Telomeres are shorter in myocardial infarction patients compared to healthy subjects: correlation with environmental risk factors

Cécilia G Maubaret, Klelia D Salpea, Anjly Jain, Jackie A Cooper, Anders Hamsten, Julie Sanders, Hugh Montgomery, Andrew Neil, Devaki Nair, Steve E Humphries, HIFMECH consortium, Simon Broome Research Group, Cécilia G Maubaret, Klelia D Salpea, Anjly Jain, Jackie A Cooper, Anders Hamsten, Julie Sanders, Hugh Montgomery, Andrew Neil, Devaki Nair, Steve E Humphries, HIFMECH consortium, Simon Broome Research Group

Abstract

Shorter telomeres have been reported in premature myocardial infarction (MI) patients. Our work aimed at confirming the association of shorter telomere with MI in two case-control studies and in familial hypercholesterolemia (FH) patients with coronary heart disease (CHD). The HIFMECH study compared 598 white male patients (<60 years) who survived a first MI and 653 age-matched controls from North and South Europe. Additionally, from the UK, 413 coronary artery bypass graft (CABG) patients and two groups of 367 and 94 FH patients, of whom 145 and 17 respectively had premature CHD, were recruited. Leukocyte telomere length (LTL) was measured using a real-time polymerase chain reaction-based method. In HIFMECH, LTL was significantly shorter in subjects from the North (7.99 kb, SD 4.51) compared to the South (8.27 kb, SD 4.14; p = 0.02) and in cases (7.85 kb, SD 4.01) compared to controls (8.04 kb, SD 4.46; p = 0.04). In the CABG study, LTL was significantly shorter (6.89 kb, SD 4.14) compared to the HIFMECH UK controls (7.53, SD 5.29; p = 0.007). In both samples of FH patients, LTL was shorter in those with CHD (overall 8.68 kb, SD 4.65) compared to the non-CHD subjects (9.23 kb, SD 4.83; p = 0.012). Apart from a consistent negative correlation with age, LTL was not associated across studies with any measured CHD risk factors. The present data confirms that subjects with CHD have shorter telomeres than controls and extends this to those with monogenic and polygenic forms of CHD.

Figures

Fig. 1
Fig. 1
Decrease of telomere length with age. Telomere length is plotted as loge T/S ratio. r values were −0.18 (p = 0.0003), −0.07 (p = 0.03) and −0.16 (p < 0.0002), −0.35 (p = 0.0002) for CABG, HIFMECH, FH-SB and FH-RH, respectively
Fig. 2
Fig. 2
Comparison of leukocyte telomere length (kilobytes) between North and South in HIFMECH study. Geometric mean of age, exercise and status adjusted telomere length (in kilobytes) and confidence interval
Fig. 3
Fig. 3
Comparison of telomere length between cases and controls. Geometric mean of telomere length (in kilobytes) and confidence interval. In HIFMECH, telomere lengths are adjusted by age, region and exercise, in CABG adjusted to 65 years old and in FH age and gender adjusted
Fig. 4
Fig. 4
Correlation between telomere length and duration of statin use in FH patients. Telomere length is plotted as loge T/S ratio. r values were −0.16 (p = 0.03, N = 175) and −0.18 (p = 0.05, N = 127) for CHD and no CHD, respectively

References

    1. Seed M, Humphries SE, Thorogood M. A commentary on the NICE guideline on identification and management of familial hypercholesterolaemia. PCCJ. 2009;2:141–144.
    1. Neil HAW, Hammond T, Huxley R, Matthews DR, Humphries SE. Extent of underdiagnosis of familial hypercholesterolaemia in routine practice: prospective registry study. Br Med J. 2000;321:148. doi: 10.1136/bmj.321.7254.148.
    1. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM. Evidence for a mitotic clock in human hematopoietic stem-cells—loss of telomeric DNA with age. Proc Natl Acad Sci USA. 1994;91:9857–9860. doi: 10.1073/pnas.91.21.9857.
    1. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening in atherosclerosis. Lancet. 2001;358:472–473. doi: 10.1016/S0140-6736(01)05633-1.
    1. Kappei D, Londono-Vallejo JA. Telomere length inheritance and aging. Mech Ageing Dev. 2008;129:17–26. doi: 10.1016/j.mad.2007.10.009.
    1. Bianchi A, Shore D. How telomerase reaches its end: mechanism of telomerase regulation by the telomeric complex. Mol Cell. 2008;31:153–165. doi: 10.1016/j.molcel.2008.06.013.
    1. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117:2417–2426. doi: 10.1242/jcs.01097.
    1. Salpea KD, Talmud PJ, Cooper JA, Maubaret CG, Stephens JW, Abelak K, Humphries SE. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2009
    1. Aviv A. The epidemiology of human telomeres: faults and promises. J Gerontol. 2008;63:979–983.
    1. Terry DF, Nolan VG, Andersen SL, Perls TT, Cawthon R. Association of longer telomeres with better health in centenarians. J Gerontol. 2008;63:809–812.
    1. Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23:842–846. doi: 10.1161/01.ATV.0000067426.96344.32.
    1. Salpea KD, Nicaud V, Tiret L, Talmud PJ, Humphries SE. The association of telomere length with paternal history of premature myocardial infarction in the European Atherosclerosis Research Study II. J Mol Med. 2008;86:815–824. doi: 10.1007/s00109-008-0347-x.
    1. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29:283–289. doi: 10.2337/diacare.29.02.06.dc05-1715.
    1. Uziel O, Singer JA, Danicek V, Sahar G, Berkov E, Luchansky M, Fraser A, Ram R, Lahav M. Telomere dynamics in arteries and mononuclear cells of diabetic patients: effect of diabetes and of glycemic control. Exp Gerontol. 2007;42:971–978. doi: 10.1016/j.exger.2007.07.005.
    1. Adaikalakoteswari A, Balasubramanyam M, Mohan V. Telomere shortening occurs in Asian Indian Type 2 diabetic patients. Diabetic Med. 2005;22:1151–1156. doi: 10.1111/j.1464-5491.2005.01574.x.
    1. Honig LS, Schupf N, Lee JH, Tang MX, Mayeux R. Shorter telomeres are associated with mortality in those with APOE epsilon 4 and dementia. Ann Neurol. 2006;60:181–187. doi: 10.1002/ana.20894.
    1. Juhan-Vague I, Morange PE, Aubert H, Henry M, Aillaud MF, Alessi MC, Samnegard A, Hawe E, Yudkin J, Margaglione M. Plasma thrombin-activatable fibrinolysis inhibitor antigen concentration and genotype in relation to myocardial infarction in the North and South of Europe. Arterioscler Thromb Vasc Biol. 2002;22:867–873. doi: 10.1161/01.ATV.0000015445.22243.F4.
    1. Brull DJ, Montgomery HE, Sanders J, Dhamrait S, Luong L, Rumley A, Lowe GDO, Humphries SE. Interleukin-6 gene -174G > C and -572G > C promoter polymorphisms are strong predictors of plasma–interleukin-6 levels after coronary artery bypass surgery. Arterioscler Thromb Vasc Biol. 2001;21:1458–1463. doi: 10.1161/hq0901.094280.
    1. Neil HAW, Seagroatt V, Betteridge DJ, Cooper MB, Durrington PN, Miller JP, Seed M, Naoumova RP, Thompson GR, Huxley R, Humphries SE. Established and emerging coronary risk factors in patients with heterozygous familial hypercholesterolaemia. Heart. 2004;90:1431–1437. doi: 10.1136/hrt.2003.022764.
    1. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:e47. doi: 10.1093/nar/30.10.e47.
    1. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M, Aviv A. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165:14–21. doi: 10.1093/aje/kwj346.
    1. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, Packard CJ, Samani NJ, West of Scotland Coronary Prevention Study Group Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007;369:107–114. doi: 10.1016/S0140-6736(07)60071-3.
    1. van der Harst P, van der Steege G, de Boer RA, Voors AA, Hall AS, Mulder MJ, van Gilst WH, van Veldhuisen DJ. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol. 2007;49:1459–1464. doi: 10.1016/j.jacc.2007.01.027.
    1. Mukherjee M, Brouilette S, Stevens S, Shetty KR, Samani NJ. Association of shorter telomeres with coronary artery disease in Indian subjects. Heart. 2009;95:669–673. doi: 10.1136/hrt.2008.150250.
    1. Wilson WRW, Herbert KE, Mistry Y, Stevens SE, Patel HR, Hastings RA, Thompson MM, Williams B. Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur Heart J. 2008;29:2689–2694. doi: 10.1093/eurheartj/ehn386.
    1. Spyridopoulos I, Dimmeler S. Can telomere length predict cardiovascular risk? Lancet. 2007;369:81–82. doi: 10.1016/S0140-6736(07)60042-7.
    1. Iacoviello L, Arnout J, Buntinx F, Cappuccio FP, Dagnelie PC, de Lorgeril M, Dirckx C, Donati MB, Krogh V, Siani A. Dietary habit profile in European communities with different risk of myocardial infarction: the impact of migration as a model of gene-environment interaction. The IMMIDIET Study. Nutr Metab Cardiovasc Dis. 2001;11:122–126.
    1. McGrath M, Wong JYY, Michaud D, Hunter DJ, De Vivo I. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev. 2007;16:815–819. doi: 10.1158/1055-9965.EPI-06-0961.
    1. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366:662–664. doi: 10.1016/S0140-6736(05)66630-5.
    1. Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD, Aviv A. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168:154–158. doi: 10.1001/archinternmed.2007.39.
    1. Aviv A. Telomeres and human somatic fitness. J Gerontol. 2006;61:871–873.
    1. Satoh M, Minami Y, Takahashi Y, Tabuchi T, Itoh T, Nakamura M. Effect of intensive lipid-lowering therapy on telomere erosion in endothelial progenitor cells obtained from patients with coronary artery disease. Clin Sci (Lond) 2009;116:827–835. doi: 10.1042/CS20080404.
    1. Mahmoudi M, Gorenne I, Mercer J, Figg N, Littlewood T, Bennett M. Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ Res. 2008;103:717–725. doi: 10.1161/CIRCRESAHA.108.182899.
    1. Spyridopoulos I, Haendeler J, Urbich C, Brummendorf TH, Oh H, Schneider MD, Zeiher AM, Dimmeler S. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation. 2004;110:3136–3142. doi: 10.1161/01.CIR.0000142866.50300.EB.
    1. Wu KD, Orme LM, Shaughnessy J, Jacobson J, Barlogie B, Moore MAS. Telomerase and telomere length in multiple myeloma: correlations with disease heterogeneity, cytogenetic status, and overall survival. Blood. 2003;101:4982–4989. doi: 10.1182/blood-2002-11-3451.

Source: PubMed

3
Abonner