Sea Urchin Pigments: Echinochrome A and Its Potential Implication in the Cytokine Storm Syndrome

Tamara Rubilar, Elena S Barbieri, Ayelén Gazquez, Marisa Avaro, Tamara Rubilar, Elena S Barbieri, Ayelén Gazquez, Marisa Avaro

Abstract

Background: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma. EchA is used as a pharmaceutical drug. Methods: A comprehensive literature and patent search review was undertaken using PubMed, as well as Google Scholar and Espacenet search engines to review these areas. Conclusions: In the bloodstream, EchA can mediate cellular responses, act as a radical scavenger, and activate the glutathione pathway. It decreases ROS imbalance, prevents and limits lipid peroxidation, and enhances mitochondrial functions. Most importantly, EchA contributes to the modulation of the immune system. EchA can regulate the generation of regulatory T cells, inhibit pro-inflammatory IL-1β and IL-6 cytokine production, while slightly reducing IL-8, TNF-α, INF-α, and NKT, thus correcting immune imbalance. These characteristics suggest that EchA is a candidate drug to alleviate the cytokine storm syndrome (CSS).

Keywords: cytokine storm syndrome; natural products; pigments; sea urchin; spinochromes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structures of 1,4-polyhydroxylated naphthoquinone derivatives from sea urchins. Created with JSME-Jmol (accessed on 9 September 2020).
Figure 2
Figure 2
EchA mediates cellular responses, acts as a radical scavenger preventing lipid peroxidation, improves mitochondrial activity, and activates the glutathione pathway, diminishing the overall ROS imbalance. Created with BioRender.com (accessed on 9 September 2020).
Figure 3
Figure 3
EchA may increase human leukocyte antigens (HLA-DR) in B lymphocytes, increasing antigen processing and presentation. Created with BioRender.com.
Figure 4
Figure 4
Proposed inhibition of NF-κB pathway by EchA through aryl hydrocarbon receptor (Ahr). Created with BioRender.com.

References

    1. Jeong S.H., Kim H.K., Song I.-S., Lee S.J., Ko K.S., Rhee B.D., Kim N., Mishchenko N.P., Fedoryev S.A., Stonik V.A., et al. Echinochrome A Protects Mitochondrial Function in Cardiomyocytes against Cardiotoxic Drugs. Mar. Drugs. 2014;12:2922–2936. doi: 10.3390/md12052922.
    1. Sayed D.A., Soliman A.M., Fahmy S.R. Echinochrome pigment as novel therapeutic agent against experimentally-induced gastric ulcer in rats. Biomed. Pharmacother. 2018;107:90–95. doi: 10.1016/j.biopha.2018.07.173.
    1. Soliman A.M., Mohamed A.S., Marie M.-A.S. Echinochrome pigment attenuates diabetic nephropathy in the models of type 1 and type 2 diabetes. Diabetes Mellit. 2016;19:464–470. doi: 10.14341/DM8039.
    1. Yoon C.S., Kim H.K., Mishchenko N.P., Vasileva E.A., Fedoreyev S.A., Shestak O.P., Balaneva N.N., Novikov V.L., Stonik V.A., Han J. The protective effects of echinochrome A structural analog against oxidative stress and doxorubicin in AC16 cardiomyocytes. Mol. Cell. Toxicol. 2019;15:407–414. doi: 10.1007/s13273-019-0044-6.
    1. Shikov A.N., Pozharitskaya O.N., Krishtopina A.S., Makarov V.G. Naphthoquinone pigments from sea urchins: Chemistry and pharmacology. Phytochem. Rev. 2018;17:509–534. doi: 10.1007/s11101-018-9547-3.
    1. Brasseur L., Hennebert E., Fievez L., Caulier G., Bureau F., Tafforeau L., Flammang P., Gerbaux P., Eeckhaut I. The Roles of Spinochromes in Four Shallow Water Tropical Sea Urchins and Their Potential as Bioactive Pharmacological Agents. Mar. Drugs. 2017;15:179. doi: 10.3390/md15060179.
    1. Vasileva E.A., Mishchenko N.P., Fedoreyev S.A. Diversity of Polyhydroxynaphthoquinone Pigments in North Pacific Sea Urchins. Chem. Biodivers. 2017;14:e1700182. doi: 10.1002/cbdv.201700182.
    1. Nishibori K. Isolation of Echinochrome A from the Spines of the Sea Urchin, Diadema setosum (Leske) Nature. 1959;184:1234. doi: 10.1038/1841234a0.
    1. Martínez M.J.A., Benito P.B. Studies in Natural Products Chemistry. Volume 30. Elsevier BV; Amsterdam, The Netherlands: 2005. Biological Activity of Quinones; pp. 303–366.
    1. Zhou D.-Y., Qin L., Zhu B.-W., Wang X.-D., Tan H., Yang J.-F., Li D.-M., Dong X.-P., Wu H.-T., Sun L.-M., et al. Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chem. 2011;129:1591–1597. doi: 10.1016/j.foodchem.2011.06.014.
    1. Shikov A.N., Flisyuk E.V., Obluchinskaya E.D., Pozharitskaya O.N. Pharmacokinetics of Marine-Derived Drugs. Mar. Drugs. 2020;18:557. doi: 10.3390/md18110557.
    1. Artyukov A.A., Zelepuga E.A., Bogdanovich L.N., Lupach N.M., Novikov V.L., Rutckova T.A., Kozlovskaya E.P. Marine Polyhydroxynaphthoquinone, Echinochrome A: Prevention of Atherosclerotic Inflammation and Probable Molecular Targets. J. Clin. Med. 2020;9:1494. doi: 10.3390/jcm9051494.
    1. Pozharitskaya O., Shikov A., Makarova M., Ivanova S., Kosman V., Makarov V.G., Bazgier V., Berka K., Otyepka M., Ulrichová J. Antiallergic Effects of Pigments Isolated from Green Sea Urchin (Strongylocentrotus droebachiensis) Shells. Planta Med. 2013;79:1698–1704. doi: 10.1055/s-0033-1351098.
    1. Itoh T., Fujiwara A., Ninomiya M., Maeda T., Ando M., Tsukamasa Y., Koketsu M. Inhibitory Effects of Echinochrome A, Isolated from Shell of the Sea Urchin Anthocidaris crassispina, on Antigen-Stimulated Degranulation in Rat Basophilic Leukemia RBL-2H3 Cells through Suppression of Lyn Activation. Nat. Prod. Commun. 2016;11:1303–1306. doi: 10.1177/1934578X1601100930.
    1. Lebed’Ko O.A., Ryzhavskii B.Y., Demidova O.V. Effect of Antioxidant Echinochrome A on Bleomycin-Induced Pulmonary Fibrosis. Bull. Exp. Biol. Med. 2015;159:351–354. doi: 10.1007/s10517-015-2960-3.
    1. Oh S.-J., Seo Y., Ahn J.-S., Shin Y.Y., Yang J.W., Kim H.K., Han J., Mishchenko N.P., Fedoreyev S.A., Stonik V.A., et al. Echinochrome A Reduces Colitis in Mice and Induces In Vitro Generation of Regulatory Immune Cells. Mar. Drugs. 2019;17:622. doi: 10.3390/md17110622.
    1. Mishchenko N.P., Fedoreev S.A., Bagirova V.L. Histochrome: A New Original Domestic Drug. Pharm. Chem. J. 2003;37:48–52. doi: 10.1023/A:1023659331010.
    1. Lee S.R., Pronto J.R.D., Sarankhuu B.-E., Ko K.S., Rhee B.D., Kim N., Mishchenko N.P., Fedoreyev S.A., Stonik V.A., Han J. Acetylcholinesterase Inhibitory Activity of Pigment Echinochrome A from Sea Urchin Scaphechinus mirabilis. Mar. Drugs. 2014;12:3560–3573. doi: 10.3390/md12063560.
    1. Kareva E.N., Tikhonov D.A., Mishchenko N.P., Fedoreev S.A., Shimanovskii N.L. Effects of Histochrome on P53 Expression in Mouse Red Bone Marrow Cells in a Model of Chronic Stress. Pharm. Chem. J. 2014;48:149–152. doi: 10.1007/s11094-014-1067-x.
    1. Lennikov A., Kitaichi N., Noda K., Mizuuchi K., Ando R., Dong Z., Fukuhara J., Kinoshita S., Namba K., Ohno S., et al. Amelioration of endotoxin-induced uveitis treated with the sea urchin pigment echinochrome in rats. Mol. Vis. 2014;20:171–177.
    1. Artyukov A.A., Popov A.M., Tsybulsky A.V., Krivoshapko O.N., Polyakova N.V. Pharmacological activity of echinochrome a alone and in the biologically active additive Timarin. Biochem. Suppl. Ser. B Biomed. Chem. 2013;7:237–242. doi: 10.1134/S1990750813030025.
    1. Mohamed A.S., Soliman A.M., Marie M.A.S. Mechanisms of echinochrome potency in modulating diabetic complications in liver. Life Sci. 2016;151:41–49. doi: 10.1016/j.lfs.2016.03.007.
    1. Soliman A.M., Mohamed A.S., Assem M., Marie S. Effect of echinochrome on body weight, musculoskeletal system and lipid profile of male diabetic rats. Austin J. Endocrinol. Diabetes. 2016;3:1045.
    1. Seo D.Y., McGregor R.A., Noh S.J., Choi S.J., Mishchenko N.P., Fedoreyev S.A., Stonik V.A., Han J. Echinochrome A Improves Exercise Capacity during Short-Term Endurance Training in Rats. Mar. Drugs. 2015;13:5722–5731. doi: 10.3390/md13095722.
    1. Ekimova I.V., Plaksina D.V., Pastukhov Y.F., Lapshina K.V., Lazarev V.F., Mikhaylova E.R., Polonik S.G., Pani B., Margulis B.A., Guzhova I.V., et al. New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson’s disease. Exp. Neurol. 2018;306:199–208. doi: 10.1016/j.expneurol.2018.04.012.
    1. Fahmy S.R., A Sayed D., Soliman A.M., Almortada N.Y., Aal W.E.A.-E. Protective effect of Echinochrome against intrahepatic cholestasis induced by alpha-naphthylisothiocyanate in rats. Braz. J. Biol. 2020;80:102–111. doi: 10.1590/1519-6984.192697.
    1. Kim H.K., Cho S.W., Heo H.J., Jeong S.H., Kim M., Ko K.S., Rhee B.D., Mishchenko N.P., Vasileva E.A., Fedoreyev S.A., et al. A Novel Atypical PKC-Iota Inhibitor, Echinochrome A, Enhances Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. Mar. Drugs. 2018;16:192. doi: 10.3390/md16060192.
    1. Tsybulsky A.V., Popov A.M., Klimovich A.A., Artyukov A.A., Kostetsky E.Y., Veselova M.D. Comparative study of echinochrome a, oxygenated carotenoids, ginsenoside Rh2, luteolin disulfate and metformin as a mean to potentiate antitumor effect of doxorubicin. Med. Immunol. 2018;20:179–192. doi: 10.15789/1563-0625-2018-2-179-192.
    1. Yoon C.S., Kim H.K., Mishchenko N.P., Vasileva E.A., Fedoreyev S.A., Stonik V.A., Han J. Spinochrome D Attenuates Doxorubicin-Induced Cardiomyocyte Death via Improving Glutathione Metabolism and Attenuating Oxidative Stress. Mar. Drugs. 2018;17:2. doi: 10.3390/md17010002.
    1. Mohamed A.S., Sadek S.A., Hassanein S.S., Soliman A.M. Hepatoprotective Effect of Echinochrome Pigment in Septic Rats. J. Surg. Res. 2019;234:317–324. doi: 10.1016/j.jss.2018.10.004.
    1. Fahmy S.R., Zaki N.I., Eid S.Z., Mohamed A.S., Hassanein S.S. Effectiveness of Echinochrome on HFD-Induced Hyperlipidemia in Rats. Nat. Prod. Bioprospect. 2019;9:337–344. doi: 10.1007/s13659-019-00221-4.
    1. Kim J.M., Kim J.H., Shin S.-C., Park G.C., Kim H.S., Kim K., Kim H.K., Han J., Mishchenko N.P., Vasileva E.A., et al. The Protective Effect of Echinochrome A on Extracellular Matrix of Vocal Folds in Ovariectomized Rats. Mar. Drugs. 2020;18:77. doi: 10.3390/md18020077.
    1. Mohamed A.S. Echinochrome Exhibits Antitumor Activity against Ehrlich Ascites Carcinoma in Swiss Albino Mice. Nutr. Cancer. 2021;73:124–132. doi: 10.1080/01635581.2020.1737152.
    1. Talalaeva O., Mishchenko N., Bryukhanov V., Zverev Y., Fedoreyev S.A., Lampatov V., Zharikov A. The influence of histochrome on exudative and proliferative phases of the experimental inflammation. Sib. Sci. Med. J. 2012;32:28–31.
    1. Ivanov A.V., Valuev-Elliston V.T., Ivanova O.N., Kochetkov S.N., Starodubova E.S., Bartosch B., Isaguliants M.G. Oxida-tive Stress during HIV Infection: Mechanisms and Consequences. Oxid. Med. Cell. Longev. 2016:1–18. doi: 10.1155/2016/8910396.
    1. Akaike T., Suga M., Maeda H. Free radicals in viral pathogenesis: Molecular mechanisms involving superoxide and NO. Proc. Soc. Exp. Boil. Med. 1998;217:64–73. doi: 10.3181/00379727-217-44206.
    1. Ramm G.A., Ruddell R.G. Hepatotoxicity of Iron Overload: Mechanisms of Iron-Induced Hepatic Fibrogenesis. Semin. Liver Dis. 2005;25:433–449. doi: 10.1055/s-2005-923315.
    1. Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018;54:287–293. doi: 10.1016/j.ajme.2017.09.001.
    1. Motohashi H., Yamamoto M. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 2004;10:549–557. doi: 10.1016/j.molmed.2004.09.003.
    1. Ahmed S.M.U., Luo L., Namani A., Wang X.J., Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2017;1863:585–597. doi: 10.1016/j.bbadis.2016.11.005.
    1. Gough N.R. Focus Issue: The Long and Short of Redox Signaling. Sci. Signal. 2009;2:eg12. doi: 10.1126/scisignal.290eg12.
    1. Günther T.M.F., Grinevicius V.M., Pedrosa R.C. Active Learning Using Protein Data Bank (PDB) Biochemical Data by Undergraduate Students of Nutrition Course at UFSC. Revista de Ensino de Bioquímica. 2018;16:11. doi: 10.16923/reb.v16i0.833.
    1. Irrcher I., Ljubicic V., Hood D.A. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. Am. J. Physiol. Physiol. 2009;296:C116–C123. doi: 10.1152/ajpcell.00267.2007.
    1. Sung D.J., So W.Y., Ryu H.Y., An H.S., Cha K.S. Induction of vasodilation by hydro-gen peroxide and its application in exercise science. Biol. Sport. 2012;29:87–92. doi: 10.5604/20831862.988882.
    1. Camini F.C., da Silva Caetano C.C., Almeida L.T., de Brito Magalhães C.L. Implications of oxidative stress on viral path-ogenesis. Arch. Virol. 2017;162:907–917. doi: 10.1007/s00705-016-3187-y.
    1. Tsybulsky A.V., Popov A.M., Artyukov A.A., Mazeika A.N., Kostetsky E.A., Sartina N.M., Krivoshapko O.N. Enhancing the immunogenic activity of influvac vaccine in the use of adjuvant TI complexes modified by echinochrome A. Vopr. Virusol. 2012;57:23–27.
    1. Busquets-Cortés C., Capó X., Argelich E., Ferrer M.D., Mateos D., Bouzas C., Abbate M., Tur J.A., Sureda A., Pons A. Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome. Nutrients. 2018;10:1920. doi: 10.3390/nu10121920.
    1. Ball J.A., Vlisidou I., Blunt M.D., Wood W., Ward S.G. Hydrogen Peroxide Triggers a Dual Signaling Axis To Selectively Suppress Activated Human T Lymphocyte Migration. J. Immunol. 2017;198:3679–3689. doi: 10.4049/jimmunol.1600868.
    1. Waring P., Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol. Cell Biol. 1999;77:312–317. doi: 10.1046/j.1440-1711.1999.00837.x.
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: Consider cytokine storm syn-dromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Henderson L.A., Canna S.W., Schulert G.S., Volpi S., Lee P.Y., Kernan K.F., Caricchio R., Mahmud S., Hazen M.M., Halyabar O., et al. On the Alert for Cytokine Storm: Immunopathology in COVID -19. Arthritis Rheumatol. 2020;72:1059–1063. doi: 10.1002/art.41285.
    1. Ruscitti P., Berardicurti O., Iagnocco A., Giacomelli R. Cytokine storm syndrome in severe COVID-19. Autoimmun. Rev. 2020;19:102562. doi: 10.1016/j.autrev.2020.102562.
    1. Konig M.F., Powell M.A., Staedtke V., Bai R.-Y., Thomas D.L., Fischer N.M., Huq S., Khalafallah A.M., Koenecke A., Xiong R., et al. Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists. J. Clin. Investig. 2020;130:3345–3347. doi: 10.1172/JCI139642.
    1. Gao Y., Xu G., Wang B., Liu B. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J. Intern. Med. 2021;289:147–161. doi: 10.1111/joim.13144.
    1. Sinha P., Matthay M.A., Calfee C.S. Is a “cytokine Storm” Relevant to COVID-19? JAMA Intern. Med. 2020;180:1152–1154. doi: 10.1001/jamainternmed.2020.3313.
    1. Canna S.W., Behrens E.M. Making Sense of the Cytokine Storm: A Conceptual Framework for Understanding, Diagnosing, and Treating Hemophagocytic Syndromes. Pediatr. Clin. N. Am. 2012;59:329–344. doi: 10.1016/j.pcl.2012.03.002.
    1. Tisoncik J.R., Korth M.J., Simmons C.P., Farrar J., Martin T.R., Katze M.G. Into the Eye of the Cytokine Storm. Microbiol. Mol. Biol. Rev. 2012;76:16–32. doi: 10.1128/MMBR.05015-11.
    1. Behrens E.M., Koretzky G.A. Review: Cytokine Storm Syndrome: Looking Toward the Precision Medicine Era. Arthritis Rheumatol. 2017;69:1135–1143. doi: 10.1002/art.40071.
    1. Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017;39:517–528. doi: 10.1007/s00281-017-0639-8.
    1. Murthy H., Iqbal M., Chavez J.C., Kharfan-Dabaja M.A. Cytokine Release Syndrome: Current Perspectives. ImmunoTargets Ther. 2019;8:43–52. doi: 10.2147/ITT.S202015.
    1. Yang C.-W., Peng T.-T., Hsu H.-Y., Lee Y.-Z., Wu S.-H., Lin W.-H., Ke Y.-Y., Hsu T.-A., Yeh T.-K., Huang W.-Z., et al. Repurposing old drugs as antiviral agents for coronaviruses. Biomed. J. 2020;43:368–374. doi: 10.1016/j.bj.2020.05.003.
    1. Lai C.C., Shih T.P., Ko W.C., Tang H.J., Hsueh P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents. 2020;55:105924. doi: 10.1016/j.ijantimicag.2020.105924.
    1. Jesenak M., Brndiarova M., Urbancikova I., Rennerova Z., Vojtkova J., Bobcakova A., Ostro R., Banovcin P. Immune Parameters and COVID-19 Infection–Associations With Clinical Severity and Disease Prognosis. Front. Cell. Infect. Microbiol. 2020;10:364. doi: 10.3389/fcimb.2020.00364.
    1. Moore B.J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020;368:473–474. doi: 10.1126/science.abb8925.
    1. Crayne C.B., Albeituni S., Nichols K.E., Cron R.Q. The Immunology of Macrophage Activation Syndrome. Front. Immunol. 2019;10:119. doi: 10.3389/fimmu.2019.00119.
    1. Lukan N. “Cytokine storm”, not only in COVID-19 patients. Mini-review. Immunol. Lett. 2020;228:38–44. doi: 10.1016/j.imlet.2020.09.007.
    1. Dinarello C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annu. Rev. Immunol. 2009;27:519–550. doi: 10.1146/annurev.immunol.021908.132612.
    1. Guloyan V., Oganesian B., Baghdasaryan N., Yeh C., Singh M., Guilford F., Ting Y.-S., Venketaraman V. Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants. 2020;9:914. doi: 10.3390/antiox9100914.
    1. Arnalich F.M., Hernanz A., López-Maderuelo D., De La Fuente M., Andrés-Mateos E., Fernández-Capitán C., Montiel C. Intracellular glutathione deficiency is associated with enhanced nuclear factor-κB activation in older noninsulin dependent diabetic patients. Free Radic. Res. 2001;35:873–884. doi: 10.1080/10715760100301371.
    1. Samiec P.S., Drews-Botsch C., Flagg E.W., Kurtz J.C., Sternberg P., Reed R.L., Jones D.P. Glutathione in Human Plasma: Decline in Association with Aging, Age-Related Macular Degeneration, and Diabetes. Free Radic. Biol. Med. 1998;24:699–704. doi: 10.1016/S0891-5849(97)00286-4.
    1. McGrowdera D., Ragoobirsingh D., Brown P. Modulation of glucose uptake in adipose tissue by nitric oxide-generating compounds. J. Biosci. 2006;31:347–354. doi: 10.1007/BF02704107.
    1. Fernandes A.B., Guarino M.P., Macedo M.P. Understanding the in-vivo relevance of S-nitrosothiols in insulin action. Can. J. Physiol. Pharmacol. 2012;90:887–894. doi: 10.1139/y2012-090.
    1. Durand M., Troyanov Y., Laflamme P., Gregoire G. Macrophage Activation Syndrome Treated with Anakinra. J. Rheumatol. 2010;37:879–880. doi: 10.3899/jrheum.091046.
    1. Miettunen P.M., Narendran A., Jayanthan A., Behrens E.M., Cron R.Q. Successful treatment of severe paediatric rheumatic disease-associated macrophage activation syndrome with interleukin-1 inhibition following conventional immunosup-pressive therapy: Case series with 12 patients. Rheumatology. 2011;50:417–419. doi: 10.1093/rheumatology/keq218.
    1. Hay K.A. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br. J. Haematol. 2018;183:364–374. doi: 10.1111/bjh.15644.
    1. Tsai A., Diawara O., Nahass R.G., Brunetti L. Impact of tocilizumab administration on mortality in severe COVID-19. Sci. Rep. 2020;10:1–7. doi: 10.1038/s41598-020-76187-y.
    1. Sordillo P.P., Helson L. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. In Vivo. 2015;29:1–4.
    1. Qin M., Cao Z., Wen J., Yu Q., Liu C., Wang F., Zhang J., Yang F., Li Y., Fishbein G., et al. An Antioxidant Enzyme Therapeutic for COVID-19. Adv. Mater. 2020;32:2004901. doi: 10.1002/adma.202004901.
    1. Geiler J., Michaelis M., Naczk P., Leutz A., Langer K., Doerr H.-W., Cinatl J. N-acetyl-l-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem. Pharmacol. 2010;79:413–420. doi: 10.1016/j.bcp.2009.08.025.
    1. Mehran R., Caixeta A. N-acetilcisteína en la prevención de la nefropatía inducida por contraste. Administrar o no admin-istrar: Ésta es la cuestión. Rev. Esp. Cardiol. 2010;63:9–11. doi: 10.1016/S0300-8932(10)70003-8.

Source: PubMed

3
Abonner