Nicotinamide treatment robustly protects from inherited mouse glaucoma

Pete A Williams, Jeffrey M Harder, Brynn H Cardozo, Nicole E Foxworth, Simon W M John, Pete A Williams, Jeffrey M Harder, Brynn H Cardozo, Nicole E Foxworth, Simon W M John

Abstract

Nicotinamide adenine dinucleotide (NAD) is a key molecule in several cellular processes and is essential for healthy mitochondrial metabolism. We recently reported that mitochondrial dysfunction is among the very first changes to occur within retinal ganglion cells during initiation of glaucoma in DBA/2J mice. Furthermore, we demonstrated that an age-dependent decline of NAD contributes to mitochondrial dysfunction and vulnerability to glaucoma. The decrease in NAD renders retinal ganglion cells vulnerable to a metabolic crisis following periods of high intraocular pressure. Treating mice with the NAD precursor nicotinamide (the amide form of vitamin B3) inhibited many age- and high intraocular pressure- dependent changes with the highest tested dose decreasing the likelihood of developing glaucoma by ∼10-fold. In this communication, we present further evidence of the neuroprotective effects of nicotinamide against glaucoma in mice, including its prevention of optic nerve excavation and axon loss as assessed by histologic analysis and axon counting. We also show analyses of age- and intraocular pressure- dependent changes in transcripts of NAD producing enzymes within retinal ganglion cells and that nicotinamide treatment prevents these transcriptomic changes.

Keywords: Glaucoma; NAD+; axon degeneration; nicotinamide; optic nerve head cupping; retinal ganglion cell.

Figures

Figure 1.
Figure 1.
NAM prevents optic nerve atrophy and axon loss in glaucoma. Optic nerves from control (D2-Gpnmb+; A), DBA/2J (D2; B), and treated (D2 + NAMLo, D2 + NAMHi; (C) and D) mice were sectioned and stained with PPD, which darkly stains the axoplasm of dead or dying axons. Surviving axons were counted using AxonJ (E) and optic nerve cross sectional area measured (F). There is a significant decrease in total axon number and optic nerve area in glaucomatous D2 eyes compared with controls. Nerves from NAM treated mice are indistinguishable from no glaucoma controls. Nerves were assessed at 12 months of age. NAMLo and NAMHi refer to our low and high dose of NAM. Scale bar = 100 μm (A) and 30 μm (insets). * P < 0.05, * P < 0.01, * P < 0.001.
Figure 2.
Figure 2.
NAM prevents optic nerve cupping in glaucoma. The presence of optic nerve cupping was assessed using haematoxylin and eosin staining (H & E) and cresyl violet staining (Nissl). In control eyes (D2-Gpnmb+) there is a robust ganglion cell layer and nerve fiber layer (which contains axons from the retinal ganglion cells, denoted by the distance between the black arrows). In D2 eyes that have undergone glaucomatous neurodegeneration there is evident optic nerve cupping (asterisk), and a loss of ganglion cell layer cells and nerve fiber layer thickness. Cupping and RGC loss were absent in eyes of NAM treated mice (D2 + NAMLo), thus NAM treatment protected from all assessed signs of glaucoma. Eyes were assessed at 12 months of age. V corresponds to the central retinal vessel. GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer. Scale bar = 50 μm.
Figure 3.
Figure 3.
NAD synthesis and NAD relevant genes in RGCs. (A) NAD synthesis. Tryptophan (Trp) is used to form NAD+de novo from diet in an 8 step pathway with nicotinic acid mononucleotide (NAMN) and nicotinic acid adenine dinucleotide (NAAD+) intermediates. Alternatively NAD+ can be produced through 2 other core pathways; the Preiss-Handler pathway from nicotinic acid (NA), or through the salvage pathway from nicotinamide (NAM). NA is used in the Preiss-Handler pathway to form NAD+ via 2 steps shared with the de novo pathway: NAMN (by nicotinic acid phosphoribosyltransferase; NAPRT1) and NAAD+ (by NAD+ synthetase; NADSYN1). In the salvage pathway, NAM is used to form NAD+ being converted by nicotinamide phosphoribosyltransferase (NAMPT) to nicotinamide mononucleotide (NMN) and subsequently to NAD+ by nicotinamide nucleotide adenylytransferase (NMNAT1, −2, and −3). NAM can also be converted to NA in the gut by bacterial PncA (nicotinamidase) and salvaged into the Preiss-Handler pathway. NAM is available in diet, but can also be produced by NAD+-consuming enzymes. Nicotinamide riboside (NR) can feed into the salvage pathway to form NAD+ by nicotinamide riboside kinases (NRK1, −2; Nmrk1, −2 as mouse genes) via NMN, or via NAM by purine nucleoside phosphorylase (NP). (B) and (C) Retinal ganglion cells exhibit age-dependent changes in NAD+ synthesis-related genes as well as further IOP-dependent declines in Nmnat2, an important NAD producing enzyme linked to axon protection. The decline in NAD is a major age-dependent risk factor for DBA/2J glaucoma. NADK (Nadk gene) is a major NAD-consuming kinase and its upregulation suggests increased NAD consumption / utilization. Differentially expressed genes (FDR < 0.05) are shown in red. Non-differentially expressed genes are shown in gray.

References

    1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262-67. doi:10.1136/bjo.2005.081224. PMID:16488940
    1. Libby RT, Anderson MG, Pang IH, Robinson ZH, Savinova OV, Cosma IM, Snow A, Wilson LA, Smith RS, Clark AF, et al.. Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci. 2005;22:637-48. doi:10.1017/S0952523805225130. PMID:16332275
    1. Nickells RW. Ganglion cell death in glaucoma: From mice to men. Vet Ophthalmol. 2007;10(Suppl 1):88-94. doi:10.1111/j.1463-5224.2007.00564.x. PMID:17973839
    1. Fernandes KA, Harder JM, Williams PA, Rausch RL, Kiernan AE, Nair KS, Anderson MG, John SW, Howell GR, Libby RT. Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Exp Eye Res. 2015;141:42-56. doi:10.1016/j.exer.2015.06.019. PMID:26116903
    1. McKinnon SJ, Schlamp CL, Nickells RW. Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res. 2009;88:816-24. doi:10.1016/j.exer.2008.12.002. PMID:19105954
    1. Anderson MG, Smith RS, Hawes NL, Zabaleta A, Chang B, Wiggs JL, John SW. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nature Genetics. 2002;30:81-85. doi:10.1038/ng794. PMID:11743578
    1. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SW. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756-60. doi:10.1126/science.aal0092. PMID:28209901
    1. Harder JM, Braine CE, Williams PA, Zhu X, MacNicoll KH, Sousa GL, Buchanan RA, Smith RS, Libby RT, Howell GR, et al.. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A. 2017;114:E3839-48. doi:10.1073/pnas.1608769114. PMID:28446616
    1. Williams P, Harder J, Foxworth N, Cardozo B, Cochran K, John S. Nicotinamide and WLDS act together to prevent neurodegeneration in glaucoma. Front Neurosci. 2017;11:232. doi:10.3389/fnins.2017.00232. PMID:28487632
    1. Chrysostomou V, Rezania F, Trounce IA, Crowston JG. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol. 2013;13:12-15. doi:10.1016/j.coph.2012.09.008. PMID:23069478
    1. Lee S, Van Bergen NJ, Kong GY, Chrysostomou V, Waugh HS, O'Neill EC, Crowston JG, Trounce IA. Mitochondrial dysfunction in glaucoma and emerging bioenergetic therapies. Exp Eye Res. 2011;93:204-12. doi:10.1016/j.exer.2010.07.015. PMID:20691180
    1. Chen SD, Wang L, Zhang XL. Neuroprotection in glaucoma: Present and future. Chin Med J (Engl). 2013;126:1567-77. PMID:23595396
    1. Inman DM, Harun-Or-Rashid M. Metabolic vulnerability in the neurodegenerative disease glaucoma. Front Neurosci. 2017;11:146. doi:10.3389/fnins.2017.00146. PMID:28424571
    1. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R, et al.. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352:1436-43. doi:10.1126/science.aaf2693. PMID:27127236
    1. Verdin E. NAD+ in aging, metabolism, and neurodegeneration. Science. 2015;350:1208-13. doi:10.1126/science.aac4854. PMID:26785480
    1. Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24:464-71. doi:10.1016/j.tcb.2014.04.002. PMID:24786309
    1. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, et al.. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155:1624-38. doi:10.1016/j.cell.2013.11.037. PMID:24360282
    1. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, et al.. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154:430-41. doi:10.1016/j.cell.2013.06.016. PMID:23870130
    1. Ijichi H, Ichiyama A, Hayaishi O. Studies on the biosynthesis of nicotinamide adenine dinucleotide. 3. Comparative in vivo studies on nicotinic acid, nicotinamide, and quinolinic acid as precursors of nicotinamide adenine dinucleotide. J Biol Chem. 1966;241:3701-07. PMID:4288134
    1. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115-30. doi:10.1146/annurev.nutr.28.061807.155443. PMID:18429699
    1. Libby RT, Li Y, Savinova OV, Barter J, Smith RS, Nickells RW, John SW. Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet. 2005;1:17-26. doi:10.1371/journal.pgen.0010004. PMID:16103918
    1. Conforti L, Fang G, Beirowski B, Wang MS, Sorci L, Asress S, Adalbert R, Silva A, Bridge K, Huang XP, et al.. NAD(+) and axon degeneration revisited: Nmnat1 cannot substitute for Wld(S) to delay Wallerian degeneration. Cell Death Differ. 2007;14:116-27. doi:10.1038/sj.cdd.4401944. PMID:16645633
    1. Sasaki Y, Vohra BP, Baloh RH, Milbrandt J. Transgenic mice expressing the Nmnat1 protein manifest robust delay in axonal degeneration in vivo. J Neurosci. 2009;29:6526-34. doi:10.1523/JNEUROSCI.1429-09.2009. PMID:19458223
    1. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, Mahesh N, Porciatti V, et al.. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol. 2007;179:1523-37. doi:10.1083/jcb.200706181. PMID:18158332
    1. Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J, Bjorklund N, Taglialatela G, Bennett DA, et al.. NMNAT2:HSP90 complex mediates proteostasis in proteinopathies. PLoS Biol. 2016;14:e1002472. doi:10.1371/journal.pbio.1002472. PMID:27254664
    1. Gilley J, Coleman MP. Endogenous Nmnat2 is an essential survival factor for maintenance of healthy axons. PLoS Biol. 2010;8:e1000300. doi:10.1371/journal.pbio.1000300. PMID:20126265
    1. Kitaoka Y, Munemasa Y, Kojima K, Hirano A, Ueno S, Takagi H. Axonal protection by Nmnat3 overexpression with involvement of autophagy in optic nerve degeneration. Cell Death Dis. 2013;4:e860. doi:10.1038/cddis.2013.391. PMID:24136224
    1. Zarei K, Scheetz TE, Christopher M, Miller K, Hedberg-Buenz A, Tandon A, Anderson MG, Fingert JH, Abràmoff MD. Automated axon counting in rodent optic nerve sections with AxonJ. Sci Rep. 2016;6:26559. doi:10.1038/srep26559. PMID:27226405

Source: PubMed

3
Abonner