Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID-19

Andresa Aparecida Berretta, Marcelo Augusto Duarte Silveira, José Manuel Cóndor Capcha, David De Jong, Andresa Aparecida Berretta, Marcelo Augusto Duarte Silveira, José Manuel Cóndor Capcha, David De Jong

Abstract

Propolis, a resinous material produced by honey bees from plant exudates, has long been used in traditional herbal medicine and is widely consumed as a health aid and immune system booster. The COVID-19 pandemic has renewed interest in propolis products worldwide; fortunately, various aspects of the SARS-CoV-2 infection mechanism are potential targets for propolis compounds. SARS-CoV-2 entry into host cells is characterized by viral spike protein interaction with cellular angiotensin-converting enzyme 2 (ACE2) and serine protease TMPRSS2. This mechanism involves PAK1 overexpression, which is a kinase that mediates coronavirus-induced lung inflammation, fibrosis, and immune system suppression. Propolis components have inhibitory effects on the ACE2, TMPRSS2 and PAK1 signaling pathways; in addition, antiviral activity has been proven in vitro and in vivo. In pre-clinical studies, propolis promoted immunoregulation of pro-inflammatory cytokines, including reduction in IL-6, IL-1 beta and TNF-α. This immunoregulation involves monocytes and macrophages, as well as Jak2/STAT3, NF-kB, and inflammasome pathways, reducing the risk of cytokine storm syndrome, a major mortality factor in advanced COVID-19 disease. Propolis has also shown promise as an aid in the treatment of various of the comorbidities that are particularly dangerous in COVID-19 patients, including respiratory diseases, hypertension, diabetes, and cancer. Standardized propolis products with consistent bioactive properties are now available. Given the current emergency caused by the COVID-19 pandemic and limited therapeutic options, propolis is presented as a promising and relevant therapeutic option that is safe, easy to administrate orally and is readily available as a natural supplement and functional food.

Keywords: Anti-inflammatory; Antiviral; COVID-19; PAK1 blocker; Propolis; SARS-CoV-2.

Conflict of interest statement

The authors declare no conflict of interest.

Copyright © 2020 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Major pathways through which propolis can interfere with SARS-CoV-2 attachment to the host cell, viral replication, and pathophysiological consequences. SARS-CoV-2 entry into target cells requires spike protein binding to ACE2 and activation by TMPRSS2. After binding, several signals are triggered, allowing viral endocytosis and PAK1 activation, which reduces the adaptive immune response and antibody production against the virus. PAK1 also stimulates CCL2 production, which generates a fibrotic response. Viral infection induces nuclear transition factor NF-KB activation, generating local pro-inflammatory cytokine production. Propolis-derived compounds downregulate the expression of TMPRSS2 and the anchoring ACE2, which limits entry of the virus. Furthermore, they promote NF-KB and monocyte/macrophage immunomodulation, reducing pro-inflammatory cytokine overproduction, and they reduce PAK1 activation, increasing the production of antibodies against SARS-CoV-2.

References

    1. Vardeny O., Madjid M., Solomon S.D. Applying the Lessons of Influenza to COVID-19 During a Time of Uncertainty. Circulation. 2020;141(21):1667–1669. doi: 10.1161/CIRCULATIONAHA.120.046837.
    1. Setti L., Kirienko M., Dalto S.C., Bonacina M., Bombardieri E. FDG-PET/CT findings highly suspicious for COVID-19 in an Italian case series of asymptomatic patients. Eur J Nucl Med Mol Imaging. 2020 doi: 10.1007/s00259-020-04819-6.
    1. Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020 doi: 10.1001/jama.2020.6019.
    1. Lapolla P., Mingoli A., Lee R. Deaths from COVID-19 in healthcare workers in Italy—What can we learn? Infect Control Hosp Epidemiol. 2020:1–2. doi: 10.1017/ice.2020.241.
    1. Corburn J., Vlahov D., Mberu B., Riley L., Caiaffa W.T., Rashid S.F., Ko A., Patel S., Jukur S., Martínez-Herrera E., Jayasinghe S., Agarwal S., Nguendo-Yongsi B., Weru J., Ouma S., Edmundo K., Oni T., Ayad H., Health Slum. Arresting COVID-19 and Improving Well-Being in Urban Informal Settlements. J Urban Health. 2020;97:348–357. doi: 10.1007/s11524-020-00438-6.
    1. Pereira R.J., Nascimento G.N.L.D., Gratão L.H.A., Pimenta R.S. The risk of COVID-19 transmission in favelas and slums in Brazil. Public Health. 2020;183:42–43. doi: 10.1016/j.puhe.2020.04.042.
    1. Cowan M.M. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. 1999;12(4):564–582. doi: 10.1128/CMR.12.4.564.
    1. Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils--a review. Food Chem Toxicol. 2008;46(2):446–475. doi: 10.1016/j.fct.2007.09.106.
    1. Saklani A., Kutty S.K. Plant-derived compounds in clinical trials. Drug Discov Today. 2008;13(3-4):161–171. doi: 10.1016/j.drudis.2007.10.010.
    1. Maruta H., He H. PAK1-blockers: Potential Therapeutics against COVID-19. Med Drug Discov. 2020 doi: 10.1016/j.medidd.2020.100039.
    1. Serkedjieva J., Manolova N., Bankova V. Anti-influenza virus effect of some propolis constituents and their analogues (esters of substituted cinnamic acids) J Nat Prod. 1992;55(3):294–302. doi: 10.1021/np50081a003.
    1. Calixto J. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents) Braz J Med Biol Res. 2000;33(2):179–189. doi: 10.1590/S0100-879X2000000200004.
    1. Calixto J.B. Twenty-five years of research on medicinal plants in Latin America: a personal view. J Ethnopharmacol. 2005;100(1-2):131–134. doi: 10.1016/j.jep.2005.06.004.
    1. Uddin M M.F., Rizvi T.A., Loney T., Suwaidi H.A., Al-Marzouqi A.H.H., Eldin A.K., Alsabeeha N., Adrian T.E., Stefanini C., Nowotny N., Alsheikh-Ali A., Senok A.C. SARS-CoV-2/COVID-19: Viral Genomics, Epidemiology, Vaccines, and Therapeutic Interventions. Viruses. 2020;12:526. doi: 10.3390/v12050526.
    1. Vardhan S., Sahoo S.K. Searching inhibitors for three important proteins of COVID-19 through molecular docking studies. arXiv. 2020 2004.08095.
    1. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127–20. doi: 10.1128/JVI.00127-20.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Muller M.A., Drosten C., Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052. e8.
    1. Xu J.W., Ikeda K., Kobayakawa A., Ikami T., Kayano Y., Mitani T., Yamori Y. Downregulation of Rac1 activation by caffeic acid in aortic smooth muscle cells. Life Sci. 2005;76(24):2861–2872. doi: 10.1016/j.lfs.2004.11.015.
    1. Ding Y., He L., Zhang Q., Huang Z., Che X., Hou J., Wang H., Shen H., Qiu L., Li Z., Geng J., Cai J., Han H., Li X., Kang W., Weng D., Liang P., Jiang S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203(2):622–630. doi: 10.1002/path.1560.
    1. Stebbing J., Phelan A., Griffin I., Tucker C., Oechsle O., Smith D., Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400–402. doi: 10.1016/S1473-3099(20)30132-8.
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., Tian D.S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. doi: 10.1093/cid/ciaa248.
    1. Hori J.I., Zamboni D.S., Carrao D.B., Goldman G.H., Berretta A.A. The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF) Evid Based Complement Alternat Med. 2013;2013:418508. doi: 10.1155/2013/418508.
    1. Pineros A.R., de Lima M.H.F., Rodrigues T., Gembre A.F., Bertolini T.B., Fonseca M.D., Berretta A.A., Ramalho L.N.Z., Cunha F.Q., Hori J.I., Bonato V.L.D. Green propolis increases myeloid suppressor cells and CD4(+)Foxp3(+) cells and reduces Th2 inflammation in the lungs after allergen exposure. J Ethnopharmacol. 2020;252:112496. doi: 10.1016/j.jep.2019.112496.
    1. Machado J.L., Assuncao A.K., da Silva M.C., Dos Reis A.S., Costa G.C., Arruda Dde S., Rocha B.A., Vaz M.M., Paes A.M., Guerra R.N., Berretta A.A., do Nascimento F.R. Brazilian green propolis: anti-inflammatory property by an immunomodulatory activity. Evid Based Complement Alternat Med. 2012;2012:157652. doi: 10.1155/2012/157652.
    1. Sekiou O., Omar I., Bouziane Z., Bouslama A. Djemel. In-silico identification of potent inhibitors of COVID-19 main protease (Mpro) and Angiotensin converting enzyme 2 (ACE2) from natural products. ChemRxiv. 2020 doi: 10.26434/chemrxiv.12181404.
    1. Güler H.I., Tatar G., Yildiz O., Belduz A.O., Kolayli S. Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by Molecular Docking Study. ScienceOpen Preprints. 2020 doi: 10.14293/S2199-1006.1.SOR-.PP5BWN4.v1.
    1. Asgharpour F., Moghadamnia A.A., Motallebnejad M., Nouri H.R. Propolis attenuates lipopolysaccharide-induced inflammatory responses through intracellular ROS and NO levels along with downregulation of IL-1beta and IL-6 expressions in murine RAW 264.7 macrophages. J Food Biochem. 2019;43(8) doi: 10.1111/jfbc.12926. e12926.
    1. Shimizu T., Takeshita Y., Takamori Y., Kai H., Sawamura R., Yoshida H., Watanabe W., Tsutsumi A., Park Y.K., Yasukawa K., Matsuno K., Shiraki K., Kurokawa M. Efficacy of Brazilian Propolis against Herpes Simplex Virus Type 1 Infection in Mice and Their Modes of Antiherpetic Efficacies. Evid Based Complement Alternat Med. 2011;2011:976196. doi: 10.1155/2011/976196.
    1. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., Du B., Li L.J., Zeng G., Yuen K.Y., Chen R.C., Tang C.L., Wang T., Chen P.Y., Xiang J., Li S.Y., Wang J.L., Liang Z.J., Peng Y.X., Wei L., Liu Y., Hu Y.H., Peng P., Wang J.M., Liu J.Y., Chen Z., Li G., Zheng Z.J., Qiu S.Q., Luo J., Ye C.J., Zhu S.Y., Zhong N.S. China Medical Treatment Expert Group for, Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Stein R.A. COVID-19: Risk. groups, mechanistic insights and challenges. Int J Clin Pract. 2020 doi: 10.1111/ijcp.13512. e13512.
    1. Fuliang H.U., Hepburn H.R., Xuan H., Chen M., Daya S., Radloff S.E. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol Res. 2005;51(2):147–152. doi: 10.1016/j.phrs.2004.06.011.
    1. Al-Hariri M., Eldin T.G., Abu-Hozaifa B., Elnour A. Glycemic control and anti-osteopathic effect of propolis in diabetic rats. Diabetes Metab Syndr Obes. 2011;2011(4):377–384. doi: 10.2147/DMSO.S24159.
    1. Mishima S., Yoshida C., Akino S., Sakamoto T. Antihypertensive effects of Brazilian propolis: identification of caffeoylquinic acids as constituents involved in the hypotension in spontaneously hypertensive rats. Biol Pharm Bull. 2005;28(10):1909–1914. doi: 10.1248/bpb.28.1909.
    1. Maruyama H., Sumitou Y., Sakamoto T., Araki Y., Hara H. Antihypertensive effects of flavonoids isolated from brazilian green propolis in spontaneously hypertensive rats. Biol Pharm Bull. 2009;32(7):1244–1250. doi: 10.1248/bpb.32.1244.
    1. Chopra S., Pillai K.K., Husain S.Z., Giri D.K. Propolis protects against doxorubicin-induced myocardiopathy in rats. Exp Mol Pathol. 1995;62(3):190–198. doi: 10.1006/exmp.1995.1021.
    1. Fang Y., Sang H., Yuan N., Sun H., Yao S., Wang J., Qin S. Ethanolic extract of propolis inhibits atherosclerosis in ApoE-knockout mice. Lipids Health Dis. 2013;12:123. doi: 10.1186/1476-511X-12-123.
    1. Ansorge R.D., Lendeckel S. Propolis and some of its constituents down-regulate DNA synthesis and inflammatory cytokine production but induce TGF-beta1 production of human immune cells. Z Naturforsch C J Biosci. 2003;58(7) doi: 10.1515/znc-2003-7-823.
    1. Chan G.C.-F., Cheung K.-W., Sze D.M.-Y. The Immunomodulatory and Anticancer Properties of Propolis. Clin Rev Allerg Immu. 2013;44(3):262–273. doi: 10.1007/s12016-012-8322-2.
    1. Balandrin M.F., Klocke J.A., Wurtele E.S., Bollinger W.H. Natural plant chemicals: sources of industrial and medicinal materials. Science. 1985;228(4704):1154–1160. doi: 10.1126/science.3890182.
    1. Langenheim J.H. Higher plant terpenoids: A phytocentric overview of their ecological roles. J Chem Ecol. 1994;20(6):1223–1280. doi: 10.1007/BF02059809.
    1. Cheng A.-X., Lou Y.-G., Mao Y.-B., Lu S., Wang L.-J., Chen X.-Y. Plant Terpenoids: Biosynthesis and Ecological Functions. J Integr Plant Biol. 2007;49(2):179–186. doi: 10.1111/j.1744-7909.2007.00395.x.
    1. Toreti V.C., Sato H.H., Pastore G.M., Park Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid Based Complement Alternat Med. 2013;2013:697390. doi: 10.1155/2013/697390.
    1. Mani J.S., Johnson J.B., Steel J.C., Broszczak D.A., Neilsen P.M., Walsh K.B., Naiker M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res. 2020;284:197989. doi: 10.1016/j.virusres.2020.197989.
    1. Simone-Finstrom M., Spivak M. Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie. 2010;41(3):295–311. doi: 10.1051/apido/2010016.
    1. Evans J.D., Spivak M. Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol. 2010;103(Suppl 1):S62–S72. doi: 10.1016/j.jip.2009.06.019.
    1. Nicodemo D., Malheiros E.B., De Jong D., Couto R.H.N. Increased brood viability and longer lifespan of honeybees selected for propolis production. Apidologie. 2014;45(2):269–275. doi: 10.1007/s13592-013-0249-y.
    1. Turcatto A.P., Lourenço A.P., De Jong D. Propolis consumption ramps up the immune response in honey bees infected with bacteria. Apidologie. 2018;49(3):287–296. doi: 10.1007/s13592-017-0553-z.
    1. Bankova V. Recent trends and important developments in propolis research. Evid Based Complement Alternat Med. 2005;2(1):29–32. doi: 10.1093/ecam/neh059.
    1. Miguel M., Nunes S., Dandlen S.A., Cavaco A.M., Antunes M.D. Phenols, flavonoids and antioxidant activity of aqueous and methanolic extracts of propolis (Apis mellifera L.) from Algarve, South Portugal. Food Sci Technol. 2014;34(1) doi: 10.1590/S0101-20612014000100002.
    1. Berretta A.A., Arruda C., Miguel F., Baptista N., Nascimento A., Marquele- Oliveira F., Hori J., Barud H., Damaso B., Ramos C., Ferreira R., Bastos J. In: Superfood and Functional Food - An Overview of Their Processing and Utilization. Waisundara V., editor. Intech Open; London: 2017. Functional Properties of Brazilian Propolis: From Chemical Composition Until the Market; pp. 55–98.
    1. Silveira M.A.D., Teles F., Berretta A.A., Sanches T.R., Rodrigues C.E., Seguro A.C., Andrade L. Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: a randomized, double-blind, placebo-controlled trial. BMC Nephrol. 2019;20(1):140. doi: 10.1186/s12882-019-1337-7.
    1. Zaccaria V., Garzarella E.U., Di Giovanni C., Galeotti F., Gisone L., Campoccia D., Volpi N., Arciola C.R., Daglia M. Multi Dynamic Extraction: An Innovative Method to Obtain a Standardized Chemically and Biologically Reproducible Polyphenol Extract from Poplar-Type Propolis to Be Used for Its Anti-Infective Properties. Materials. 2019;12(22):3746. doi: 10.3390/ma12223746.
    1. Cusinato D.A.C., Martinez E.Z., Cintra M.T.C., Filgueira G.C.O., Berretta A.A., Lanchote V.L., Coelho E.B. Evaluation of potential herbal-drug interactions of a standardized propolis extract (EPP-AF(R)) using an in vivo cocktail approach. J Ethnopharmacol. 2019;245:112174. doi: 10.1016/j.jep.2019.112174.
    1. Berretta A.A., Nascimento A.P., Bueno P.C., Vaz M.M., Marchetti J.M. Propolis standardized extract (EPP-AF(R)), an innovative chemically and biologically reproducible pharmaceutical compound for treating wounds. Int J Biol Sci. 2012;8(4):512–521. doi: 10.7150/ijbs.3641.
    1. Ramos A., Miranda J. Propolis: a review of its anti-inflammatory and healing actions. J Venom Anim Toxins Trop Dis. 2007;13(4):697–710. doi: 10.1590/S1678-91992007000400002.
    1. Barth O., Freitas A., Matsuda A., Almeida-Muradian L. Botanical origin and Artepillin-C content of Brazilian propolis samples. Grana. 2013;52(2):129–135. doi: 10.1080/00173134.2012.747561.
    1. Pedrazzi V., Leite M.F., Tavares R.C., Sato S., do Nascimento G.C., Issa J.P.M. Herbal mouthwash containing extracts of Baccharis dracunculifolia as agent for the control of biofilm: clinical evaluation in humans. ScientificWorldJournal. 2015;2015 doi: 10.1155/2015/712683. 712683-712683.
    1. Park Y.K., Fukuda I., Ashida H., Nishiumi S., Yoshida K.-i., Daugsch A., Sato H.H., Pastore G.M. Suppressive Effects of Ethanolic Extracts from Propolis and Its Main Botanical Origin on Dioxin Toxicity. J Agr Food Chem. 2005;53(26):10306–10309. doi: 10.1021/jf058111a.
    1. da Silva Filho A.A., de Sousa J.P., Soares S., Furtado N.A., Andrade e Silva M.L., Cunha W.R., Gregório L.E., Nanayakkara N.P., Bastos J.K. Antimicrobial activity of the extract and isolated compounds from Baccharis dracunculifolia D. C. (Asteraceae) Z Naturforsch C J Biosci. 2008;63(1–2):40–46. doi: 10.1515/znc-2008-1-208.
    1. Búfalo M.C., Figueiredo A.S., de Sousa J.P., Candeias J.M., Bastos J.K., Sforcin J.M. Anti-poliovirus activity of Baccharis dracunculifolia and propolis by cell viability determination and real-time PCR. J Appl Microbiol. 2009;107(5):1669–1680. doi: 10.1111/j.1365-2672.2009.04354.x.
    1. Castaldo S., Capasso F. Propolis, an old remedy used in modern medicine. Fitoterapia. 2002;73(Suppl 1):S1–S6. doi: 10.1016/s0367-326x(02)00185-5.
    1. Silva-Carvalho R., Baltazar F., Almeida-Aguiar C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid Based Complement Alternat Med. 2015;2015:206439. doi: 10.1155/2015/206439.
    1. Kuropatnicki A.K., Szliszka E., Krol W. Historical Aspects of Propolis Research in Modern Times. Evid Based Complement Alternat Med. 2013;2013:964149. doi: 10.1155/2013/964149.
    1. Sun S., He J., Liu M., Yin G., Zhang X. A Great Concern Regarding the Authenticity Identification and Quality Control of Chinese Propolis and Brazilian Green Propolis. J Food Nutr Res. 2019;7(10):725–735. doi: 10.12691/jfnr-7-10-6.
    1. Sun J.L., Hu Y.L., Wang D.Y., Zhang B.K., Liu J.G. Immunologic enhancement of compound Chinese herbal medicinal ingredients and their efficacy comparison with compound Chinese herbal medicines. Vaccine. 2006;24(13):2343–2348. doi: 10.1016/j.vaccine.2005.11.053.
    1. Akao Y M.H., Matsumoto K., Ohguchi K., Nishizawa K., Sakamoto T., Araki Y., Mishima S., Nozawa Y. Cell growth inhibitory effect of cinnamic acid derivatives from propolis on human tumor cell lines. Biol Pharm Bull. 2003;26(7):1057. doi: 10.1248/bpb.26.1057.
    1. Banskota A.H., Tezuka Y., Kadota S. Recent progress in pharmacological research of propolis. Phytother Res. 2001;15(7):561–571. doi: 10.1002/ptr.1029.
    1. Furtado Júnior J.H.C., Valadas L.A.R., Fonseca S., Lobo P.L.D., Calixto L.H.M., Lima A.G.F., de Aguiar M.H.R., Arruda I.S., Lotif M.A.L., Rodrigues Neto E.M., Fonteles M.M.F. Clinical and Microbiological Evaluation of Brazilian Red Propolis Containing-Dentifrice in Orthodontic Patients: A Randomized Clinical Trial. Evid Based Complement Alternat Med. 2020;2020:8532701. doi: 10.1155/2020/8532701.
    1. Gajek G., Marciniak B., Lewkowski J., Kontek R. Antagonistic Effects of CAPE (a Component of Propolis) on the Cytotoxicity and Genotoxicity of Irinotecan and SN38 in Human Gastrointestinal Cancer Cells In Vitro. Molecules. 2020;25(3):658. doi: 10.3390/molecules25030658.
    1. Santos L.M., Fonseca M.S., Sokolonski A.R., Deegan K.R., Araújo R.P., Umsza-Guez M.A., Barbosa J.D., Portela R.D., Machado B.A. Propolis: types, composition, biological activities, and veterinary product patent prospecting. J Sci Food Agric. 2020;100(4):1369–1382. doi: 10.1002/jsfa.10024.
    1. He-rim J. The Investor, The Korea Herald; Korea: 2020. ‘Health functional foods’ see boom in wake of virus outbreak.
    1. Koe T. 2020. New rules: South Korea expands propolis oral formats, removes upper limit for functional ingredients.
    1. Pina G.d.M.S., Lia E.N., Berretta A.A., Nascimento A.P., Torres E.C., Buszinski A.F.M., de Campos T.A., Coelho E.B., Martins V.d.P. Efficacy of Propolis on the Denture Stomatitis Treatment in Older Adults: A Multicentric Randomized Trial. Evid Based Complement Alternat Med. 2017;2017:8971746. doi: 10.1155/2017/8971746.
    1. Berretta A.A. Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo; Ribeirão Preto: 2007. Pesquisa pré-clínica e clínica de um gel termorreversível contendo extrato padronizado de própolis (EPP-AF) para a redução do tempo de cicatrização de lesões em pacientes queimados, Ph.D. thesis.
    1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z.
    1. Hashem H. IN Silico Approach of Some Selected Honey Constituents as SARS-CoV-2 Main Protease (COVID-19) Inhibitors. EJMO. 2020;4(3):196–200. doi: 10.26434/chemrxiv.12115359.
    1. Kumar V., Dhanjal J.K., Kaul S.C., Wadhwa R., Sundar D. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (M(pro)) of SARS-CoV-2 and inhibit its activity. J Biomol Struct Dyn. 2020:1–13. doi: 10.1080/07391102.2020.1772108.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., Zhao Y., Li Y., Wang X., Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585.
    1. Mehra M.R., Desai S.S., Kuy S., Henry T.D., Patel A.N. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N Engl J Med. 2020;382 doi: 10.1056/NEJMoa2007621. e102.
    1. Sanchis-Gomar F., Lavie C.J., Perez-Quilis C., Henry B.M., Lippi G. Angiotensin-Converting Enzyme 2 and Antihypertensives (Angiotensin Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors) in Coronavirus Disease 2019. Mayo Clin Proc. 2020;95(6):1222–1230. doi: 10.1016/j.mayocp.2020.03.026.
    1. Oses S.M., Marcos P., Azofra P., de Pablo A., Fernandez-Muino M.A., Sancho M.T. Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Antioxidants. 2020;9(1):75. doi: 10.3390/antiox9010075.
    1. Da J., Xu M., Wang Y., Li W., Lu M., Wang Z. Kaempferol Promotes Apoptosis While Inhibiting Cell Proliferation via Androgen-Dependent Pathway and Suppressing Vasculogenic Mimicry and Invasion in Prostate Cancer. Anal Cell Pathol. 2019;2019:1907698. doi: 10.1155/2019/1907698.
    1. Debiaggi M., Tateo F., Pagani L., Luini M., Romero E. Effects of propolis flavonoids on virus infectivity and replication. Microbiologica. 1990;13(3):207–213.
    1. Messerli S.M., Ahn M.-R., Kunimasa K., Yanagihara M., Tatefuji T., Hashimoto K., Mautner V., Uto Y., Hori H., Kumazawa S., Kaji K., Ohta T., Maruta H. Artepillin C (ARC) in Brazilian green propolis selectively blocks oncogenic PAK1 signaling and suppresses the growth of NF tumors in mice. Phytother Res. 2009;23(3):423–427. doi: 10.1002/ptr.2658.
    1. Fernandes M.H.V., Ferreira L.N., Vargas G.D.A., Fischer G., Hübner S.O. Effect of Water Extract from Brown Propolis on Production of IFN-ϒ After Immunization Against Canine Parvovirus (Cpv) and Canine Coronavirus (Ccov) Ciênc Anim Bras. 2015;16(2):235–242. doi: 10.1590/1089-6891v16i223458.
    1. Mahmoud A.M., Abd El-Twab S.M. Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomed Pharmacother. 2017;91:303–311. doi: 10.1016/j.biopha.2017.04.073.
    1. Okamoto Y., Tanaka M., Fukui T., Masuzawa T. Brazilian propolis inhibits the differentiation of Th17 cells by inhibition of interleukin-6-induced phosphorylation of signal transducer and activator of transcription 3. Immunopharm Immunot. 2012;34(5):803–809. doi: 10.3109/08923973.2012.657304.
    1. Paulino N., Abreu S.R., Uto Y., Koyama D., Nagasawa H., Hori H., Dirsch V.M., Vollmar A.M., Scremin A., Bretz W.A. Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur J Pharmacol. 2008;587(1–3):296–301. doi: 10.1016/j.ejphar.2008.02.067.
    1. Nile S.H., Nile A., Qiu J., Li L., Jia X., Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth F R. 2020;53:66–70. doi: 10.1016/j.cytogfr.2020.05.002.
    1. Li C.C., Wang X.J., Wang H.R. Repurposing host-based therapeutics to control coronavirus and influenza virus. Drug Discov Today. 2019;24(3):726–736. doi: 10.1016/j.drudis.2019.01.018.
    1. Orsatti C.L., Missima F., Pagliarone A.C., Bachiega T.F., Búfalo M.C., Araújo J.P., Jr., Sforcin J.M. Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice. Phytother Res. 2010;24(8):1141–1146. doi: 10.1002/ptr.3086.
    1. Ito J., Chang F.R., Wang H.K., Park Y.K., Ikegaki M., Kilgore N., Lee K.H. Anti-AIDS agents. 48.(1) Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J Nat Prod. 2001;64(10):1278–1281. doi: 10.1021/np010211x.
    1. Shimizu T., Hino A., Tsutsumi A., Park Y.K., Watanabe W., Kurokawa M. Anti-influenza virus activity of propolis in vitro and its efficacy against influenza infection in mice. Antivir Chem Chemother. 2008;19(1):7–13. doi: 10.1177/095632020801900102.
    1. Nolkemper S., Reichling J., Sensch K.H., Schnitzler P. Mechanism of herpes simplex virus type 2 suppression by propolis extracts. Phytomedicine. 2010;17(2):132–138. doi: 10.1016/j.phymed.2009.07.006.
    1. Harish Z., Rubinstein A., Golodner M., Elmaliah M., Mizrachi Y. Suppression of HIV-1 replication by propolis and its immunoregulatory effect. Drugs Exp Clin Res. 1997;23(2):89–96.
    1. Amoros M., Simões C.M., Girre L., Sauvager F., Cormier M. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. J Nat Prod. 1992;55(12):1732–1740. doi: 10.1021/np50090a003.
    1. England J.T., Abdulla A., Biggs C.M., Lee A.Y.Y., Hay K.A., Hoiland R.L., Wellington C.L., Sekhon M., Jamal S., Shojania K., Chen L.Y.C. Weathering the COVID-19 storm: Lessons from hematologic cytokine syndromes. Blood Rev. 2020:100707. doi: 10.1016/j.blre.2020.100707.
    1. Maruta H., Kittaka A. Chemical evolution for taming the ‘pathogenic kinase’ PAK1. Drug Discov Today. 2020;25(6):959–964. doi: 10.1016/j.drudis.2020.03.008.
    1. Tozser J., Benko S. Natural Compounds as Regulators of NLRP3 Inflammasome-Mediated IL-1beta Production. Mediators Inflamm. 2016;2016:5460302. doi: 10.1155/2016/5460302.
    1. Ashry el S.H., Ahmad T.A. The use of propolis as vaccine’s adjuvant. Vaccine. 2012;31(1):31–39. doi: 10.1016/j.vaccine.2012.10.095.
    1. Fan Y., Guo L., Hou W., Guo C., Zhang W., Ma X., Ma L., Song X. The Adjuvant Activity of Epimedium Polysaccharide-Propolis Flavone Liposome on Enhancing Immune Responses to Inactivated Porcine Circovirus Vaccine in Mice. Evid Based Complement Alternat Med. 2015;2015:972083. doi: 10.1155/2015/972083.
    1. Yang L., Hu Y., Xue J., Wang F., Wang D., Kong X., Li P., Xu W. Compound Chinese herbal medicinal ingredients can enhance immune response and efficacy of RHD vaccine in rabbit. Vaccine. 2008;26(35):4451–4455. doi: 10.1016/j.vaccine.2008.06.075.
    1. Tao Y., Wang D., Hu Y., Huang Y., Yu Y., Wang D. The immunological enhancement activity of propolis flavonoids liposome in vitro and in vivo. Evid Based Complement Alternat Med. 2014;2014:483513. doi: 10.1155/2014/483513.
    1. Fischer G., Cleff M.B., Dummer L.A., Paulino N., Paulino A.S., de Oliveira Vilela C., Campos F.S., Storch T., D’Avila Vargas G., de Oliveira Hübner S., Vidor T. Adjuvant effect of green propolis on humoral immune response of bovines immunized with bovine herpesvirus type 5. Vet Immunol Immunopathol. 2007;116(1–2):79–84. doi: 10.1016/j.vetimm.2007.01.003.
    1. Fischer G., Conceicao F.R., Leite F.P., Dummer L.A., Vargas G.D., Hubner Sde O., Dellagostin O.A., Paulino N., Paulino A.S., Vidor T. Immunomodulation produced by a green propolis extract on humoral and cellular responses of mice immunized with SuHV-1. Vaccine. 2007;25(7):1250–1256. doi: 10.1016/j.vaccine.2006.10.005.
    1. Ma X., Guo Z., Shen Z., Wang J., Hu Y., Wang D. The immune enhancement of propolis adjuvant on inactivated porcine parvovirus vaccine in guinea pig. Cell Immunol. 2011;270(1):13–18. doi: 10.1016/j.cellimm.2011.03.020.
    1. Sena-Lopes Â., Bezerra F.S.B., das Neves R.N., de Pinho R.B., Silva M.T.O., Savegnago L., Collares T., Seixas F., Begnini K., Henriques J.A.P., Ely M.R., Rufatto L.C., Moura S., Barcellos T., Padilha F., Dellagostin O., Borsuk S. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis. PLoS One. 2018;13(2) doi: 10.1371/journal.pone.0191797.
    1. Fischer G., Paulino N., Marcucci M.C., Siedler B.S., Munhoz L.S., Finger P.F., Vargas G.D., Hübner S.O., Vidor T., Roehe P.M. Green propolis phenolic compounds act as vaccine adjuvants, improving humoral and cellular responses in mice inoculated with inactivated vaccines. Mem Inst Oswaldo Cruz. 2010;105(7):908–913. doi: 10.1590/S0074-02762010000700012.
    1. Mojarab S., Shahbazzadeh D., Moghbeli M., Eshraghi Y., Bagheri K.P., Rahimi R., Savoji M.A., Mahdavi M. Immune responses to HIV-1 polytope vaccine candidate formulated in aqueous and alcoholic extracts of Propolis: Comparable immune responses to Alum and Freund adjuvants. Microb Pathog. 2020;140:103932. doi: 10.1016/j.micpath.2019.103932.
    1. Raymond E., Thieblemont C., Alran S., Faivre S. Impact of the COVID-19 Outbreak on the Management of Patients with Cancer. Targ Oncol. 2020;15:249–259. doi: 10.1007/s11523-020-00721-1.
    1. Patel S. Emerging Adjuvant Therapy for Cancer: Propolis and its Constituents. J Diet Suppl. 2016;13(3):245–268. doi: 10.3109/19390211.2015.1008614.
    1. Frión-Herrera Y., Gabbia D., Scaffidi M., Zagni L., Cuesta-Rubio O., De Martin S., Carrara M. The Cuban Propolis Component Nemorosone Inhibits Proliferation and Metastatic Properties of Human Colorectal Cancer Cells. Int J Mol Sci. 2020;21(5):1827. doi: 10.3390/ijms21051827.
    1. Song Y.S., Park E.H., Jung K.J., Jin C. Inhibition of angiogenesis by propolis. Arch Pharm Res. 2002;25(4):500–504. doi: 10.1007/BF02976609.
    1. Orsolić N., Basić I. Antitumor, hematostimulative and radioprotective action of water-soluble derivative of propolis (WSDP) Biomed Pharmacother. 2005;59(10):561–570. doi: 10.1016/j.biopha.2005.03.013.
    1. Watanabe M.A., Amarante M.K., Conti B.J., Sforcin J.M. Cytotoxic constituents of propolis inducing anticancer effects: a review. J Pharm Pharmacol. 2011;63(11):1378–1386. doi: 10.1111/j.2042-7158.2011.01331.x.
    1. Wu J., Omene C., Karkoszka J., Bosland M., Eckard J., Klein C.B., Frenkel K. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett. 2011;308(1):43–53. doi: 10.1016/j.canlet.2011.04.012.
    1. Akyol S., Ozturk G., Ginis Z., Armutcu F., Yigitoglu M.R., Akyol O. In vivo and in vitro antıneoplastic actions of caffeic acid phenethyl ester (CAPE): therapeutic perspectives. Nutr Cancer. 2013;65(4):515–526. doi: 10.1080/01635581.2013.776693.
    1. Chang H., Wang Y., Yin X., Liu X., Xuan H. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complement Altern Med. 2017;17(1):471. doi: 10.1186/s12906-017-1984-9.
    1. Orsolić N., Knezević A.H., Sver L., Terzić S., Basić I. Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds. J Ethnopharmacol. 2004;94(2–3):307–315. doi: 10.1016/j.jep.2004.06.006.
    1. Sawicka D., Car H., Borawska M.H., Nikliński J. The anticancer activity of propolis. Folia Histochem Cytobiol. 2012;50(1):25–37. doi: 10.2478/18693.
    1. Grunberger D., Banerjee R., Eisinger K., Oltz E.M., Efros L., Caldwell M., Estevez V., Nakanishi K. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia. 1988;44(3):230–232. doi: 10.1007/BF01941717.
    1. Nagaoka T., Banskota A.H., Tezuka Y., Saiki I., Kadota S. Selective antiproliferative activity of caffeic acid phenethyl ester analogues on highly liver-metastatic murine colon 26-L5 carcinoma cell line. Bioorg Med Chem. 2002;10(10):3351–3359. doi: 10.1016/s0968-0896(02)00138-4.
    1. Szliszka E., Czuba Z.P., Domino M., Mazur B., Zydowicz G., Krol W. Ethanolic extract of propolis (EEP) enhances the apoptosis- inducing potential of TRAIL in cancer cells. Molecules. 2009;14(2):738–754. doi: 10.3390/molecules14020738.
    1. Cook T.M. The importance of hypertension as a risk factor for severe illness and mortality in COVID-19. Anaesthesia. 2020;75(7):976–977. doi: 10.1111/anae.15103.
    1. Mahajan K., Chandra K. Cardiovascular comorbidities and complications associated with coronavirus disease 2019. Med J Armed Forces India. 2020 doi: 10.1016/j.mjafi.2020.05.004.
    1. Emami A., Javanmardi F., Pirbonyeh N., Akbari A. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: a Systematic Review and Meta-Analysis. Arch Acad Emerg Med. 2020;8(1) doi: 10.22037/aaem.v8i1.600.
    1. Kubota Y., Umegaki K., Kobayashi K., Tanaka N., Kagota S., Nakamura K., Kunitomo M., Shinozuka K. Anti-hypertensive effects of Brazilian propolis in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 2004;31(Suppl 2):S29–S30. doi: 10.1111/j.1440-1681.2004.04113.x.
    1. Zhou H., Wang H., Shi N., Wu F. Potential Protective Effects of the Water-Soluble Chinese Propolis on Hypertension Induced by High-Salt Intake. Clin Transl Sci. 2020 doi: 10.1111/cts.12770.
    1. Zingue S., Nde C.B.M., Michel T., Ndinteh D.T., Tchatchou J., Adamou M., Fernandez X., Fohouo F.T., Clyne C., Njamen D. Ethanol-extracted Cameroonian propolis exerts estrogenic effects and alleviates hot flushes in ovariectomized Wistar rats. BMC Complement Altern Med. 2017;17(1):65. doi: 10.1186/s12906-017-1568-8.
    1. Yuan W., Chang H., Liu X., Wang S., Liu H., Xuan H. Brazilian Green Propolis Inhibits Ox-LDL-Stimulated Oxidative Stress in Human Umbilical Vein Endothelial Cells Partly through PI3K/Akt/mTOR-Mediated Nrf2/HO-1 Pathway. Evid Based Complement Alternat Med. 2019;2019:5789574. doi: 10.1155/2019/5789574.
    1. Mujica V., Orrego R., Pérez J., Romero P., Ovalle P., Zúñiga-Hernández J., Arredondo M., Leiva E. The Role of Propolis in Oxidative Stress and Lipid Metabolism: A Randomized Controlled Trial. Evid Based Complement Alternat Med. 2017;2017:4272940. doi: 10.1155/2017/4272940.
    1. Michalakis K., Ilias I. SARS-CoV-2 infection and obesity: Common inflammatory and metabolic aspects. Diabetes Metab Syndr. 2020;14(4):469–471. doi: 10.1016/j.dsx.2020.04.033.
    1. Koya-Miyata S., Arai N., Mizote A., Taniguchi Y., Ushio S., Iwaki K., Fukuda S. Propolis prevents diet-induced hyperlipidemia and mitigates weight gain in diet-induced obesity in mice. Biol Pharm Bull. 2009;32(12):2022–2028. doi: 10.1248/bpb.32.2022.
    1. Rayalam S., Mills D., Azhar Y., Miller E., Wang X. Caffeic Acid Phenethyl Ester and Its Fluorinated Derivative as Natural Anti-obesity Agents (P06-089-19) Curr Dev Nutr. 2019;3(Supplement_1) doi: 10.1093/cdn/nzz031.P06-089-19.
    1. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M., Daßler-Plenker J., Guerci P., Huynh C., Knight J.S., Loda M., Looney M.R., McAllister F., Rayes R., Renaud S., Rousseau S., Salvatore S., Schwartz R.E., Spicer J.D., Yost C.C., Weber A., Zuo Y., Egeblad M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6) doi: 10.1084/jem.20200652.
    1. Bertoletti L., Couturaud F., Montani D., Parent F., Sanchez O. Venous thromboembolism and COVID-19. Respir Med Res. 2020;78:100759. doi: 10.1016/j.resmer.2020.100759.
    1. Jose R.J., Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020 doi: 10.1016/S2213-2600(20)30216-2.
    1. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. doi: 10.1016/j.thromres.2020.04.013.
    1. Vaughan D.E. PAI-1 and atherothrombosis. J Thromb Haemost. 2005;3(8):1879–1883. doi: 10.1111/j.1538-7836.2005.01420.x.
    1. Cesari M., Pahor M., Incalzi R.A. Plasminogen activator inhibitor-1 (PAI-1): a key factor linking fibrinolysis and age-related subclinical and clinical conditions. Cardiovasc Ther. 2010;28(5):e72–e91. doi: 10.1111/j.1755-5922.2010.00171.x.
    1. Ohkura N., Oishi K., Kihara-Negishi F., Atsumi G.-I., Tatefuji T. Effects of a diet containing Brazilian propolis on lipopolysaccharide-induced increases in plasma plasminogen activator inhibitor-1 levels in mice. J Intercult Ethnopharmacol. 2016;5(4):439–443. doi: 10.5455/jice.20160814112735.
    1. Kitamura H. Effects of Propolis Extract and Propolis-Derived Compounds on Obesity and Diabetes: Knowledge from Cellular and Animal Models. Molecules. 2019;24(23):4394. doi: 10.3390/molecules24234394.
    1. Daleprane J.B., Abdalla D.S. Emerging roles of propolis: antioxidant, cardioprotective, and antiangiogenic actions. Evid Based Complement Alternat Med. 2013;2013:175135. doi: 10.1155/2013/175135.
    1. Bojić M., Antolić A., Tomičić M., Debeljak Ž., Maleš Ž. Propolis ethanolic extracts reduce adenosine diphosphate induced platelet aggregation determined on whole blood. Nutr J. 2018;17(1):52. doi: 10.1186/s12937-018-0361-y.
    1. Zhang Y.-X., Yang T.-T., Xia L., Zhang W.-F., Wang J.-F., Wu Y.-P. Inhibitory Effect of Propolis on Platelet Aggregation In Vitro. J Healthc Eng. 2017;2017:3050895. doi: 10.1155/2017/3050895.
    1. Hsiao G., Lee J.J., Lin K.H., Shen C.H., Fong T.H., Chou D.S., Sheu J.R. Characterization of a novel and potent collagen antagonist, caffeic acid phenethyl ester, in human platelets: in vitro and in vivo studies. Cardiovasc Res. 2007;75(4):782–792. doi: 10.1016/j.cardiores.2007.05.005.
    1. Gubernatorova E.O., Gorshkova E.A., Polinova A.I., Drutskaya M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth F R. 2020;53:13–24. doi: 10.1016/j.cytogfr.2020.05.009.
    1. Kocot J., Kiełczykowska M., Luchowska-Kocot D., Kurzepa J., Musik I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid Med Cell Longev. 2018;2018:7074209. doi: 10.1155/2018/7074209.
    1. Havermann S., Chovolou Y., Humpf H.U., Wätjen W. Caffeic acid phenethylester increases stress resistance and enhances lifespan in Caenorhabditis elegans by modulation of the insulin-like DAF-16 signalling pathway. PLoS One. 2014;9(6) doi: 10.1371/journal.pone.0100256.
    1. Zhu A., Wu Z., Zhong X., Ni J., Li Y., Meng J., Du C., Zhao X., Nakanishi H., Wu S. Brazilian Green Propolis Prevents Cognitive Decline into Mild Cognitive Impairment in Elderly People Living at High Altitude. J Alzheimers Dis. 2018;63(2):551–560. doi: 10.3233/JAD-170630.
    1. Jasprica I., Mornar A., Debeljak Z., Smolcić-Bubalo A., Medić-Sarić M., Mayer L., Romić Z., Bućan K., Balog T., Sobocanec S., Sverko V. In vivo study of propolis supplementation effects on antioxidative status and red blood cells. J Ethnopharmacol. 2007;110(3):548–554. doi: 10.1016/j.jep.2006.10.023.
    1. Sameni H.R., Ramhormozi P., Bandegi A.R., Taherian A.A., Mirmohammadkhani M., Safari M. Effects of ethanol extract of propolis on histopathological changes and anti-oxidant defense of kidney in a rat model for type 1 diabetes mellitus. J Diabetes Investig. 2016;7(4):506–513. doi: 10.1111/jdi.12459.
    1. Ni J., Wu Z., Meng J., Zhu A., Zhong X., Wu S., Nakanishi H. The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y Cells. Oxid Med Cell Longev. 2017;2017:7984327. doi: 10.1155/2017/7984327.
    1. Ayaz M., Sadiq A., Junaid M., Ullah F., Ovais M., Ullah I., Ahmed J., Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci. 2019;11:155. doi: 10.3389/fnagi.2019.00155.
    1. Dong Y., Stewart T., Bai L., Li X., Xu T., Iliff J., Shi M., Zheng D., Yuan L., Wei T., Yang X., Zhang J. Coniferaldehyde attenuates Alzheimer’s pathology via activation of Nrf2 and its targets. Theranostics. 2020;10(1):179–200. doi: 10.7150/thno.36722.
    1. Sargiacomo C., Sotgia F., Lisanti M.P. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging. 2020;12(8):6511–6517. doi: 10.18632/aging.103001.
    1. Vinayagam R., Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab. 2015;12(1):60. doi: 10.1186/s12986-015-0057-7.
    1. Tiveron A.P., Rosalen P.L., Franchin M., Lacerda R.C., Bueno-Silva B., Benso B., Denny C., Ikegaki M., Alencar S.M. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis. PLoS One. 2016;11(11) doi: 10.1371/journal.pone.0165588.
    1. El Adaouia Taleb R., Djebli N., Chenini H., Sahin H., Kolayli S. In vivo and in vitro anti-diabetic activity of ethanolic propolis extract. J Food Biochem. 2020;44 doi: 10.1111/jfbc.13267.
    1. Matsui T., Ebuchi S., Fujise T., Abesundara K.J., Doi S., Yamada H., Matsumoto K. Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3,4,5-tri-O-caffeoylquinic acid. Biol Pharm Bull. 2004;27(11):1797–1803. doi: 10.1248/bpb.27.1797.
    1. Zamami Y., Takatori S., Koyama T., Goda M., Iwatani Y., Doi S., Kawasaki H. [Effect of propolis on insulin resistance in fructose-drinking rats] Yakugaku Zasshi. 2007;127(12):2065–2073. doi: 10.1248/yakushi.127.2065.
    1. Li Y., Chen M., Xuan H., Hu F. Effects of Encapsulated Propolis on Blood Glycemic Control, Lipid Metabolism, and Insulin Resistance in Type 2 Diabetes Mellitus Rats. Evid Based Complement Alternat Med. 2012;2012:981896. doi: 10.1155/2012/981896.
    1. Aoi W., Hosogi S., Niisato N., Yokoyama N., Hayata H., Miyazaki H., Kusuzaki K., Fukuda T., Fukui M., Nakamura N., Marunaka Y. Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts. Biochem Biophys Res Commun. 2013;432(4):650–653. doi: 10.1016/j.bbrc.2013.02.029.
    1. Abo-Salem O.M., El-Edel R.H., Harisa G.E., El-Halawany N., Ghonaim M.M. Experimental diabetic nephropathy can be prevented by propolis: Effect on metabolic disturbances and renal oxidative parameters. Pak J Pharm Sci. 2009;22(2):205–210.
    1. Kitamura H., Naoe Y., Kimura S., Miyamoto T., Okamoto S., Toda C., Shimamoto Y., Iwanaga T., Miyoshi I. Beneficial effects of Brazilian propolis on type 2 diabetes in ob/ob mice: Possible involvement of immune cells in mesenteric adipose tissue. Adipocyte. 2013;2(4):227–236. doi: 10.4161/adip.25608.
    1. Gao W., Pu L., Wei J., Yao Z., Wang Y., Shi T., Zhao L., Jiao C., Guo C. Serum Antioxidant Parameters are Significantly Increased in Patients with Type 2 Diabetes Mellitus after Consumption of Chinese Propolis: A Randomized Controlled Trial Based on Fasting Serum Glucose Level. Diabetes Ther. 2018;9(1):101–111. doi: 10.1007/s13300-017-0341-9.
    1. Samadi N., Mozaffari-Khosravi H., Rahmanian M., Askarishahi M. Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: a randomized, double-blind clinical trial. J Integr Med. 2017;15(2):124–134. doi: 10.1016/S2095-4964(17)60315-7.
    1. Hesami S., Hashemipour S., Shiri-Shahsavar M.R., Koushan Y., Khadem Haghighian H. Administration of Iranian Propolis attenuates oxidative stress and blood glucose in type II diabetic patients: a randomized, double-blind, placebo-controlled, clinical trial. Caspian J Intern Med. 2019;10(1):48–54. doi: 10.22088/cjim.10.1.48.
    1. Zakerkish M., Jenabi M., Zaeemzadeh N., Hemmati A.A., Neisi N. The Effect of Iranian Propolis on Glucose Metabolism, Lipid Profile, Insulin Resistance, Renal Function and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Clinical Trial. Sci Rep. 2019;9(1):7289. doi: 10.1038/s41598-019-43838-8.
    1. Oryan A., Alemzadeh E., Moshiri A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed Pharmacother. 2018;98:469–483. doi: 10.1016/j.biopha.2017.12.069.
    1. Picolotto A., Pergher D., Pereira G.P., Machado K.G., da Silva Barud H., Roesch-Ely M., Gonzalez M.H., Tasso L., Figueiredo J.G., Moura S. Bacterial cellulose membrane associated with red propolis as phytomodulator: Improved healing effects in experimental models of diabetes mellitus. Biomed Pharmacother. 2019;112:108640. doi: 10.1016/j.biopha.2019.108640.
    1. Afkhamizadeh M., Aboutorabi R., Ravari H., Fathi Najafi M., Ataei Azimi S., Javadian Langaroodi A., Yaghoubi M.A., Sahebkar A. Topical propolis improves wound healing in patients with diabetic foot ulcer: a randomized controlled trial. Nat Prod Res. 2018;32(17):2096–2099. doi: 10.1080/14786419.2017.1363755.
    1. Henshaw F.R., Bolton T., Nube V., Hood A., Veldhoen D., Pfrunder L., McKew G.L., Macleod C., McLennan S.V., Twigg S.M. Topical application of the bee hive protectant propolis is well tolerated and improves human diabetic foot ulcer healing in a prospective feasibility study. J Diabetes Complicat. 2014;28(6):850–857. doi: 10.1016/j.jdiacomp.2014.07.012.
    1. Shin S.H., Seo S.G., Min S., Yang H., Lee E., Son J.E., Kwon J.Y., Yue S., Chung M.Y., Kim K.H., Cheng J.X., Lee H.J., Lee K.W. Caffeic acid phenethyl ester, a major component of propolis, suppresses high fat diet-induced obesity through inhibiting adipogenesis at the mitotic clonal expansion stage. J Agric Food Chem. 2014;62(19):4306–4312. doi: 10.1021/jf405088f.
    1. Nie J., Chang Y., Li Y., Zhou Y., Qin J., Sun Z., Li H. Caffeic Acid Phenethyl Ester (Propolis Extract) Ameliorates Insulin Resistance by Inhibiting JNK and NF-κB Inflammatory Pathways in Diabetic Mice and HepG2 Cell Models. J Agric Food Chem. 2017;65(41):9041–9053. doi: 10.1021/acs.jafc.7b02880.
    1. Ramírez-Espinosa J.J., Saldaña-Ríos J., García-Jiménez S., Villalobos-Molina R., Ávila-Villarreal G., Rodríguez-Ocampo A.N., Bernal-Fernández G., Estrada-Soto S. Chrysin Induces Antidiabetic, Antidyslipidemic and Anti-Inflammatory Effects in Athymic Nude Diabetic Mice. Molecules. 2017;23(1):67. doi: 10.3390/molecules23010067.
    1. D’Marco L., Puchades M.J., Romero-Parra M., Gorriz J.L. Diabetic Kidney Disease and COVID-19: The Crash of Two Pandemics. Front Med. 2020;7:199. doi: 10.3389/fmed.2020.00199.
    1. Perico L., Benigni A., Remuzzi G. Should COVID-19 Concern Nephrologists? Why and to What Extent? The Emerging Impasse of Angiotensin Blockade. Nephron. 2020;144(5):213–221. doi: 10.1159/000507305.
    1. Monteil V., Kwon H., Prado P., Hagelkrüys A., Wimmer R.A., Stahl M., Leopoldi A., Garreta E., Hurtado del Pozo C., Prosper F., Romero J.P., Wirnsberger G., Zhang H., Slutsky A.S., Conder R., Montserrat N., Mirazimi A., Penninger J.M. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell. 2020;181(4):905–913. doi: 10.1016/j.cell.2020.04.004. e7.
    1. Alberici F., Delbarba E., Manenti C., Econimo L., Valerio F., Pola A., Maffei C., Possenti S., Piva S., Latronico N., Focà E., Castelli F., Gaggia P., Movilli E., Bove S., Malberti F., Farina M., Bracchi M., Costantino E.M., Bossini N., Gaggiotti M., Scolari F. Management Of Patients On Dialysis And With Kidney Transplant During SARS-COV-2 (COVID-19) Pandemic In Brescia, Italy. Kidney Int Rep. 2020;5(5):580–585. doi: 10.1016/j.ekir.2020.04.001.
    1. Bhadauria M. Propolis Prevents Hepatorenal Injury Induced by Chronic Exposure to Carbon Tetrachloride. Evid Based Complement Alternat Med. 2012;2012:235358. doi: 10.1155/2012/235358.
    1. Boutabet K., Kebsa W., Alyane M., Lahouel M. Polyphenolic fraction of Algerian propolis protects rat kidney against acute oxidative stress induced by doxorubicin. Indian J Nephrol. 2011;21(2):101–116. doi: 10.4103/0971-4065.82131.
    1. Teles F., da Silva T.M., da Cruz Júnior F.P., Honorato V.H., de Oliveira Costa H., Barbosa A.P.F., de Oliveira S.G., Porfírio Z., Libório A.B., Borges R.L., Fanelli C. Brazilian Red Propolis Attenuates Hypertension and Renal Damage in 5/6 Renal Ablation Model. PLoS ONE. 2015;10(1) doi: 10.1371/journal.pone.0116535.
    1. Cushnie T.P., Lamb A.J. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343–356. doi: 10.1016/j.ijantimicag.2005.09.002.
    1. Grange J.M., Davey R.W. Antibacterial properties of propolis (bee glue) J R Soc Med. 1990;83(3):159–160.
    1. Kujumgiev A., Tsvetkova I., Serkedjieva Y., Bankova V., Christov R., Popov S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol. 1999;64(3):235–240. doi: 10.1016/s0378-8741(98)00131-7.
    1. Cornara L., Biagi M., Xiao J., Burlando B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front Pharmacol. 2017;8:412. doi: 10.3389/fphar.2017.00412.
    1. Campos J.V.d., Assis O.B.G., Bernardes-Filho R. Atomic force microscopy evidences of bacterial cell damage caused by propolis extracts on E. coli and S. aureus. Food Sci Technol. 2019;40:55–61. doi: 10.1590/fst.32018.
    1. Bankova V., Christov R., Kujumgiev A., Marcucci M.C., Popov S. Chemical composition and antibacterial activity of Brazilian propolis. Z Naturforsch C J Biosci. 1995;50(3-4):167–172. doi: 10.1515/znc-1995-3-402.
    1. Boisard S., Le Ray A.-M., Landreau A., Kempf M., Cassisa V., Flurin C., Richomme P. Antifungal and Antibacterial Metabolites from a French Poplar Type Propolis. Evid Based Complement Alternat Med. 2015;2015:319240. doi: 10.1155/2015/319240.
    1. Al-Ani I., Zimmermann S., Reichling J., Wink M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines. 2018;5(1):2. doi: 10.3390/medicines5010002.
    1. Scazzocchio F., D’Auria F.D., Alessandrini D., Pantanella F. Multifactorial aspects of antimicrobial activity of propolis. Microbiol Res. 2006;161(4):327–333. doi: 10.1016/j.micres.2005.12.003.
    1. Libério S.A., Pereira A.L., Araújo M.J., Dutra R.P., Nascimento F.R., Monteiro-Neto V., Ribeiro M.N., Gonçalves A.G., Guerra R.N. The potential use of propolis as a cariostatic agent and its actions on mutans group streptococci. J Ethnopharmacol. 2009;125(1):1–9. doi: 10.1016/j.jep.2009.04.047.
    1. Mirzoeva O.K., Grishanin R.N., Calder P.C. Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res. 1997;152(3):239–246. doi: 10.1016/S0944-5013(97)80034-1.
    1. Popova M., Silici S., Kaftanoglu O., Bankova V. Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine. 2005;12(3):221–228. doi: 10.1016/j.phymed.2003.09.007.
    1. Mazzarello V., Donadu M.G., Ferrari M., Piga G., Usai D., Zanetti S., Sotgiu M.A. Treatment of acne with a combination of propolis, tea tree oil, and Aloe vera compared to erythromycin cream: two double-blind investigations. Clin Pharmacol. 2018;2018(10):175–181. doi: 10.2147/CPAA.S180474.
    1. Meto A., Colombari B., Meto A., Boaretto G., Pinetti D., Marchetti L., Benvenuti S., Pellati F., Blasi E. Propolis Affects Pseudomonas aeruginosa Growth, Biofilm Formation, eDNA Release and Phenazine Production: Potential Involvement of Polyphenols. Microorganisms. 2020;8(2):243. doi: 10.3390/microorganisms8020243.
    1. Loureiro K.C., Barbosa T.C., Nery M., Chaud M.V., da Silva C.F., Andrade L.N., Corrêa C.B., Jaguer A., Padilha F.F., Cardoso J.C., Souto E., Severino P. Antibacterial activity of chitosan/collagen membranes containing red propolis extract. Pharmazie. 2020;75(2):75–81. doi: 10.1691/ph.2020.9050.
    1. Park Y.K., Koo M.H., Abreu J.A., Ikegaki M., Cury J.A., Rosalen P.L. Antimicrobial properties of propolis on oral microorganisms. Curr Microbiol. 1998;36:24–28. doi: 10.1007/s002849900274.
    1. Park Y.K., Alencar S.M., Aguiar C.L. Botanical origin and chemical composition of Brazilian propolis. J Agr Food Chem. 2002;50(9):2502–2506. doi: 10.1021/jf011432b.
    1. Sforcin J., Fernandes A.J., Lopes C., Bankova V., Funari S. Seasonal effect on Brazilian propolis antibacterial activity. J Ethnopharmacol. 2000;73(1-2):243–249. doi: 10.1016/s0378-8741(00)00320-2.
    1. Galeotti F., Maccari F., Fachini A., Volpi N. Chemical Composition and Antioxidant Activity of Propolis Prepared in Different Forms and in Different Solvents Useful for Finished Products. Foods. 2018;7(3):41. doi: 10.3390/foods7030041.
    1. Khayyal M.T. A.S. el-Ghazaly, A.S. el-Khatib, Mechanisms involved in the antiinflammatory effect of propolis extract. Drugs Exp Clin Res. 1993;19(5):197–203.
    1. de Castro P.A., Savoldi M., Bonatto D., Barros M.H., Goldman M.H., Berretta A.A., Goldman G.H. Molecular characterization of propolis-induced cell death in Saccharomyces cerevisiae. Eukaryot Cell. 2011;10(3):398–411. doi: 10.1128/EC.00256-10.
    1. Pietta G.C., PG, Pietta A.M. Analytical methods for quality control of propolis. Fitoterapia. 2002;73:S7–S20. doi: 10.1016/s0367-326x(02)00186-7.
    1. Marquiafável F.S., Nascimento A.P., Barud H.d.S., Marquele-Oliveira F., de-Freitas L.A.P., Bastos J.K., Berretta A.A. Development and characterization of a novel standardized propolis dry extract obtained by factorial design with high artepillin C content. J Pharm Technol Drug Res. 2015;4:1. doi: 10.7243/2050-120X-4-1.
    1. Cunha I., SawayaI A., Caetano F., ShimizuI M.T., MarcucciIII M.C., DrezzaI F.T., PoviaI G.S., Carvalho P.d.O. Factors that influence the yield and composition of Brazilian propolis extracts. J Braz Chem Soc. 2004;15(6):964–970. doi: 10.1590/S0103-50532004000600026.
    1. European Food Safety Authority Panel on Dietetic Products, Scientific Opinion on the substantiation of health claims related to propolis (ID 1242, 1245, 1246, 1247, 1248, 3184) and flavonoids in propolis (ID 1244, 1644, 1645, 3526, 3527, 3798, 3799) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010;8(10):1810. doi: 10.2903/j.efsa.2010.1810.
    1. Nikam P.H., Kareparamban J., Aruna J., Kadam V. Future Trends in Standardization of Herbal Drugs. J Appl Pharm Sci. 2012;2(6):38–44. doi: 10.7324/JAPS.2012.2631.
    1. Waldesch F.G., Konigswinter B., Remagen H. Medpharm CRC Press; Boca Raton: 2003. Herbal Medicinal Products - Scientific and regulatory basis for development quality assurance and marketing authorisation.
    1. Souza J., Tacon L., Correia C., Bastos J., Freitas L. Spray-dried propolis extract, II: prenylated components of green propolis. Pharmazie. 2007;62(7):488–492.
    1. Rocha B.A., Bueno P.C.P., Vaz M.M.d.O.L.L., Nascimento A.P., Ferreira N.U., Moreno G.d.P., Rodrigues M.R., Costa-Machado A.R.d.M., Barizon E.A., Campos J.C.L., de Oliveira P.F., Acésio N.d.O., Martins S.d.P.L., Tavares D.C., Berretta A.A. Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation. Evid Based Complement Alternat Med. 2013;2013:670451. doi: 10.1155/2013/670451.
    1. de Castro P., Savoldi M., Bonatto D., Malavazi I., Goldman M., Berretta A., Goldman G. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. BMC Complement Altern Med. 2012;12:194. doi: 10.1186/1472-6882-12-194.
    1. Berretta A.A., de Castro P.A., Cavalheiro A.H., Fortes V.S., Bom V.P., Nascimento A.P., Marquele-Oliveira F., Pedrazzi V., Ramalho L.N., Goldman G.H. Evaluation of Mucoadhesive Gels with Propolis (EPP-AF) in Preclinical Treatment of Candidiasis Vulvovaginal Infection. Evid Based Complement Alternat Med. 2013;2013:641480. doi: 10.1155/2013/641480.
    1. Barud Hda S., de Araujo A.M., Junior, Saska S., Mestieri L.B., Campos J.A., de Freitas R.M., Ferreira N.U., Nascimento A.P., Miguel F.G., Vaz M.M., Barizon E.A., Marquele-Oliveira F., Gaspar A.M., Ribeiro S.J., Berretta A.A. Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing. Evid Based Complement Alternat Med. 2013;2013:703024. doi: 10.1155/2013/703024.
    1. Marquele F.D., Oliveira A.R., Bonato P.S., Lara M.G., Fonseca M.J. Propolis extract release evaluation from topical formulations by chemiluminescence and HPLC. J Pharm Biomed Anal. 2006;41(2):461–468. doi: 10.1016/j.jpba.2005.12.022.
    1. Mohammadzadeh S., Shariatpanahi M., Hamedi M., Ahmadkhaniha R., Samadi N., Ostad S.N. Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chemistry. 2007;103(4):1097–1103. doi: 10.1016/j.foodchem.2006.10.006.
    1. Dobrowolski J., Vohora S., Sharma K., Shah S., Naqvi S., Dandiya P. Antibacterial, Antifungal, Antiamoebic, Antiinflammatory and Antipyretic Studies on Propolis Bee Products. J Ethnopharmacol. 1991;35(1):77–82. doi: 10.1016/0378-8741(91)90135-Z.
    1. Mani F., Damasceno H.C., Novelli E.L., Martins E.A., Sforcin J.M. Propolis: Effect of different concentrations, extracts and intake period on seric biochemical variables. J Ethnopharmacol. 2006;105(1–2):95–98. doi: 10.1016/j.jep.2005.10.011.
    1. Senedese J.M., Rodrigues A.R., Furtado M.A., Faustino V.D., Berretta A.A., Marchetti J.M., Tavares D.C. Assessment of the mutagenic activity of extracts of brazilian propolis in topical pharmaceutical formulations on Mammalian cells in vitro and in vivo. Evid Based Complement Alternat Med. 2011;2011:315701. doi: 10.1093/ecam/nen049.
    1. Tavares D.C., Mazzaron Barcelos G.R., Silva L.F., Chacon Tonin C.C., Bastos J.K. Propolis-induced genotoxicity and antigenotoxicity in Chinese hamster ovary cells. Toxicol In Vitro. 2006;20(7):1154–1158. doi: 10.1016/j.tiv.2006.02.009.
    1. Reis C.M.F., Carvalho J.C.T., Caputo L.R.G., Patricio K.C.M., Barbosa M.V.J., Chieff A.L., Bastos J.K. Atividade antiinflamatória, antiúlcera gástrica e toxicidade subcrônica do extrato etanólico de própolis. Rev Bras Farmacogn. 2000;9-10(1):43–52. doi: 10.1590/S0102-695X2000000100005.
    1. Cohen H.A., Varsano I., Kahan E., Sarrell E.M., Uziel Y. Effectiveness of an herbal preparation containing echinacea, propolis, and vitamin C in preventing respiratory tract infections in children: a randomized, double-blind, placebo-controlled, multicenter study. Arch Pediatr Adolesc Med. 2004;158(3):217–221. doi: 10.1001/archpedi.158.3.217.
    1. Soroy L., Bagus S., Yongkie I.P., Djoko W. The effect of a unique propolis compound (PropoelixTM) on clinical outcomes in patients with dengue hemorrhagic fever. Infect Drug Resist. 2014;7:323–329. doi: 10.2147/IDR.S71505.
    1. Lotfy M. Biological activity of bee propolis in health and disease. Asian Pac J Cancer Prev. 2006;7(1):22–31.
    1. Finch C.E. Evolution in health and medicine Sackler colloquium: Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci U S A. 2010;107(Suppl 1):1718–1724. doi: 10.1073/pnas.0909606106.
    1. Ahn M.R., Kunimasa K., Ohta T., Kumazawa S., Kamihira M., Kaji K., Uto Y., Hori H., Nagasawa H., Nakayama T. Suppression of tumor-induced angiogenesis by Brazilian propolis: major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation. Cancer Lett. 2007;252(2):235–243. doi: 10.1016/j.canlet.2006.12.039.
    1. Szliszka E., Zydowicz G., Janoszka B., Dobosz C., Kowalczyk-Ziomek G., Krol W. Ethanolic extract of Brazilian green propolis sensitizes prostate cancer cells to TRAIL-induced apoptosis. Int J Oncol. 2011;38(4):941–953. doi: 10.3892/ijo.2011.930.
    1. Chuang M.-h., Peng C.-y., Chi C.-y., Chung H.-y., Liu C.-t., Kuo H.-c. U.-M.B. Technology; United States: 2016. Device method of making artepillin c in propolis for anti-cancer.
    1. Ferrari C.K. Functional foods, herbs and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology. 2004;5(5):275–289. doi: 10.1007/s10522-004-2566-z.
    1. Bachevski D., Damevska K., Simeonovski V., Dimova M. Back to the basics: Propolis and COVID-19. Dermatol Ther. 2020;2020 doi: 10.1111/dth.13780.
    1. Sforcin J.M. Propolis and the immune system: a review. J Ethnopharmacol. 2007;113(1):1–14. doi: 10.1016/j.jep.2007.05.012.
    1. Salatino A., Fernandes-Silva C.C., Righi A.A., Salatino M.L. Propolis research and the chemistry of plant products. Nat Prod Rep. 2011;28(5):925–936. doi: 10.1039/c0np00072h.
    1. de Mendonça I.C.G., Porto I.C.C.d.M., do Nascimento T.G., de Souza N.S., Oliveira J.M.d.S., Arruda R.E.d.S., Mousinho K.C., dos Santos A.F., Basílio-Júnior I.D., Parolia A., Barreto F.S. Brazilian red propolis: phytochemical screening, antioxidant activity and effect against cancer cells. BMC Complem Altern Med. 2015;15:357. doi: 10.1186/s12906-015-0888-9.
    1. Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J., Baxter-Stoltzfus A., Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007.
    1. Porfidia A., Pola R. Venous thromboembolism and heparin use in COVID-19 patients: juggling between pragmatic choices, suggestions of medical societies and the lack of guidelines. J Thromb Thrombolysis. 2020;50:68–71. doi: 10.1007/s11239-020-02125-4.
    1. Schwarz S., Sauter D., Wang K., Zhang R., Sun B., Karioti A., Bilia A.R., Efferth T., Schwarz W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med. 2014;80(2-3):177–182. doi: 10.1055/s-0033-1360277.
    1. Yang L., Li Y.-T., Miao J., Wang L., Fu H., Li Q., Wen W.-B., Zhang Z.-Y., Song R.-W., Liu X.-G., Wang H.-W., Cui H.-T. Network pharmacology studies on the effect of Chai-Ling decoction in coronavirus disease 2019. Traditional Medicine Research. 2020;5(3):145. doi: 10.12032/TMR20200324170.
    1. Lin C.W., Tsai F.J., Tsai C.H., Lai C.C., Wan L., Ho T.Y., Hsieh C.C., Chao P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 2005;68(1):36–42. doi: 10.1016/j.antiviral.2005.07.002.
    1. Wu Z., Liu Y., Zhu A., Wu S., Nakanishia H. Brazilian green propolis suppresses microglia-mediated neuroinflammation by inhibiting NF-kB activation. J Neurol Sci. 2017;381 doi: 10.1016/j.jns.2017.08.1910.
    1. Adachi T., Tezuka H., Tsuji N.M., Ohteki T., Karasuyama H., Kumazawa T. Propolis induces Ca2+ signaling in immune cells. Biosci Microbiota Food Health. 2019;38(4):141. doi: 10.12938/bmfh.19-011.
    1. Sy L.B., Wu Y.L., Chiang B.L., Wang Y.H., Wu W.M. Propolis extracts exhibit an immunoregulatory activity in an OVA-sensitized airway inflammatory animal model. Int Immunopharmacol. 2006;6(7):1053–1060. doi: 10.1016/j.intimp.2006.01.015.
    1. Szliszka E., Kucharska A.Z., Sokol-Letowska A., Mertas A., Czuba Z.P., Krol W. Chemical Composition and Anti-Inflammatory Effect of Ethanolic Extract of Brazilian Green Propolis on Activated J774A.1 Macrophages. Evid Based Complement Alternat Med. 2013;2013:976415. doi: 10.1155/2013/976415.
    1. Shvarzbeyn J., Huleihel M. Effect of propolis and caffeic acid phenethyl ester (CAPE) on NFkappaB activation by HTLV-1 Tax. Antiviral Res. 2011;90(3):108–115. doi: 10.1016/j.antiviral.2011.03.177.
    1. Shi Z.H., Li N.G., Tang Y.P., Wei L., Lian Y., Yang J.P., Hao T., Duan J.A. Metabolism-based synthesis, biologic evaluation and SARs analysis of O-methylated analogs of quercetin as thrombin inhibitors. Eur J Med Chem. 2012;54:210–222. doi: 10.1016/j.ejmech.2012.04.044.
    1. Tsai F.J., Lin C.W., Lai C.C., Lan Y.C., Lai C.H., Hung C.H., Hsueh K.C., Lin T.H., Chang H.C., Wan L., Sheu J.J., Lin Y.J. Kaempferol inhibits enterovirus 71 replication and internal ribosome entry site (IRES) activity through FUBP and HNRP proteins. Food Chem. 2011;128(2):312–322. doi: 10.1016/j.foodchem.2011.03.022.
    1. Min B.S., Tomiyama M., Ma C.M., Nakamura N., Hattori M. Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus-1 reverse transcriptase. Chem Pharm Bull (Tokyo). 2001;49(5):546–550. doi: 10.1248/cpb.49.546.
    1. Behbahani M., Sayedipour S., Pourazar A., Shanehsazzadeh M. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca. Res Pharm Sci. 2014;9(6):463–469.
    1. Ganesan S., Faris A.N., Comstock A.T., Wang Q., Nanua S., Hershenson M.B., Sajjan U.S. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res. 2012;94(3):258–271. doi: 10.1016/j.antiviral.2012.03.005.
    1. Rojas A., Del Campo J.A., Clement S., Lemasson M., Garcia-Valdecasas M., Gil-Gomez A., Ranchal I., Bartosch B., Bautista J.D., Rosenberg A.R., Negro F., Romero-Gomez M. Effect of Quercetin on Hepatitis C Virus Life Cycle: From Viral to Host Targets. Sci Rep. 2016;6:31777. doi: 10.1038/srep31777.
    1. Cheng Z., Sun G., Guo W., Huang Y., Sun W., Zhao F., Hu K. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines. Virol Sin. 2015;30(4):261–268. doi: 10.1007/s12250-015-3584-5.
    1. Wang G.F., Shi L.P., Ren Y.D., Liu Q.F., Liu H.F., Zhang R.J., Li Z., Zhu F.H., He P.L., Tang W., Tao P.Z., Li C., Zhao W.M., Zuo J.P. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antiviral Res. 2009;83(2):186–190. doi: 10.1016/j.antiviral.2009.05.002.
    1. Utsunomiya H., Ichinose M., Ikeda K., Uozaki M., Morishita J., Kuwahara T., Koyama A.H., Yamasaki H. Inhibition by caffeic acid of the influenza A virus multiplication in vitro. Int J Mol Med. 2014;34(4):1020–1024. doi: 10.3892/ijmm.2014.1859.
    1. Xie Y., Huang B., Yu K., Shi F., Liu T., Xu W. Caffeic acid derivatives: a new type of influenza neuraminidase inhibitors. Bioorg Med Chem Lett. 2013;23(12):3556–3560. doi: 10.1016/j.bmcl.2013.04.033.
    1. Fesen M.R., Pommier Y., Leteurtre F., Hiroguchi S., Yung J., Kohn K.W. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol. 1994;48(3):595–608. doi: 10.1016/0006-2952(94)90291-7.

Source: PubMed

3
Abonner