targeting preeclampsia revealed ASS to have a potential in reducing FGR. Phosphodiesterase-type-5 inhibitors have recently been tested in a worldwide RCT for therapy of established FGR, failing to show an effect on neonatal outcome. The ongoing multicenter trial will, by confirming our previous results, finally provide a therapeutic option in cases at risk for FGR.

Trial registration: DRKS00011374 registered at September 29th, 2017 and NCT03669185 , registered September 13th, 2018.

Keywords: Abnormal uterine Doppler; Fetal growth restriction; Nitric oxide (NO-) donors; Pentaerytrithyltetranitrate (PETN); Perinatal death.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Recruitment plan

References

    1. Gardosi J. Intrauterine growth restriction: new standards for assessing adverse outcome. Best Pract Res Clin Obstet Gynaecol. 2009;23(6):741–749. doi: 10.1016/j.bpobgyn.2009.09.001.
    1. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73. doi: 10.1056/NEJMra0708473.
    1. Parker SE, Werler MM. Epidemiology of ischemic placental disease: a focus on preterm gestations. Semin Perinatol. 2014;38(3):133–138. doi: 10.1053/j.semperi.2014.03.004.
    1. Cnossen JS, Morris RK, ter Riet G, Mol BW, van der Post JA, Coomarasamy A, Zwinderman AH, Robson SC, Bindels PJ, Kleijnen J, et al. Use of uterine artery Doppler ultrasonography to predict pre-eclampsia and intrauterine growth restriction: a systematic review and bivariable meta-analysis. CMAJ. 2008;178(6):701–711. doi: 10.1503/cmaj.070430.
    1. Yu CK, Smith GC, Papageorghiou AT, Cacho AM, Nicolaides KH. Fetal Medicine Foundation second trimester screening G: an integrated model for the prediction of preeclampsia using maternal factors and uterine artery Doppler velocimetry in unselected low-risk women. Am J Obstet Gynecol. 2005;193(2):429–436. doi: 10.1016/j.ajog.2004.12.014.
    1. Grivell R, Dodd J, Robinson J. The prevention and treatment of intrauterine growth restriction. Best Pract Res Clin Obstet Gynaecol. 2009;23(6):795–807. doi: 10.1016/j.bpobgyn.2009.06.004.
    1. Sciscione AC, Hayes EJ, Society for Maternal-Fetal M Uterine artery Doppler flow studies in obstetric practice. Am J Obstet Gynecol. 2009;201(2):121–126. doi: 10.1016/j.ajog.2009.03.027.
    1. Bujold E, Roberge S, Nicolaides KH. Low-dose aspirin for prevention of adverse outcomes related to abnormal placentation. Prenat Diagn. 2014;34(7):642–648.
    1. Stanescu AD, Banica R, Sima RM, Ples L. Low dose aspirin for preventing fetal growth restriction: a randomised trial. J Perinat Med. 2018;46(7):776–779. doi: 10.1515/jpm-2017-0184.
    1. Daiber A, Wenzel P, Oelze M, Munzel T. New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance. Clin Res Cardiol. 2008;97(1):12–20. doi: 10.1007/s00392-007-0588-7.
    1. Lees C, Jurkovic D, Zaidi J, Campbell S. Unexpected effect of a nitric oxide donor on uterine artery Doppler velocimetry in oligomenorrheic women with polycystic ovaries. Ultrasound Obstet Gynecol. 1998;11(2):129–132. doi: 10.1046/j.1469-0705.1998.11020129.x.
    1. Schleussner E, Lehmann T, Kahler C, Schneider U, Schlembach D, Groten T. Impact of the nitric oxide-donor pentaerythrityl-tetranitrate on perinatal outcome in risk pregnancies: a prospective, randomized, double-blinded trial. J Perinat Med. 2014;42(4):507–514. doi: 10.1515/jpm-2013-0212.
    1. Lesmes C, Gallo DM, Panaiotova J, Poon LC, Nicolaides KH. Prediction of small-for-gestational-age neonates: screening by fetal biometry at 19-24 weeks. Ultrasound Obstet Gynecol. 2015;46(2):198–207. doi: 10.1002/uog.14826.
    1. Gomez O, Figueras F, Fernandez S, Bennasar M, Martinez JM, Puerto B, Gratacos E. Reference ranges for uterine artery mean pulsatility index at 11-41 weeks of gestation. Ultrasound Obstet Gynecol. 2008;32(2):128–132. doi: 10.1002/uog.5315.
    1. Voigt M, Rochow N, Straube S, Briese V, Olbertz D, Jorch G. Birth weight percentile charts based on daily measurements for very preterm male and female infants at the age of 154-223 days. J Perinat Med. 2010;38(3):289–295. doi: 10.1515/jpm.2010.031.
    1. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, Silver RM, Wynia K, Ganzevoort W. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–339. doi: 10.1002/uog.15884.
    1. Buchanan SL, Crowther CA, Levett KM, Middleton P, Morris J. Planned early birth versus expectant management for women with preterm prelabour rupture of membranes prior to 37 weeks' gestation for improving pregnancy outcome. Cochrane Database Syst Rev. 3:CD004735.
    1. Halliday HL, Ehrenkranz RA, Doyle LW: Early (< 8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev. 2009;(1):CD001146. 10.1002/14651858.CD001146.pub2.
    1. Sarkar S, Bhagat I, Dechert R, Schumacher RE, Donn SM. Severe intraventricular hemorrhage in preterm infants: comparison of risk factors and short-term neonatal morbidities between grade 3 and grade 4 intraventricular hemorrhage. Am J Perinatol. 2009;26(6):419–424. doi: 10.1055/s-0029-1214237.
    1. Askie LM, Duley L, Henderson-Smart DJ, Stewart LA. Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet. 2007;369(9575):1791–1798. doi: 10.1016/S0140-6736(07)60712-0.
    1. Rolnik DL, Wright D, Poon LC, O'Gorman N, Syngelaki A, de Paco MC, Akolekar R, Cicero S, Janga D, Singh M, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–622. doi: 10.1056/NEJMoa1704559.
    1. Tan MY, Poon LC, Rolnik DL, Syngelaki A, de Paco MC, Akolekar R, Cicero S, Janga D, Singh M, Molina FS, et al. Prediction and prevention of small-for-gestational-age neonates: evidence from SPREE and ASPRE. Ultrasound Obstet Gynecol. 2018;52(1):52–59. doi: 10.1002/uog.19077.
    1. Bujold E. Low-dose aspirin reduces morbidity and mortality in pregnant women at high-risk for preeclampsia. Evid Based Nurs. 2015;18(3):71. doi: 10.1136/ebnurs-2014-101915.
    1. Dunn L, Flenady V, Kumar S. Reducing the risk of fetal distress with sildenafil study (RIDSTRESS): a double-blind randomised control trial. J Transl Med. 2016;14:15. doi: 10.1186/s12967-016-0769-0.
    1. Ganzevoort W, Alfirevic Z, von Dadelszen P, Kenny L, Papageorghiou A, van Wassenaer-Leemhuis A, Gluud C, Mol BW, Baker PN. STRIDER: sildenafil therapy in dismal prognosis early-onset intrauterine growth restriction--a protocol for a systematic review with individual participant data and aggregate data meta-analysis and trial sequential analysis. Syst Rev. 2014;3:23. doi: 10.1186/2046-4053-3-23.
    1. Trapani A, Jr, Goncalves LF, Trapani TF, Franco MJ, Galluzzo RN, Pires MM. Comparison between transdermal nitroglycerin and sildenafil citrate in intrauterine growth restriction: effects on uterine, umbilical and fetal middle cerebral artery pulsatility indices. Ultrasound Obstet Gynecol. 2016;48(1):61–65. doi: 10.1002/uog.15673.
    1. Sharp A, Cornforth C, Jackson R, Harrold J, Turner MA, Kenny LC, Baker PN, Johnstone ED, Khalil A, von Dadelszen P, et al. Maternal sildenafil for severe fetal growth restriction (STRIDER): a multicentre, randomised, placebo-controlled, double-blind trial. Lancet Child Adolesc Health. 2018;2(2):93–102. doi: 10.1016/S2352-4642(17)30173-6.
    1. Daiber A, Gori T. Vascular tolerance to nitroglycerin in ascorbate deficiency: results are in favour of an important role of oxidative stress in nitrate tolerance. Cardiovasc Res. 2008;79(4):722–723. doi: 10.1093/cvr/cvn174.
    1. Valensise H, Vasapollo B, Novelli GP, Giorgi G, Verallo P, Galante A, Arduini D. Maternal and fetal hemodynamic effects induced by nitric oxide donors and plasma volume expansion in pregnancies with gestational hypertension complicated by intrauterine growth restriction with absent end-diastolic flow in the umbilical artery. Ultrasound Obstet Gynecol. 2008;31(1):55–64. doi: 10.1002/uog.5234.
    1. Kahler C, Schleussner E, Moller A, Seewald HJ. Nitric oxide donors: effects on fetoplacental blood flow. Eur J Obstet Gynecol Reprod Biol. 2004;115(1):10–14. doi: 10.1016/S0301-2115(02)00429-3.
    1. Dragoni S, Gori T, Lisi M, Di Stolfo G, Pautz A, Kleinert H, Parker JD. Pentaerythrityl tetranitrate and nitroglycerin, but not isosorbide mononitrate, prevent endothelial dysfunction induced by ischemia and reperfusion. Arterioscler Thromb Vasc Biol. 2007;27(9):1955–1959. doi: 10.1161/ATVBAHA.107.149278.

Source: PubMed

3
Abonner