COVID-19: Melatonin as a potential adjuvant treatment

Rui Zhang, Xuebin Wang, Leng Ni, Xiao Di, Baitao Ma, Shuai Niu, Changwei Liu, Russel J Reiter, Rui Zhang, Xuebin Wang, Leng Ni, Xiao Di, Baitao Ma, Shuai Niu, Changwei Liu, Russel J Reiter

Abstract

This article summarizes the likely benefits of melatonin in the attenuation of COVID-19 based on its putative pathogenesis. The recent outbreak of COVID-19 has become a pandemic with tens of thousands of infected patients. Based on clinical features, pathology, the pathogenesis of acute respiratory disorder induced by either highly homogenous coronaviruses or other pathogens, the evidence suggests that excessive inflammation, oxidation, and an exaggerated immune response very likely contribute to COVID-19 pathology. This leads to a cytokine storm and subsequent progression to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and often death. Melatonin, a well-known anti-inflammatory and anti-oxidative molecule, is protective against ALI/ARDS caused by viral and other pathogens. Melatonin is effective in critical care patients by reducing vessel permeability, anxiety, sedation use, and improving sleeping quality, which might also be beneficial for better clinical outcomes for COVID-19 patients. Notably, melatonin has a high safety profile. There is significant data showing that melatonin limits virus-related diseases and would also likely be beneficial in COVID-19 patients. Additional experiments and clinical studies are required to confirm this speculation.

Keywords: COVID-19; Cytokines; Immunomodulation; Melatonin; Oxidation-reduction; SARS-CoV-2.

Conflict of interest statement

Declaration of competing interest The authors declare that there are no conflicts of interest.

Copyright © 2020. Published by Elsevier Inc.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Pathogenesis of COVID-19 and potential adjuvant use of melatonin. We postulated that lungs infected by SARS-CoV-2, and a suppressed immune response, elevated inflammation and excessive oxidation stress proceed unabated, this results in the activation of the cytokine storm. ALI/ARDS may ensue, accompanied by a series of complications, the outcomes of which vary according to the severity of the disease. Melatonin may play a role of adjuvant medication in the regulation of immune system, inflammation and oxidation stress, and provide support for patients with ALI/ARDS and related complications. ALI: Acute lung injury; ARDS: Acute respiratory distress syndrome.

References

    1. Cui J., Li F., Shi Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England) 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Reiter R.J., Ma Q., Sharma R. Treatment of Ebola and other infectious diseases: melatonin “goes viral”. Melatonin Res. 2020;3:43–57. doi: 10.32794/mr11250047.
    1. Wu X., Ji H., Wang Y., Gu C., Gu W., Hu L., Zhu L. Melatonin alleviates radiation-induced lung injury via regulation of miR-30e/NLRP3 axis. Oxidative Med. Cell. Longev. 2019;2019:4087298. doi: 10.1155/2019/4087298.
    1. Yip H.-K., Chang Y.-C., Wallace C.G., Chang L.-T., Tsai T.-H., Chen Y.-L., Chang H.-W., Leu S., Zhen Y.-Y., Tsai C.-Y., Yeh K.-H., Sun C.-K., Yen C.-H. Melatonin treatment improves adipose-derived mesenchymal stem cell therapy for acute lung ischemia-reperfusion injury. J. Pineal Res. 2013;54:207–221. doi: 10.1111/jpi.12020.
    1. Huang S.-H., Cao X.-J., Liu W., Shi X.-Y., Wei W. Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J. Pineal Res. 2010;48:109–116. doi: 10.1111/j.1600-079X.2009.00733.x.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England) 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S. Preprints (); 2020. Pulmonary Pathology of Early Phase SARSCoV-2 Pneumonia. [Epub ahead of print]
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.-S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020 doi: 10.1016/S2213-2600(20)30076-X. Epub ahead of print.
    1. Liu J., Zheng X., Tong Q., Li W., Wang B., Sutter K., Trilling M., Lu M., Dittmer U., Yang D. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. 2020 doi: 10.1002/jmv.25709. Epub ahead of print.
    1. Chen J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect. 2020 doi: 10.1016/j.micinf.2020.01.004.
    1. Ren L.-L., Wang Y.-M., Wu Z.-Q., Xiang Z.-C., Guo L., Xu T., Jiang Y.-Z., Xiong Y., Li Y.-J., Li X.-W., Li H., Fan G.-H., Gu X.-Y., Xiao Y., Gao H., Xu J.-Y., Yang F., Wang X.-M., Wu C., Chen L., Liu Y.-W., Liu B., Yang J., Wang X.-R., Dong J., Li L., Huang C.-L., Zhao J.-P., Hu Y., Cheng Z.-S., Liu L.-L., Qian Z.-H., Qin C., Jin Q., Cao B., Wang J.-W. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin. Med. J. 2020 doi: 10.1097/CM9.0000000000000722. Epub ahead of print.
    1. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x.
    1. Cheung C.Y., Poon L.L.M., Ng I.H.Y., Luk W., Sia S.-F., Wu M.H.S., Chan K.-H., Yuen K.-Y., Gordon S., Guan Y., Peiris J.S.M. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J. Virol. 2005;79:7819–7826. doi: 10.1128/JVI.79.12.7819-7826.2005.
    1. Law H.K.W., Cheung C.Y., Ng H.Y., Sia S.F., Chan Y.O., Luk W., Nicholls J.M., Peiris J.S.M., Lau Y.L. Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood. 2005;106:2366–2374. doi: 10.1182/blood-2004-10-4166.
    1. Chu H., Zhou J., Wong B.H.-Y., Li C.C., Chan J.F.-W., Cheng Z.-S., Yang D., Wang D., Lee A.C.-Y., Li C.C., Yeung M.-L., Cai J.-P., Chan I.H.-Y., Ho W.-K., To K.K.-W., Zheng B.-J., Yao Y., Qin C., Yuen K.-Y. Middle east respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways. J. Infect. Dis. 2016;213:904–914. doi: 10.1093/infdis/jiv380.
    1. Fehr A.R., Channappanavar R., Jankevicius G., Fett C., Zhao J., Athmer J., Meyerholz D.K., Ahel I., Perlman S. The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. MBio. 2016;7 doi: 10.1128/mBio.01721-16.
    1. Chien J.-Y., Hsueh P.-R., Cheng W.-C., Yu C.-J., Yang P.-C. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology (Carlton, Vic.) 2006;11:715–722. doi: 10.1111/j.1440-1843.2006.00942.x.
    1. Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyerholz D.K., Perlman S. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19:181–193. doi: 10.1016/j.chom.2016.01.007.
    1. Smits S.L., de Lang A., van den Brand J.M.A., Leijten L.M., van IJcken W.F., Eijkemans M.J.C., van Amerongen G., Kuiken T., Andeweg A.C., Osterhaus A.D.M.E., Haagmans B.L. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog. 2010;6 doi: 10.1371/journal.ppat.1000756.
    1. Junaid A., Tang H., van Reeuwijk A., Abouleila Y., Wuelfroth P., van Duinen V., Stam W., van Zonneveld A.J., Hankemeier T., Mashaghi A. Ebola hemorrhagic shock syndrome-on-a-chip. IScience. 2020;23 doi: 10.1016/j.isci.2019.100765.
    1. Boga J.A., Coto-Montes A., Rosales-Corral S.A., Tan D.-X., Reiter R.J. Beneficial actions of melatonin in the management of viral infections: a new use for this “molecular handyman”? Rev. Med. Virol. 2012;22:323–338. doi: 10.1002/rmv.1714.
    1. Anderson G., Maes M., Markus R.P., Rodriguez M. Ebola virus: melatonin as a readily available treatment option. J. Med. Virol. 2015;87:537–543. doi: 10.1002/jmv.24130.
    1. Reiter R.J., Ma Q., Sharma R. Melatonin in mitochondria: mitigating clear and present dangers. Physiology (Bethesda) 2020;35:86–95. doi: 10.1152/physiol.00034.2019.
    1. Ben-Nathan D., Maestroni G.J., Lustig S., Conti A. Protective effects of melatonin in mice infected with encephalitis viruses. Arch. Virol. 1995;140:223–230. doi: 10.1007/bf01309858.
    1. Hardeland R. Melatonin and inflammation-story of a double-edged blade. J. Pineal Res. 2018;65:e12525. doi: 10.1111/jpi.12525.
    1. Wang Q.-L., Yang L., Peng Y., Gao M., Yang M.-S., Xing W., Xiao X.-Z. Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediat. Inflamm. 2019;2019:6453296. doi: 10.1155/2019/6453296.
    1. Sun C.-K., Lee F.-Y., Kao Y.-H., Chiang H.-J., Sung P.-H., Tsai T.-H., Lin Y.-C., Leu S., Wu Y.-C., Lu H.-I., Chen Y.-L., Chung S.-Y., Su H.-L., Yip H.-K. Systemic combined melatonin-mitochondria treatment improves acute respiratory distress syndrome in the rat. J. Pineal Res. 2015;58:137–150. doi: 10.1111/jpi.12199.
    1. Ling Y., Li Z.-Z., Zhang J.-F., Zheng X.-W., Lei Z.-Q., Chen R.-Y., Feng J.-H. MicroRNA-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via NQO1 in sepsis-associated acute respiratory distress syndrome. Life Sci. 2018;210:1–8. doi: 10.1016/j.lfs.2018.08.037.
    1. Pedrosa A.M. da C., Weinlich R., Mognol G.P., Robbs B.K., Viola J.P. de B., Campa A., Amarante-Mendes G.P. Melatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. J. Immunol (Baltimore, Md.: 1950) 2010;184:3487–3494. doi: 10.4049/jimmunol.0902961.
    1. Shang Y., Xu S.-P., Wu Y., Jiang Y.-X., Wu Z.-Y., Yuan S.-Y., Yao S.-L. Melatonin reduces acute lung injury in endotoxemic rats. Chin. Med. J. 2009;122:1388–1393.
    1. Ahmadi Z., Ashrafizadeh M. Melatonin as a potential modulator of Nrf2. Fund. Clin. Pharmacol. 2020;34:11–19. doi: 10.1111/fcp.12498.
    1. Habtemariam S., Daglia M., Sureda A., Selamoglu Z., Gulhan M.F., Nabavi S.M. Melatonin and respiratory diseases: a review. Curr. Top. Med. Chem. 2017;17:467–488. doi: 10.2174/1568026616666160824120338.
    1. Hardeland R. Aging, melatonin, and the pro- and anti-inflammatory networks. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20051223.
    1. Carrascal L., Nunez-Abades P., Ayala A., Cano M. Role of melatonin in the inflammatory process and its therapeutic potential. Curr. Pharm. Design. 2018;24:1563–1588. doi: 10.2174/1381612824666180426112832.
    1. Imai Y., Kuba K., Neely G.G., Yaghubian-Malhami R., Perkmann T., van Loo G., Ermolaeva M., Veldhuizen R., Leung Y.H.C., Wang H., Liu H., Sun Y., Pasparakis M., Kopf M., Mech C., Bavari S., Peiris J.S.M., Slutsky A.S., Akira S., Hultqvist M., Holmdahl R., Nicholls J., Jiang C., Binder C.J., Penninger J.M. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235–249. doi: 10.1016/j.cell.2008.02.043.
    1. Zhao Y., Wang H., Chen W., Chen L., Liu D., Wang X., Wang X. Melatonin attenuates white matter damage after focal brain ischemia in rats by regulating the TLR4/NF-kappaB pathway. Brain Res. Bull. 2019;150:168–178. doi: 10.1016/j.brainresbull.2019.05.019.
    1. Luo J., Song J., Zhang H., Zhang F., Liu H., Li L., Zhang Z., Chen L., Zhang M., Lin D., Lin M., Zhou R. Melatonin mediated Foxp3-downregulation decreases cytokines production via the TLR2 and TLR4 pathways in H. pylori infected mice. Int. Immunopharmacol. 2018;64:116–122. doi: 10.1016/j.intimp.2018.08.034.
    1. Renn T.-Y., Huang Y.-K., Feng S.-W., Wang H.-W., Lee W.-F., Lin C.-T., Burnouf T., Chen L.-Y., Kao P.-F., Chang H.-M. Prophylactic supplement with melatonin successfully suppresses the pathogenesis of periodontitis through normalizing RANKL/OPG ratio and depressing the TLR4/MyD88 signaling pathway. J. Pineal Res. 2018;64 doi: 10.1111/jpi.12464.
    1. Chen H.-H., Chang C.-L., Lin K.-C., Sung P.-H., Chai H.-T., Zhen Y.-Y., Chen Y.-C., Wu Y.-C., Leu S., Tsai T.-H., Chen C.-H., Chang H.-W., Yip H.-K. Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lung injury. Am. J. Transl. Res. 2014;6:439–458.
    1. Wang M.-L., Wei C.-H., Wang W.-D., Wang J.-S., Zhang J., Wang J.-J. Melatonin attenuates lung ischaemia-reperfusion injury via inhibition of oxidative stress and inflammation. Interact. Cardiov. Th. 2018;26:761–767. doi: 10.1093/icvts/ivx440.
    1. Tamura D.Y., Moore E.E., Partrick D.A., Johnson J.L., Offner P.J., Silliman C.C. Acute hypoxemia in humans enhances the neutrophil inflammatory response. Shock (Augusta, Ga.) 2002;17:269–273. doi: 10.1097/00024382-200204000-00005.
    1. Sarma J.V., Ward P.A. Oxidants and redox signaling in acute lung injury. Compr. Physiol. 2011;1:1365–1381. doi: 10.1002/cphy.c100068.
    1. Gitto E., Reiter R.J., Sabatino G., Buonocore G., Romeo C., Gitto P., Buggé C., Trimarchi G., Barberi I. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J. Pineal Res. 2005;39:287–293. doi: 10.1111/j.1600-079X.2005.00251.x.
    1. Gitto E., Reiter R.J., Cordaro S.P., La R.M., Chiurazzi P., Trimarchi G., Gitto P., Calabrò M.P., Barberi I. Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin. Am. J. Perinatol. 2004;21:209–216. doi: 10.1055/s-2004-828610.
    1. Rogers M.C., Williams J.V. Quis Custodiet Ipsos Custodes? Regulation of cell-mediated immune responses following viral lung infections. Annu. Rev. Virol. 2018;5:363–383. doi: 10.1146/annurev-virology-092917-043515.
    1. Yang C.-Y., Chen C.-S., Yiang G.-T., Cheng Y.-L., Yong S.-B., Wu M.-Y., Li C.-J. New insights into the immune molecular regulation of the pathogenesis of acute respiratory distress syndrome. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19020588.
    1. Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J., Wang Z., Li J., Li J., Feng C., Zhang Z., Wang L., Peng L., Chen L., Qin Y., Zhao D., Tan S., Yin L., Xu J., Zhou C., Jiang C., Liu L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020 doi: 10.1007/s11427-020-1643-8.
    1. Miller S.C., Pandi-Perumal S.R., Esquifino A.I., Cardinali D.P., Maestroni G.J.M. The role of melatonin in immuno-enhancement: potential application in cancer. Int. J. Exp. Pathol. 2006;87:81–87. doi: 10.1111/j.0959-9673.2006.00474.x.
    1. Kaur C., Ling E.A. Effects of melatonin on macrophages/microglia in postnatal rat brain. J. Pineal Res. 1999;26:158–168. doi: 10.1111/j.1600-079x.1999.tb00578.x.
    1. Tate M.D., Ong J.D.H., Dowling J.K., McAuley J.L., Robertson A.B., Latz E., Drummond G.R., Cooper M.A., Hertzog P.J., Mansell A. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza a virus infection via temporal inhibition. Sci. Rep. 2016;6:27912. doi: 10.1038/srep27912.
    1. Shen C., Zhang Z., Xie T., Ji J., Xu J., Lin L., Yan J., Kang A., Dai Q., Dong Y., Shan J., Wang S., Zhao X. Rhein suppresses lung inflammatory injury induced by human respiratory syncytial virus through inhibiting NLRP3 inflammasome activation via NF-kappaB pathway in mice. Front. Pharmacol. 2019;10:1600. doi: 10.3389/fphar.2019.01600.
    1. Mei S.H.J., McCarter S.D., Deng Y., Parker C.H., Liles W.C., Stewart D.J. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007;4:e269. doi: 10.1371/journal.pmed.0040269.
    1. Wu H.-M., Xie Q.-M., Zhao C.-C., Xu J., Fan X.-Y., Fei G.-H. Melatonin biosynthesis restored by CpG oligodeoxynucleotides attenuates allergic airway inflammation via regulating NLRP3 inflammasome. Life Sci. 2019;239:117067. doi: 10.1016/j.lfs.2019.117067.
    1. Zhang Y., Li X.X., Grailer J.J., Wang N., Wang M., Yao J., Zhong R., Gao G.F., Ward P.A., Tan D.-X., Li X.X. Melatonin alleviates acute lung injury through inhibiting the NLRP3 inflammasome. J. Pineal Res. 2016;60:405–414. doi: 10.1111/jpi.12322.
    1. Bazyar H., Gholinezhad H., Moradi L., Salehi P., Abadi F., Ravanbakhsh M., Zare Javid A. The effects of melatonin supplementation in adjunct with non-surgical periodontal therapy on periodontal status, serum melatonin and inflammatory markers in type 2 diabetes mellitus patients with chronic periodontitis: a double-blind, placebo-controlled trial. Inflammopharmacology. 2019;27:67–76. doi: 10.1007/s10787-018-0539-0.
    1. Sanchez-Lopez A.L., Ortiz G.G., Pacheco-Moises F.P., Mireles-Ramirez M.A., Bitzer-Quintero O.K., Delgado-Lara D.L.C., Ramirez-Jirano L.J., Velazquez-Brizuela I.E. Efficacy of melatonin on serum pro-inflammatory cytokines and oxidative stress markers in relapsing remitting multiple sclerosis. Arch. Med. Res. 2018;49:391–398. doi: 10.1016/j.arcmed.2018.12.004.
    1. Kucukakin B., Lykkesfeldt J., Nielsen H.J., Reiter R.J., Rosenberg J., Gogenur I. Utility of melatonin to treat surgical stress after major vascular surgery–a safety study. J. Pineal Res. 2008;44:426–431. doi: 10.1111/j.1600-079X.2007.00545.x.
    1. Zhao Z., Lu C., Li T., Wang W., Ye W., Zeng R., Ni L., Lai Z., Wang X., Liu C. The protective effect of melatonin on brain ischemia and reperfusion in rats and humans: in vivo assessment and a randomized controlled trial. J. Pineal Res. 2018;65:e12521. doi: 10.1111/jpi.12521.
    1. Shafiei E., Bahtoei M., Raj P., Ostovar A., Iranpour D., Akbarzadeh S., Shahryari H., Anvaripour A., Tahmasebi R., Netticadan T., Movahed A. Effects of N-acetyl cysteine and melatonin on early reperfusion injury in patients undergoing coronary artery bypass grafting: a randomized, open-labeled, placebo-controlled trial. Medicine. 2018;97:e11383. doi: 10.1097/MD.0000000000011383.
    1. Zarezadeh M., Khorshidi M., Emami M., Janmohammadi P., Kord-Varkaneh H., Mousavi S.M., Mohammed S.H., Saedisomeolia A., Alizadeh S. Melatonin supplementation and pro-inflammatory mediators: a systematic review and meta-analysis of clinical trials. Eur. J. Nutr. 2019 doi: 10.1007/s00394-019-02123-0. [Epub ahead of print]
    1. Cheng J., Yang H.-L., Gu C.-J., Liu Y.-K., Shao J., Zhu R., He Y.-Y., Zhu X.-Y., Li M.-Q. Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1alpha/ROS/VEGF. Int. J. Mol. Med. 2019;43:945–955. doi: 10.3892/ijmm.2018.4021.
    1. Volt H., Garcia J.A., Doerrier C., Diaz-Casado M.E., Guerra-Librero A., Lopez L.C., Escames G., Tresguerres J.A., Acuna-Castroviejo D. Same molecule but different expression: aging and sepsis trigger NLRP3 inflammasome activation, a target of melatonin. J. Pineal Res. 2016;60:193–205. doi: 10.1111/jpi.12303.
    1. Dai W., Huang H., Si L., Hu S., Zhou L., Xu L., Deng Y. Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway. Int. J. Mol. Med. 2019;44:1197–1204. doi: 10.3892/ijmm.2019.4306.
    1. Zhang J., Wang L., Xie W., Hu S., Zhou H., Zhu P., Zhu H. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: a new mechanism involving BAP31 upregulation and MAPK-ERK pathway. J. Cell. Physiol. 2020;235:2847–2856. doi: 10.1002/jcp.29190.
    1. Chen J., Xia H., Zhang L., Zhang H., Wang D., Tao X. Protective effects of melatonin on sepsis-induced liver injury and dysregulation of gluconeogenesis in rats through activating SIRT1/STAT3 pathway. Biomed. Pharmacother. 2019;117:109150. doi: 10.1016/j.biopha.2019.109150.
    1. Nduhirabandi F., Lamont K., Albertyn Z., Opie L.H., Lecour S. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J. Pineal Res. 2016;60:39–47. doi: 10.1111/jpi.12286.
    1. Tordjman S., Chokron S., Delorme R., Charrier A., Bellissant E., Jaafari N., Fougerou C. Melatonin: pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 2017;15:434–443. doi: 10.2174/1570159X14666161228122115.
    1. Lewandowska K., Malkiewicz M.A., Sieminski M., Cubala W.J., Winklewski P.J., Medrzycka-Dabrowska W.A. The role of melatonin and melatonin receptor agonist in the prevention of sleep disturbances and delirium in intensive care unit - a clinical review. Sleep Med. 2020;69:127–134. doi: 10.1016/j.sleep.2020.01.019.
    1. Mistraletti G., Umbrello M., Sabbatini G., Miori S., Taverna M., Cerri B., Mantovani E.S., Formenti P., Spanu P., D’Agostino A., Salini S., Morabito A., Fraschini F., Reiter R.J., Iapichino G. Melatonin reduces the need for sedation in ICU patients: a randomized controlled trial. Minerva Anestesiol. 2015;81:1298–1310.
    1. Lewis S.R., Pritchard M.W., Schofield-Robinson O.J., Alderson P., Smith A.F. Melatonin for the promotion of sleep in adults in the intensive care unit. The Cochrane Database of Syst. Rev. 2018;5:CD012455. doi: 10.1002/14651858.CD012455.pub2.
    1. Andersen L.P.H., Gogenur I., Rosenberg J., Reiter R.J. The safety of melatonin in humans. Clin. Drug Investig. 2016;36:169–175. doi: 10.1007/s40261-015-0368-5.
    1. Bourne R.S., Mills G.H., Minelli C. Melatonin therapy to improve nocturnal sleep in critically ill patients: encouraging results from a small randomised controlled trial. Crit. Care (London, England). 2008;12:R52. doi: 10.1186/cc6871.
    1. Mistraletti G., Sabbatini G., Taverna M., Figini M.A., Umbrello M., Magni P., Ruscica M., Dozio E., Esposti R., DeMartini G., Fraschini F., Rezzani R., Reiter R.J., Iapichino G. Pharmacokinetics of orally administered melatonin in critically ill patients. J. Pineal Res. 2010;48:142–147. doi: 10.1111/j.1600-079X.2009.00737.x.
    1. Nordlund J.J., Lerner A.B. The effects of oral melatonin on skin color and on the release of pituitary hormones. J. Clin. Endocrinol. Metab. 1977;45:768–774. doi: 10.1210/jcem-45-4-768.

Source: PubMed

3
Abonner