Disruption of maternal parenting circuitry by addictive process: rewiring of reward and stress systems

Helena J V Rutherford, Sarah K Williams, Sheryl Moy, Linda C Mayes, Josephine M Johns, Helena J V Rutherford, Sarah K Williams, Sheryl Moy, Linda C Mayes, Josephine M Johns

Abstract

Addiction represents a complex interaction between the reward and stress neural circuits, with increasing drug use reflecting a shift from positive reinforcement to negative reinforcement mechanisms in sustaining drug dependence. Preclinical studies have indicated the involvement of regions within the extended amygdala as subserving this transition, especially under stressful conditions. In the addictive situation, the reward system serves to maintain habitual behaviors that are associated with the relief of negative affect, at the cost of attenuating the salience of other rewards. Therefore, addiction reflects the dysregulation between core reward systems, including the prefrontal cortex (PFC), ventral tegmental area (VTA), and nucleus accumbens (NAc), as well as the hypothalamic-pituitary-adrenal axis and extended amygdala of the stress system. Here, we consider the consequences of changes in neural function during or following addiction on parenting, an inherently rewarding process that may be disrupted by addiction. Specifically, we outline the preclinical and human studies that support the dysregulation of reward and stress systems by addiction and the contribution of these systems to parenting. Increasing evidence suggests an important role for the hypothalamus, PFC, VTA, and NAc in parenting, with these same regions being those dysregulated in addiction. Moreover, in addicted adults, we propose that parenting cues trigger stress reactivity rather than reward salience, and this may heighten negative affect states, eliciting both addictive behaviors and the potential for child neglect and abuse.

Keywords: addiction; human; parenting; preclinical; reward; stress.

Figures

Figure 1
Figure 1
The relationship between addiction and parenting. In our model, addiction represents the dysregulation of stress and reward systems, both of which are adapted to support parenting. In the addicted situation we propose that drug-induced brain changes result in the rewarding value of infant cues being attenuated, replaced by a more stressful neurophysiological response. This stress response to infant cues may increase craving for drugs of abuse, promoting drug seeking and relapse in abstinent mothers, and perpetuates the cycle of neglect.
Figure 2
Figure 2
The relationship between neurocircuits of stress, reward, and parenting. Parenting circuitry (red) shares many regions with stress (blue) and reward (yellow). The regions listed in the center have been implicated in all three circuits, suggesting that disruption in regions of one circuit can have profound impact on the functioning of the other connected circuits. It can be seen by the number of regions included in the Parental Circuitry circle that performance of optimal parental care (and the many types of behavior that fall into this category) requires typical functioning of the majority of the brain. Color coding in the legend indicates the anatomical brain systems in which each region belongs.
Figure 3
Figure 3
Oxytocinergic projection in the rodent brain. Oxytocin release is anatomically suited to signal in reward, stress, and maternal circuitries. The magnocellular neurons of the PVN (red oval) and SON (blue oval) project to the posterior pituitary to release OT peripherally in response to suckling or stressful stimuli. The parvocellular neurons of the PVN also project to the reward circuitry (VTA and NAc), stress circuitry (hippocampus, AMY, and intra-PVN release), and maternal circuitry (MPOA/BNST and OB), and are believed to be critical for appropriate social interactions. PVN, paraventricular nucleus of hypothalamus; SON, supraoptic nucleus of hypothalamus; VTA, ventral tegmental area; NAc, nucleus accumbens; AMY, amygdala; MPOA, medial preoptic area of the hypothalamus; OB, olfactory bulb. Brain schematic adapted from Paxinos and Watson (1997).
Figure 4
Figure 4
Reward circuitry in the rodent brain. This midline sagittal slice of rodent brain depicts the main brain regions implicated in responding to rewarding stimuli. The ventral tegmental area (VTA) of the midbrain sends dopaminergic projections (blue arrows) to the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC). The NAc (as well as the lateral habenula, LHb) send GABAergic projections (red arrows) to the VTA, while the mPFC sends glutamatergic projections (green arrows) to the VTA. The mPFC and NAc have reciprocal glutamatergic projections. Activity changes in the NAc results in reward seeking or incentive behaviors (black arrow). Brain schematic adapted from Paxinos and Watson (1997).
Figure 5
Figure 5
Stress circuitry in the rodent brain. The paraventricular nucleus (PVN) in the hypothalamus sends corticotrophin releasing factor (CRF) projections (green arrows) to the central amygdala (CeA), bed nucleus of the stria terminalis (BNST), and the pituitary gland. The pituitary gland releases adrenocorticotrophic hormone (ACTH) into the blood stream that travels to the adrenal gland. Adrenal gland releases corticosterone (CORT) into the bloodstream. CORT acts as a negative feedback signal (red arrows) on the pituitary, PVN, and hippocampus, which sends excitatory projections to the PVN (green line arrows). The PVN receives additional excitatory input from the CeA and BNST. Brain schematic adapted from Paxinos and Watson (1997).
Figure 6
Figure 6
Role of brain changes in the relationship between drug use and parenting. Drug use is known to cause a number of brain changes (teal boxes and arrows). These changes can influence each other (red double-tipped arrows) by either amplifying or diminishing alterations depending on the behavioral and biological context. Importantly, these changes have independently been shown to contribute to parental care behaviors and when disrupted by drug use, results in reduced sensitivity to the rewarding value of infants and heightened stress. The stress response may be sufficient to trigger drug craving leading to continued drug use and relapse in abstinent mothers. In addition, drug seeking to reduce stress may also perpetuate the cycle of neglect.

References

    1. Adell A., Artigas F. (2004). The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems. Neurosci. Biobehav. Rev. 28, 415–43110.1016/j.neubiorev.2004.05.001
    1. Afonso V. M., Grella S. L., Chatterjee D., Fleming A. S. (2008). Previous maternal experience affects accumbal dopaminergic responses to pup-stimuli. Brain Res. 1198, 115–12310.1016/j.brainres.2007.12.042
    1. Afonso V. M., Sison M., Lovic V., Fleming A. S. (2007). Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization. Behav. Neurosci. 121, 515–52610.1037/0735-7044.121.3.515
    1. Alheid G. F. (2003). Extended amygdala and basal forebrain. Ann. N. Y. Acad. Sci. 985, 185–20510.1111/j.1749-6632.2003.tb07082.x
    1. Aston-Jones G., Harris G. C. (2004). Brain substrates for increased drug seeking during protracted withdrawal. Neuropharmacology 47(Suppl. 1), 167–17910.1016/j.neuropharm.2004.06.020
    1. Bakermans-Kranenburg M. J., van Ijzendoorn M. H. (2008). Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc. Cogn. Affect. Neurosci. 3, 128–13410.1093/scan/nsn004
    1. Ball S. A., Mayes L. C., DeTeso J. A., Schottenfeld R. S. (1997). Maternal attentiveness of cocaine abusers during child-based assessments. Am. J. Addict. 6, 135–14310.1111/j.1521-0391.1997.tb00562.x
    1. Bartels A., Zeki S. (2004). The neural correlates of maternal and romantic love. Neuroimage 21, 1155–116610.1016/j.neuroimage.2003.11.003
    1. Belej T., Manji D., Sioutis S., Barros H. M., Nobrega J. N. (1996). Changes in serotonin and norepinephrine uptake sites after chronic cocaine: pre- vs. post-withdrawal effects. Brain Res. 736, 287–29610.1016/0006-8993(96)00713-5
    1. Ben Shahar O., Keeley P., Cook M., Brake W., Joyce M., Nyffeler M., Heston R., Ettenberg A. (2007). Changes in levels of D1, D2, or NMDA receptors during withdrawal from brief or extended daily access to IV cocaine. Brain Res. 1131, 220–22810.1016/j.brainres.2006.10.069
    1. Berridge K. C. (2004). Motivation concepts in behavioral neuroscience. Physiol. Behav. 81, 179–20910.1016/j.physbeh.2004.02.004
    1. Berridge K. C., Robinson T. E., Aldridge J. W. (2009). Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 9, 65–7310.1016/j.coph.2008.12.014
    1. Blackwell P., Kirkhart K., Schmitt D., Kaiser M. (1998). Cocaine/polydrug-affected dyads: implications for infant cognitive development and mother-infant interaction during the first six postnatal months. J. Appl. Dev. Psychol. 19, 235–24810.1016/S0193-3973(99)80038-0
    1. Bosch O. J., Meddle S. L., Beiderbeck D. I., Douglas A. J., Neumann I. D. (2005). Brain oxytocin correlates with maternal aggression: link to anxiety. J. Neurosci. 25, 6807–681510.1523/JNEUROSCI.1342-05.2005
    1. Bosch O. J., Musch W., Bredewold R., Slattery D. A., Neumann I. D. (2007). Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: implications for postpartum mood disorder. Psychoneuroendocrinology 32, 267–27810.1016/j.psyneuen.2006.12.012
    1. Briand L. A., Blendy J. A. (2010). Molecular and genetic substrates linking stress and addiction. Brain Res. 1314, 219–23410.1016/j.brainres.2009.11.002
    1. Brummelte S., Galea L. A. (2010). Chronic corticosterone during pregnancy and postpartum affects maternal care, cell proliferation and depressive-like behavior in the dam. Horm. Behav. 58, 769–77910.1016/j.yhbeh.2010.07.012
    1. Burns K., Chethik L., Burns W. J., Clark R. (1991). Dyadic disturbances in cocaine-abusing mothers and their infants. J. Clin. Psychol. 47, 316–31910.1002/1097-4679(199103)47:2<316::AID-JCLP2270470220>;2-1
    1. Burns K. A., Chethik L., Burns W. J., Clark R. (1997). The early relationship of drug abusing mothers and their infants: an assessment at eight to twelve months of age. J. Clin. Psychol. 53, 279–28710.1002/(SICI)1097-4679(199704)53:3<279::AID-JCLP11>;2-F
    1. Byrnes E. M., Bridges R. S., Scanlan V. F., Babb J. A., Byrnes J. J. (2007). Sensorimotor gating and dopamine function in postpartum rats. Neuropsychopharmacology 32, 1021–103110.1038/sj.npp.1301222
    1. Campioni M. R., Xu M., McGehee D. S. (2009). Stress-induced changes in nucleus accumbens glutamate synaptic plasticity. J. Neurophysiol. 101, 3192–319810.1152/jn.91111.2008
    1. Cash S. J., Wilke D. J. (2003). An ecological model of maternal substance abuse and child neglect: issues, analyses, and recommendations. Am. J. Orthopsychiatry 73, 392–40410.1037/0002-9432.73.4.392
    1. Champagne F. A., Chretien P., Stevenson C. W., Zhang T. Y., Gratton A., Meaney M. J. (2004). Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J. Neurosci. 24, 4113–412310.1523/JNEUROSCI.5322-03.2004
    1. Champagne F. A., Curley J. P., Swaney W. T., Hasen N. S., Keverne E. B. (2009). Paternal influence on female behavior: the role of Peg3 in exploration, olfaction, and neuroendocrine regulation of maternal behavior of female mice. Behav. Neurosci. 123, 469–48010.1037/a0015060
    1. Champagne F. A., Meaney M. J. (2006). Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model. Biol. Psychiatry 59, 1227–123510.1016/j.biopsych.2005.10.016
    1. Chen B. T., Bowers M. S., Martin M., Hopf F. W., Guillory A. M., Carelli R. M., Chou J. K., Bonci A. (2008). Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 59, 288–29710.1016/j.neuron.2008.05.024
    1. Chen Y., Holzman C., Chung H., Senagore P., Talge N. M., Siler-Khodr T. (2010). Levels of maternal serum corticotropin-releasing hormone (CRH) at midpregnancy in relation to maternal characteristics. Psychoneuroendocrinology 35, 820–83210.1016/j.psyneuen.2009.11.007
    1. Ciccocioppo R., Sanna P. P., Weiss F. (2001). Cocaine-predictive stimulus induces drug-seeking behavior and neural activation in limbic brain regions after multiple months of abstinence: reversal by D(1) antagonists. Proc. Natl. Acad. Sci. U.S.A. 98, 1976–198110.1073/pnas.98.4.1976
    1. Cleck J. N., Ecke L. E., Blendy J. A. (2008). Endocrine and gene expression changes following forced swim stress exposure during cocaine abstinence in mice. Psychopharmacology (Berl.) 201, 15–2810.1007/s00213-008-1243-3
    1. Corominas M., Roncero C., Casas M. (2010). Corticotropin releasing factor and neuroplasticity in cocaine addiction. Life Sci. 86, 1–910.1016/j.lfs.2009.11.005
    1. Dalley J. W., Cardinal R. N., Robbins T. W. (2004). Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771–78410.1016/j.neubiorev.2004.09.006
    1. Dalley J. W., Mar A. C., Economidou D., Robbins T. W. (2008). Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol. Biochem. Behav. 90, 250–26010.1016/j.pbb.2007.12.021
    1. D’Anna K. L., Gammie S. C. (2009). Activation of corticotropin-releasing factor receptor 2 in lateral septum negatively regulates maternal defense. Behav. Neurosci. 123, 356–36810.1037/a0014987
    1. Der-Avakian A., Bland S. T., Schmid M. J., Watkins L. R., Spencer R. L., Maier S. F. (2006). The role of glucocorticoids in the uncontrollable stress-induced potentiation of nucleus accumbens shell dopamine and conditioned place preference responses to morphine. Psychoneuroendocrinology 31, 653–66310.1016/j.psyneuen.2006.02.004
    1. Di Chiara G. (2002). Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res. 137, 75–11410.1016/S0166-4328(02)00286-3
    1. Dinieri J. A., Nemeth C. L., Parsegian A., Carle T., Gurevich V. V., Gurevich E., Neve R. L., Nestler E. J., Carlezon W. A., Jr. (2009). Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J. Neurosci. 29, 1855–185910.1523/JNEUROSCI.5104-08.2009
    1. Dworkin S. I., Co C., Smith J. E. (1995). Rat brain neurotransmitter turnover rates altered during withdrawal from chronic cocaine administration. Brain Res. 682, 116–12610.1016/0006-8993(95)00327-M
    1. Eiden R. D. (2001). Maternal substance use and mother–infant feeding interactions. Infant Ment. Health J. 22, 497–51110.1002/imhj.1013
    1. Eiden R. D., Stevens A., Schuetze P., Dombkowski L. E. (2006). A conceptual model for maternal behavior among polydrug cocaine-using mothers: the role of postnatal cocaine use and maternal depression. Psychol. Addict. Behav. 20, 1–1010.1037/0893-164X.20.1.1
    1. Elliott J. C., Lubin D. A., Walker C. H., Johns J. M. (2001). Acute cocaine alters oxytocin levels in the medial preoptic area and amygdala in lactating rat dams: implications for cocaine-induced changes in maternal behavior and maternal aggression. Neuropeptides 35, 127–13410.1054/npep.2001.0854
    1. Erb S. (2010). Evaluation of the relationship between anxiety during withdrawal and stress-induced reinstatement of cocaine seeking. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 798–80710.1016/j.pnpbp.2009.11.025
    1. Febo M., Felix-Ortiz A. C., Johnson T. R. (2010). Inactivation or inhibition of neuronal activity in the medial prefrontal cortex largely reduces pup retrieval and grouping in maternal rats. Brain Res. 1325, 77–8810.1016/j.brainres.2010.02.027
    1. Febo M., Ferris C. F. (2007). Development of cocaine sensitization before pregnancy affects subsequent maternal retrieval of pups and prefrontal cortical activity during nursing. Neuroscience 148, 400–41210.1016/j.neuroscience.2007.05.026
    1. Febo M., Numan M., Ferris C. F. (2005). Functional magnetic resonance imaging shows oxytocin activates brain regions associated with mother-pup bonding during suckling. J. Neurosci. 25, 11637–1164410.1523/JNEUROSCI.3604-05.2005
    1. Febo M., Segarra A. C., Nair G., Schmidt K., Duong T. Q., Ferris C. F. (2004). The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology 30, 936–94310.1038/sj.npp.1300653
    1. Feldman R., Weller A., Zagoory-Sharon O., Levine A. (2007). Evidence for a neuroendocrinological foundation of human affiliation: plasma oxytocin levels across pregnancy and the postpartum period predict mother-infant bonding. Psychol. Sci. 18, 965–97010.1111/j.1467-9280.2007.02010.x
    1. Felton T. M., Linton L., Rosenblatt J. S., Morrell J. I. (1998). Intact neurons of the lateral habenular nucleus are necessary for the nonhormonal, pup-mediated display of maternal behavior in sensitized virgin female rats. Behav. Neurosci. 112, 1458–146510.1037/0735-7044.112.6.1458
    1. Ferguson J. N., Aldag J. M., Insel T. R., Young L. J. (2001). Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 21, 8278–8285
    1. Ferguson J. N., Young L. J., Hearn E. F., Matzuk M. M., Insel T. R., Winslow J. T. (2000). Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 25, 284–28810.1038/77040
    1. Ferris C. F., Kulkarni P., Sullivan J. M., Jr., Harder J. A., Messenger T. L., Febo M. (2005). Pup suckling is more rewarding than cocaine: evidence from functional magnetic resonance imaging and three-dimensional computational analysis. J. Neurosci. 25, 149–15610.1523/JNEUROSCI.3156-04.2005
    1. Fleming A. S., Korsmit M. (1996). Plasticity in the maternal circuit: effects of maternal experience on Fos-Lir in hypothalamic, limbic, and cortical structures in the postpartum rat. Behav. Neurosci. 110, 567–58210.1037/0735-7044.110.3.567
    1. Fleming A. S., Suh E. J., Korsmit M., Rusak B. (1994a). Activation of Fos-like immunoreactivity in the medial preoptic area and limbic structures by maternal and social interactions in rats. Behav. Neurosci. 108, 724–73410.1037/0735-7044.108.4.724
    1. Fleming A. S., Walsh C. (1994b). Neuropsychology of maternal behavior in the rat: c-fos expression during mother-litter interactions. Psychoneuroendocrinology 19, 429–44310.1016/0306-4530(94)90030-2
    1. Franklin T. R., Druhan J. P. (2000). Expression of Fos-related antigens in the nucleus accumbens and associated regions following exposure to a cocaine-paired environment. Eur. J. Neurosci. 12, 2097–210610.1046/j.1460-9568.2000.00071.x
    1. Freeman W. M., Brebner K., Lynch W. J., Robertson D. J., Roberts D. C., Vrana K. E. (2001). Cocaine-responsive gene expression changes in rat hippocampus. Neuroscience 108, 371–38010.1016/S0306-4522(01)00432-8
    1. Freeman W. M., Lull M. E., Patel K. M., Brucklacher R. M., Morgan D., Roberts D. C., Vrana K. E. (2010). Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration. BMC Neurosci. 11, 29.10.1186/1471-2202-11-29
    1. Gammie S. C., Bethea E. D., Stevenson S. A. (2007). Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice. BMC Neurosci. 8, 17.10.1186/1471-2202-8-17
    1. Gammie S. C., Edelmann M. N., Mandel-Brehm C., D’Anna K. L., Auger A. P., Stevenson S. A. (2008a). Altered dopamine signaling in naturally occurring maternal neglect. PLoS ONE 3, e1974.10.1371/journal.pone.0001974
    1. Gammie S. C., Seasholtz A. F., Stevenson S. A. (2008b). Deletion of corticotropin-releasing factor binding protein selectively impairs maternal, but not intermale aggression. Neuroscience 157, 502–51210.1016/j.neuroscience.2008.09.026
    1. Geisler S., Trimble M. (2008). The lateral habenula: no longer neglected. CNS Spectr. 13, 484–489
    1. Goeders N. E. (2002). Stress and cocaine addiction. J. Pharmacol. Exp. Ther. 301, 785–78910.1124/jpet.301.3.785
    1. Gottwald S. R., Thurman S. K. (1994). The effects of prenatal cocaine exposure on mother–infant interaction and infant arousal in the newborn period. Topics Early Child. Spec. Educ. 14, 217–23110.1177/027112149401400206
    1. Gulpinar M. A., Yegen B. C. (2004). The physiology of learning and memory: role of peptides and stress. Curr. Protein Pept. Sci. 5, 457–47310.2174/1389203043379341
    1. Haber S. N., Knutson B. (2009). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–2610.1038/npp.2009.129
    1. Hammer R. P., Jr., Cooke E. S. (1994). Gradual tolerance of metabolic activity is produced in mesolimbic regions by chronic cocaine treatment, while subsequent cocaine challenge activates extrapyramidal regions of rat brain. J. Neurosci. 14, 4289–4298
    1. Hatton G. I., Wang Y. F. (2008). Neural mechanisms underlying the milk ejection burst and reflex. Prog. Brain Res. 170, 155–16610.1016/S0079-6123(08)00414-7
    1. Heiming R. S., Sachser N. (2010). Consequences of serotonin transporter genotype and early adversity on behavioral profile – pathology or adaptation? Front. Neurosci. 4:187.10.3389/fnins.2010.00187
    1. Herman J. P., Ostrander M. M., Mueller N. K., Figueiredo H. (2005). Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1201–121310.1016/j.pnpbp.2005.08.006
    1. Hernandez-Gonzalez M., Prieto-Beracoechea C., Navarro-Meza M., Ramos-Guevara J. P., Reyes-Cortes R., Guevara M. A. (2005). Prefrontal and tegmental electrical activity during olfactory stimulation in virgin and lactating rats. Physiol. Behav. 83, 749–75810.1016/j.physbeh.2004.09.013
    1. Insel T. R. (2003). Is social attachment an addictive disorder? Physiol. Behav. 79, 351–35710.1016/S0031-9384(03)00148-3
    1. Jarrett T. M., McMurray M. S., Walker C. H., Johns J. M. (2006). Cocaine treatment alters oxytocin receptor binding but not mRNA production in postpartum rat dams. Neuropeptides 40, 161–16710.1016/j.npep.2006.03.002
    1. Jin S. H., Blendy J. A., Thomas S. A. (2005). Cyclic AMP response element-binding protein is required for normal maternal nurturing behavior. Neuroscience 133, 647–65510.1016/j.neuroscience.2005.03.017
    1. Johns J. M., Elliott D. L., Hofler V. E., Joyner P. W., McMurray M. S., Jarrett T. M., Haslup A. M., Middleton C. L., Elliott J. C., Walker C. H. (2005). Cocaine treatment and prenatal environment interact to disrupt intergenerational maternal behavior in rats. Behav. Neurosci. 119, 1605–161810.1037/0735-7044.119.6.1605
    1. Johns J. M., Lubin D. A., Walker C. H., Joyner P., Middleton C., Hofler V., McMurray M. (2004). Gestational treatment with cocaine and fluoxetine alters oxytocin receptor number and binding affinity in lactating rat dams. Int. J. Dev. Neurosci. 22, 321–32810.1016/j.ijdevneu.2004.03.002
    1. Johns J. M., Lubin D. A., Walker C. H., Meter K. E., Mason G. A. (1997a). Chronic gestational cocaine treatment decreases oxytocin levels in the medial preoptic area, ventral tegmental area and hippocampus in Sprague-Dawley rats. Neuropeptides 31, 439–44310.1016/S0143-4179(97)90037-8
    1. Johns J. M., Noonan L. R., Zimmerman L. I., Li L., Pedersen C. A. (1997b). Effects of short- and long- term withdrawal from gestational cocaine treatment on maternal behavior and aggression in Sprague-Dawley rats. Dev. Neurosci. 19, 368–37410.1159/000111234
    1. Johns J. M., Noonan L. R., Zimmerman L. I., Li L., Pedersen C. A. (1994). Effects of chronic and acute cocaine treatment on the onset of maternal behavior and aggression in Sprague-Dawley rats. Behav. Neurosci. 108, 107–11210.1037/0735-7044.108.1.107
    1. Johnson A. L., Morrow C. E., Accornero V. H., Xue L., Anthony J. C., Bandstra E. S. (2002). Maternal cocaine use: estimated effects on mother-child play interactions in the preschool period. J. Dev. Behav. Pediatr. 23, 191–20210.1097/00004703-200208000-00001
    1. Kash T. L., Nobis W. P., Matthews R. T., Winder D. G. (2008). Dopamine enhances fast excitatory synaptic transmission in the extended amygdala by a CRF-R1-dependent process. J. Neurosci. 28, 13856–1386510.1523/JNEUROSCI.4715-08.2008
    1. Kelley S. J. (1998). Stress and coping behaviors of substance-abusing mothers. J. Soc. Pediatr. Nurs. 3, 103–11010.1111/j.1744-6155.1998.tb00215.x
    1. Kimble D. P., Rogers L., Hendrickson C. W. (1967). Hippocampal lesions disrupt maternal, not sexual behavior in the albino rat. J. Comp. Physiol. Psychol. 63, 401–40710.1037/h0024605
    1. Kinnally E. L., Tarara E. R., Mason W. A., Mendoza S. P., Abel K., Lyons L. A., Capitanio J. P. (2009). Serotonin transporter expression is predicted by early life stress and is associated with disinhibited behavior in infant rhesus macaques. Genes Brain Behav. 9, 45–52
    1. Knutson B., Cooper J. C. (2005). Functional magnetic resonance imaging of reward prediction. Curr. Opin. Neurol. 18, 411–41710.1097/01.wco.0000173463.24758.f6
    1. Koob G. F., Volkow N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–23810.1038/npp.2009.110
    1. Kreibich A. S., Blendy J. A. (2004). cAMP response element-binding protein is required for stress but not cocaine-induced reinstatement. J. Neurosci. 24, 6686–669210.1523/JNEUROSCI.1706-04.2004
    1. Kreibich A. S., Briand L., Cleck J. N., Ecke L., Rice K. C., Blendy J. A. (2009). Stress-induced potentiation of cocaine reward: a role for CRF R1 and CREB. Neuropsychopharmacology 34, 2609–261710.1038/npp.2009.91
    1. Kringelbach M. L., Lehtonen A., Squire S., Harvey A. G., Craske M. G., Holliday I. E., Green A. L., Aziz T. Z., Hansen P. C., Cornelissen P. L., Stein A. (2008). A specific and rapid neural signature for parental instinct. PLoS ONE 3, e1664.10.1371/journal.pone.0001664
    1. Kuczkowski K. (2004). The cocaine abusing parturient: a review of anesthetic considerations. Can. J. Anesth. 51, 145–15410.1007/BF03018563
    1. Lau C., Simpson C. (2004). Animal models for the study of the effect of prolonged stress on lactation in rats. Physiol. Behav. 82, 193–19710.1016/j.physbeh.2004.05.004
    1. Le Moal M. (2009). Drug abuse: vulnerability and transition to addiction. Pharmacopsychiatry 42, S42–S5510.1055/s-0029-1216355
    1. Lee A., Clancy S., Fleming A. S. (2000). Mother rats bar-press for pups: effects of lesions of the mpoa and limbic sites on maternal behavior and operant responding for pup- reinforcement. Behav. Brain Res. 108, 215–231 [Corrected and republished article originally printed in Behav. Brain Res 1999; 100, 15–31].10.1016/S0166-4328(99)00170-9
    1. Lee H. J., Macbeth A. H., Pagani J. H., Young W. S., III. (2009). Oxytocin: the great facilitator of life. Prog. Neurobiol. 88, 127–151
    1. Li M., Fleming A. S. (2003). The nucleus accumbens shell is critical for normal expression of pup-retrieval in postpartum female rats. Behav. Brain Res. 145, 99–11110.1016/S0166-4328(03)00135-9
    1. Li M. Y., Yan Q. S., Coffey L. L., Reith M. E. (1996). Extracellular dopamine, norepinephrine, and serotonin in the nucleus accumbens of freely moving rats during intracerebral dialysis with cocaine and other monoamine uptake blockers. J. Neurochem. 66, 559–56810.1046/j.1471-4159.1996.66020559.x
    1. Light K. C., Grewen K. M., Amico J. A., Boccia M., Brownley K. A., Johns J. M. (2004). Deficits in plasma oxytocin responses and increased negative affect, stress, and blood pressure in mothers with cocaine exposure during pregnancy. Addict. Behav. 29, 1541–156410.1016/j.addbeh.2004.02.062
    1. Lightman S. L., Windle R. J., Wood S. A., Kershaw Y. M., Shanks N., Ingram C. D. (2001). Peripartum plasticity within the hypothalamo-pituitary-adrenal axis. Prog. Brain Res. 133, 111–129
    1. Lodge D. J., Grace A. A. (2005). Acute and chronic corticotropin-releasing factor 1 receptor blockade inhibits cocaine-induced dopamine release: correlation with dopamine neuron activity. J. Pharmacol. Exp. Ther. 314, 201–20610.1124/jpet.105.084913
    1. Lonstein J. S., Simmons D. A., Stern J. M. (1998). Functions of the caudal periaqueductal gray in lactating rats: kyphosis, lordosis, maternal aggression, and fearfulness. Behav. Neurosci. 112, 1502–151810.1037/0735-7044.112.6.1502
    1. Lonstein J. S., Stern J. M. (1997). Role of the midbrain periaqueductal gray in maternal nurturance and aggression: c-fos and electrolytic lesion studies in lactating rats. J. Neurosci. 17, 3364–3378
    1. Lorberbaum J. P., Newman J. D., Dubno J. R., Horwitz A. R., Nahas Z., Teneback C. C., Bloomer C. W., Bohning D. E., Vincent D., Johnson M. R., Emmanuel N., Brawman-Mintzer O., Book S. W., Lydiard R. B., Ballenger J. C., George M. S. (1999). Feasibility of using fMRI to study mothers responding to infant cries. Depress. Anxiety 10, 99–10410.1002/(SICI)1520-6394(1999)10:3<99::AID-DA2>;2-#
    1. Lorberbaum J. P., Newman J. D., Horwitz A. R., Dubno J. R., Lydiard R. B., Hamner M. B., Bohning D. E., George M. S. (2002). A potential role for thalamocingulate circuitry in human maternal behavior. Biol. Psychiatry 51, 431–44510.1016/S0006-3223(01)01284-7
    1. Lovic V., Palombo D. J., Fleming A. S. (2010). Impulsive rats are less maternal. Dev. Psychobiol. 53, 13–2210.1002/dev.20481
    1. Lubin D. A., Cannon J. B., Black M. C., Brown L. E., Johns J. M. (2003). Effects of chronic cocaine on monoamine levels in discrete brain structures of lactating rat dams. Pharmacol. Biochem. Behav. 74, 449–45410.1016/S0091-3057(02)01027-4
    1. Lubin D. A., Meter K. E., Walker C. H., Johns J. M. (2001). Effects of chronic cocaine administration on aggressive behavior in virgin rats. Prog. Neuropsychopharmacol. Biol. Psychol. 25, 1421–143310.1016/S0278-5846(01)00196-8
    1. Mattson B. J., Morrell J. I. (2005). Preference for cocaine- versus pup-associated cues differentially activates neurons expressing either Fos or cocaine- and amphetamine-regulated transcript in lactating, maternal rodents. Neuroscience 135, 315–32810.1016/j.neuroscience.2005.06.045
    1. Mayes L. C., Feldman R., Granger R. H., Haynes O. M., Bornstein M. H., Schottenfeld R. (1997). The effects of polydrug use with and without cocaine on mother-infant interaction at 3 and 6 months. Infant Behav. Dev. 20, 489–50210.1016/S0163-6383(97)90038-2
    1. McClure S. M., York M. K., Montague P. R. (2004). The neural substrates of reward processing in humans: the modern role of fMRI. Neuroscientist 10, 260–26810.1177/1073858404263526
    1. McEwen B. S., Gianaros P. J. (2011). Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431–44510.1146/annurev-med-052209-100430
    1. McMurray M. S., Joyner P. W., Middleton C. W., Jarrett T. M., Elliott D. L., Black M. A., Hofler V. E., Walker C. H., Johns J. M. (2008). Intergenerational effects of cocaine on maternal aggressive behavior and brain oxytocin in rat dams. Stress 11, 398–41010.1080/10253890701850239
    1. Meshul C. K., Noguchi K., Emre N., Ellison G. (1998). Cocaine-induced changes in glutamate and GABA immunolabeling within rat habenula and nucleus accumbens. Synapse 30, 211–22010.1002/(SICI)1098-2396(199810)30:2<211::AID-SYN11>;2-U
    1. Molitor A., Mayes L. C. (2010). Problematic dyadic interaction among toddlers and their polydrug-cocaine-using mothers. Infant Ment. Health J. 31, 121–14010.1002/imhj.20248
    1. Nelson C. J., Meter K. E., Walker C. H., Ayers A. A., Johns J. M. (1998). A dose–response study of chronic cocaine on maternal behavior in rats. Neurotoxicol. Teratol. 20, 657–66010.1016/S0892-0362(98)00016-6
    1. Nephew B. C., Febo M. (2010). Effect of cocaine sensitization prior to pregnancy on maternal care and aggression in the rat. Psychopharmacology (Berl.) 209, 127–13510.1007/s00213-010-1777-z
    1. Nitschke J. B., Nelson E. E., Rusch B. D., Fox A. S., Oakes T. R., Davidson R. J. (2004). Orbitofrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. Neuroimage 21, 583–59210.1016/j.neuroimage.2003.10.005
    1. Noriuchi M., Kikuchi Y., Senoo A. (2008). The functional neuroanatomy of maternal love: mother’s response to infant’s attachment behaviors. Biol. Psychiatry 63, 415–42310.1016/j.biopsych.2007.05.018
    1. Numan M. (2007). Motivational systems and the neural circuitry of maternal behavior in the rat. Dev. Psychobiol. 49, 12–2110.1002/dev.20198
    1. Numan M., Stolzenberg D. S., Dellevigne A. A., Correnti C. M., Numan M. J. (2009). Temporary inactivation of ventral tegmental area neurons with either muscimol or baclofen reversibly disrupts maternal behavior in rats through different underlying mechanisms. Behav. Neurosci. 123, 740–75110.1037/a0016204
    1. Olazabal D. E., Abercrombie E., Rosenblatt J. S., Morrell J. I. (2004). The content of dopamine, serotonin, and their metabolites in the neural circuit that mediates maternal behavior in juvenile and adult rats. Brain Res. Bull. 63, 259–26810.1016/j.brainresbull.2004.02.009
    1. Oleson E. B., Talluri S., Childers S. R., Smith J. E., Roberts D. C., Bonin K. D., Budygin E. A. (2009). Dopamine uptake changes associated with cocaine self-administration. Neuropsychopharmacology 34, 1174–118410.1038/npp.2008.186
    1. Pajulo M., Suchman N., Kalland M., Mayes L. (2006). Enhancing the effectiveness of residential treatment for substance abusing pregnant and parenting women: focus on maternal reflective functioning and mother-child relationship. Infant Ment. Health J. 27, 448.10.1002/imhj.20100
    1. Palkovits M., Young W. S., III, Kovacs K., Toth Z., Makara G. B. (1998). Alterations in corticotropin-releasing hormone gene expression of central amygdaloid neurons following long-term paraventricular lesions and adrenalectomy. Neuroscience 85, 135–14710.1016/S0306-4522(97)00621-0
    1. Panatier A., Oliet S. H. (2006). Neuron-glia interactions in the hypothalamus. Neuron Glia Biol. 2, 51–5810.1017/S1740925X06000019
    1. Pawluski J. L., Galea L. A. (2007). Reproductive experience alters hippocampal neurogenesis during the postpartum period in the dam. Neuroscience 149, 53–6710.1016/j.neuroscience.2007.07.031
    1. Paxinos G., Watson C. (1997). “The Rat Brain”, in Stereotaxic Coordinates. San Diego: Academic Press
    1. Pedersen C. A., Boccia M. L. (2002). Oxytocin links mothering received, mothering bestowed and adult stress responses. Stress 5, 259–26710.1080/1025389021000037586
    1. Pedersen C. A., Caldwell J. D., Walker C., Ayers G., Mason G. A. (1994). Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav. Neurosci. 108, 1163–117110.1037/0735-7044.108.6.1163
    1. Pego J. M., Morgado P., Pinto L. G., Cerqueira J. J., Almeida O. F., Sousa N. (2008). Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur. J. Neurosci. 27, 1503–151610.1111/j.1460-9568.2008.06112.x
    1. Peterson S. L., Olsta S. A., Matthews R. T. (1990). Cocaine enhances medial prefrontal cortex neuron response to ventral tegmental area activation. Brain Res. Bull. 24, 267–27310.1016/0361-9230(90)90214-K
    1. Quinones-Jenab V., Krey L. C., Schlussman S. D., Ho A., Kreek M. J. (2000). Chronic ‘binge’ pattern cocaine alters the neuroendocrine profile of pregnant rats. Neurosci. Lett. 282, 120–12210.1016/S0304-3940(00)00869-7
    1. Rasia-Filho A. A., Londero R. G., Achaval M. (2000). Functional activities of the amygdala: an overview. J. Psychiatry Neurosci. 25, 14–23
    1. Rees S. L., Panesar S., Steiner M., Fleming A. S. (2004). The effects of adrenalectomy and corticosterone replacement on maternal behavior in the postpartum rat. Horm. Behav. 46, 411–41910.1016/j.yhbeh.2004.03.010
    1. Rodaros D., Caruana D. A., Amir S., Stewart J. (2007). Corticotropin-releasing factor projections from limbic forebrain and paraventricular nucleus of the hypothalamus to the region of the ventral tegmental area. Neuroscience 150, 8–1310.1016/j.neuroscience.2007.09.043
    1. Russo S. J., Dietz D. M., Dumitriu D., Morrison J. H., Malenka R. C., Nestler E. J. (2010). The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 33, 267–27610.1016/j.tins.2010.02.002
    1. Russo S. J., Festa E. D., Fabian S. J., Gazi F. M., Kraish M., Jenab S., Quiñones-Jenab V. (2003). Gonadal hormones differentially modulate cocaine-induced conditioned place preference in male and female rats. Neuroscience 120, 523–53310.1016/S0306-4522(03)00317-8
    1. Seip K. M., Morrell J. I. (2007). Increasing the incentive salience of cocaine challenges preference for pup- over cocaine-associated stimuli during early postpartum: place preference and locomotor analyses in the lactating female rat. Psychopharmacology (Berl.) 194, 309–31910.1007/s00213-007-0841-9
    1. Seip K. M., Morrell J. I. (2009). Transient inactivation of the ventral tegmental area selectively disrupts the expression of conditioned place preference for pup- but not cocaine-paired contexts. Behav. Neurosci. 123, 1325–133810.1037/a0017666
    1. Seip K. M., Pereira M., Wansaw M. P., Reiss J. I., Dziopa E. I., Morrell J. I. (2008). Incentive salience of cocaine across the postpartum period of the female rat. Psychopharmacology (Berl.) 199, 119–13010.1007/s00213-008-1140-9
    1. Sesack S. R., Grace A. A. (2010). Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–4710.1038/npp.2009.93
    1. Shahrokh D. K., Zhang T. Y., Diorio J., Gratton A., Meaney M. J. (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology 151, 2276–228610.1210/en.2009-1271
    1. Sinha R. (2001). How does stress increase risk of drug abuse and relapse? Psychopharmacologia 158, 343–35910.1007/s002130100917
    1. Sinha R., Lacadie C., Skudlarski P., Fulbright R., Rounsaville B., Kosten T., Wexler B. E. (2005). Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study. Psychopharmacology (Berl.) 183, 171–18010.1007/s00213-005-0147-8
    1. Sinha R., Lacadie C., Skudlarski P., Wexler B. E. (2004). Neural circuits underlying emotional distress in humans. Ann. N. Y. Acad. Sci. 1032, 254–25710.1196/annals.1314.032
    1. Sinha R., Li C. S. R. (2007). Imaging stress- and cue-induced drug and alcohol craving: association with relapse and clinical implications. Drug Alcohol Rev. 26, 25–3110.1080/09595230601036960
    1. Slattery D. A., Neumann I. D. (2008). No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J. Physiol. 586, 377–38510.1113/jphysiol.2007.145896
    1. Smith J. W., Seckl J. R., Evans A. T., Costall B., Smythe J. W. (2004). Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats. Psychoneuroendocrinology 29, 227–24410.1016/S0306-4530(03)00025-8
    1. Sombers L. A., Beyene M., Carelli R. M., Wightman R. M. (2009). Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J. Neurosci. 29, 1735–174210.1523/JNEUROSCI.5562-08.2009
    1. Stack E. C., Balakrishnan R., Numan M. J., Numan M. (2002). A functional neuroanatomical investigation of the role of the medial preoptic area in neural circuits regulating maternal behavior. Behav. Brain Res. 131, 17–3610.1016/S0166-4328(01)00370-9
    1. Steffensen S. C., Taylor S. R., Horton M. L., Barber E. N., Lyle L. T., Stobbs S. H., Allison D. W. (2008). Cocaine disinhibits dopamine neurons in the ventral tegmental area via use-dependent blockade of GABA neuron voltage-sensitive sodium channels. Eur. J. Neurosci. 28, 2028–204010.1111/j.1460-9568.2008.06479.x
    1. Strathearn L., Fonagy P., Amico J., Montague P. R. (2009). Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology 34, 2655–266610.1038/npp.2009.103
    1. Strathearn L., Kosten T. R. (2008). Does chronic cocaine use affect a mother’s brain response to baby face cues? A pilot fMRI study. The College on Problems of Drug Dependence 70th Annual Scientific Meeting
    1. Substance Abuse and Mental Health Services Administration. (2008). Results from the 2007 National Survey on Drug Use and Health: National Findings (Office of Applied Studies, NSDUH Series H-34, DHHS Publication No. SMA 08-4343). Rockville, MD
    1. Suchman N., Decoste C., Castiglioni N., Legow N., Mayes L. (2008). THE MOTHERS AND TODDLERS PROGRAM: preliminary findings from an attachment-based parenting intervention for substance-abusing mothers. Psychoanal. Psychol. 25
    1. Suchman N. E., Luthar S. S. (2001). The mediating role of parenting stress in methadone-maintained mothers’ parenting. Parent Sci. Pract. 1, 285–315
    1. Takayanagi Y., Yoshida M., Bielsky I. F., Ross H. E., Kawamata M., Onaka T., Yanagisawa T., Kimura T., Matzuk M. M., Young L. J., Nishimori K. (2005). Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 102, 16096–1610110.1073/pnas.0505312102
    1. Thomas M. J., Malenka R. C. (2003). Synaptic plasticity in the mesolimbic dopamine system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 815–81910.1098/rstb.2002.1236
    1. Thompson A. C., Kristal M. B. (1996). Opioid stimulation in the ventral tegmental area facilitates the onset of maternal behavior in rats. Brain Res. 743, 184–20110.1016/S0006-8993(96)01041-4
    1. Tronick E. Z., Messinger D. S., Weinberg M. K., Lester B. M., LaGasse L., Seifer R., Bauer C. R., Shankaran S., Bada H., Wright L. L., Poole K., Liu J. (2005). Cocaine exposure is associated with subtle compromises of infants’ and mothers’ social-emotional behavior and dyadic features of their interaction in the face-to-face still-face paradigm. Dev. Psychol. 41, 711–72210.1037/0012-1649.41.5.711
    1. Uhlhorn S. B., Messinger D. S., Bauer C. R. (2005). Cocaine exposure and mother-toddler social play. Infant Behav. Dev. 28, 62–7310.1016/j.infbeh.2004.11.001
    1. Uvnas-Moberg K., Arn I., Magnusson D. (2005). The psychobiology of emotion: the role of the oxytocinergic system. Int. J. Behav. Med. 12, 59–6510.1207/s15327558ijbm1202_3
    1. Van den Oever M. C., Spijker S., Smit A. B., De Vries T. J. (2010). Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci. Biobehav. Rev. 25, 276–28410.1016/j.neubiorev.2009.11.016
    1. van Velzen A., Toth M. (2010). Role of maternal 5-HT(1A) receptor in programming offspring emotional and physical development. Genes Brain Behav. 9, 877–88510.1111/j.1601-183X.2010.00625.x
    1. Venkatesan A., Nath A., Ming G. L., Song H. (2007). Adult hippocampal neurogenesis: regulation by HIV and drugs of abuse. Cell Mol. Life Sci. 64, 2120–213210.1007/s00018-007-7063-5
    1. Walker D. L., Toufexis D. J., Davis M. (2003). Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur. J. Pharmacol. 463, 199–21610.1016/S0014-2999(03)01282-2
    1. Webster-Stratton C. (1990). Stress: a potential disruptor of parent perceptions and family interactions. J. Clin. Child Adolesc. Psychol. 19, 302–31210.1207/s15374424jccp1904_2
    1. Windle R. J., Kershaw Y. M., Shanks N., Wood S. A., Lightman S. L., Ingram C. D. (2004). Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. J. Neurosci. 24, 2974–298210.1523/JNEUROSCI.3432-03.2004
    1. Wise R. A., Morales M. (2010). A ventral tegmental CRF-glutamate-dopamine interaction in addiction. Brain Res. 1314, 38–4310.1016/j.brainres.2009.09.101
    1. Yang J. Y., Qi J., Han W. Y., Wang F., Wu C. F. (2010). Inhibitory role of oxytocin in psychostimulant-induced psychological dependence and its effects on dopaminergic and glutaminergic transmission. Acta Pharmacol. Sin. 31, 1071–107410.1038/aps.2010.157
    1. Yoshida M., Takayanagi Y., Inoue K., Kimura T., Young L. J., Onaka T., Nishimori K. (2009). Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–227110.1523/JNEUROSCI.5154-08.2009
    1. Zhang D., Yang S., Yang C., Jin G., Zhen X. (2008). Estrogen regulates responses of dopamine neurons in the ventral tegmental area to cocaine. Psychopharmacology (Berl.) 199, 625–63510.1007/s00213-008-1188-6
    1. Zhao C., Li M. (2010). c-Fos identification of neuroanatomical sites associated with haloperidol and clozapine disruption of maternal behavior in the rat. Neuroscience 166, 1043–105510.1016/j.neuroscience.2010.01.023

Source: PubMed

3
Abonner