Triple oral beta-lactam containing therapy for Buruli ulcer treatment shortening

María Pilar Arenaz-Callao, Rubén González Del Río, Ainhoa Lucía Quintana, Charles J Thompson, Alfonso Mendoza-Losana, Santiago Ramón-García, María Pilar Arenaz-Callao, Rubén González Del Río, Ainhoa Lucía Quintana, Charles J Thompson, Alfonso Mendoza-Losana, Santiago Ramón-García

Abstract

The potential use of clinically approved beta-lactams for Buruli ulcer (BU) treatment was investigated with representative classes analyzed in vitro for activity against Mycobacterium ulcerans. Beta-lactams tested were effective alone and displayed a strong synergistic profile in combination with antibiotics currently used to treat BU, i.e. rifampicin and clarithromycin; this activity was further potentiated in the presence of the beta-lactamase inhibitor clavulanate. In addition, quadruple combinations of rifampicin, clarithromycin, clavulanate and beta-lactams resulted in multiplicative reductions in their minimal inhibitory concentration (MIC) values. The MIC of amoxicillin against a panel of clinical isolates decreased more than 200-fold within this quadruple combination. Amoxicillin/clavulanate formulations are readily available with clinical pedigree, low toxicity, and orally and pediatric available; thus, supporting its potential inclusion as a new anti-BU drug in current combination therapies.

Conflict of interest statement

RGdR and AML are employees of GlaxoSmithKline, a producer of the generic drug amoxicillin/clavulanate. All other authors declare no conflicts of interest.

Figures

Fig 1. Synergistic profiles of current anti-BU…
Fig 1. Synergistic profiles of current anti-BU drugs and selected beta-lactams with rifampicin against M. ulcerans ATCC 19423.
Compounds were assayed in two-fold serial dilutions in a checkerboard format. Rifampicin was assayed in the x-axis while other drugs were assayed in the y-axis. RIF, rifampicin; STR, streptomycin; AMK, amikacin; CLA, clarithromycin; MOX, moxifloxacin; CPD, cephradine; CDN, cefdinir; AMX, amoxicillin; FAR, faropenem; MER, meropenem; CLV, clavulanate.
Fig 2. Multiplicative effects of quadruple synergistic…
Fig 2. Multiplicative effects of quadruple synergistic combinations including rifampicin, clarithromycin, clavulanate and different beta-lactams against M. ulcerans ATCC 19423.
The MIC of each compound was compared alone and in the presence of several synergistic combinations at the MOCC (lowest FICI). Clarithromycin is not displayed since it was tested at a fixed 1/8xMIC concentration (MICCLA = 0.5 μg/mL). Clavulanate was tested at a fixed 5 μg/mL concentration. AMX, amoxicillin; CLA, clarithromycin; CLV, clavulanate; FAR, faropenem; MER, meropenem; RIF, rifampicin.
Fig 3. Dose response curves of amoxicillin…
Fig 3. Dose response curves of amoxicillin alone and in combination against M. ulcerans clinical isolates.
Dose response curves of amoxicillin tested: "alone", alone; "Plus CLV", in the presence of clavulanate; "at MOCC plus CLV", in the presence of clavulanate and rifampicin at the MOCC; "at MOCC plus CLV/CLA", in the presence of clavulanate and rifampicin and clarithromycin at the MOCC. Clavulanate was tested at a fixed 5 μg/mL concentration. AMX, amoxicillin; CLA, clarithromycin; CLV, clavulanate.

References

    1. O'Brien DP, Athan E, Blasdell K, De Barro P. Tackling the worsening epidemic of Buruli ulcer in Australia in an information void: time for an urgent scientific response. Med J Aust. 2018;208(7):287–9.
    1. World Health Organization. Treatment of Mycobacterium ulcerans disease (Buruli ulcer). Guidance For Health Workers. Geneva. 2012.
    1. Guarner J. Buruli Ulcer: Review of a Neglected Skin Mycobacterial Disease. J Clin Microbiol. 2018;56(4). 10.1128/JCM.01507-17
    1. Revill WD, Morrow RH, Pike MC, Ateng J. A controlled trial of the treatment of Mycobacterium ulcerans infection with clofazimine. Lancet. 1973;2(7834):873–7.
    1. Espey DK, Djomand G, Diomande I, Dosso M, Saki MZ, Kanga JM, et al. A pilot study of treatment of Buruli ulcer with rifampin and dapsone. Int J Infect Dis. 2002;6(1):60–5.
    1. Portaels F, Traore H, De Ridder K, Meyers WM. In vitro susceptibility of Mycobacterium ulcerans to clarithromycin. Antimicrob Agents Chemother. 1998;42(8):2070–3.
    1. Havel A, Pattyn SR. Activity of rifampicin on Mycobacterium ulcerans. Ann Soc Belg Med Trop. 1975;55(2):105–8.
    1. Thangaraj HS, Adjei O, Allen BW, Portaels F, Evans MR, Banerjee DK, et al. In vitro activity of ciprofloxacin, sparfloxacin, ofloxacin, amikacin and rifampicin against Ghanaian isolates of Mycobacterium ulcerans. J Antimicrob Chemother. 2000;45(2):231–3.
    1. Ji B, Lefrancois S, Robert J, Chauffour A, Truffot C, Jarlier V. In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans. Antimicrob Agents Chemother. 2006;50(6):1921–6. 10.1128/AAC.00052-06
    1. Bentoucha A, Robert J, Dega H, Lounis N, Jarlier V, Grosset J. Activities of new macrolides and fluoroquinolones against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother. 2001;45(11):3109–12. 10.1128/AAC.45.11.3109-3112.2001
    1. Dega H, Robert J, Bonnafous P, Jarlier V, Grosset J. Activities of several antimicrobials against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother. 2000;44(9):2367–72.
    1. Ji B, Chauffour A, Robert J, Lefrancois S, Jarlier V. Orally administered combined regimens for treatment of Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother. 2007;51(10):3737–9. 10.1128/AAC.00730-07
    1. Ji B, Chauffour A, Robert J, Jarlier V. Bactericidal and sterilizing activities of several orally administered combined regimens against Mycobacterium ulcerans in mice. Antimicrob Agents Chemother. 2008;52(6):1912–6. 10.1128/AAC.00193-08
    1. Etuaful S, Carbonnelle B, Grosset J, Lucas S, Horsfield C, Phillips R, et al. Efficacy of the combination rifampin-streptomycin in preventing growth of Mycobacterium ulcerans in early lesions of Buruli ulcer in humans. Antimicrob Agents Chemother. 2005;49(8):3182–6. 10.1128/AAC.49.8.3182-3186.2005
    1. Chauty A, Ardant MF, Adeye A, Euverte H, Guedenon A, Johnson C, et al. Promising clinical efficacy of streptomycin-rifampin combination for treatment of buruli ulcer (Mycobacterium ulcerans disease). Antimicrob Agents Chemother. 2007;51(11):4029–35. 10.1128/AAC.00175-07
    1. Sarfo FS, Phillips R, Asiedu K, Ampadu E, Bobi N, Adentwe E, et al. Clinical efficacy of combination of rifampin and streptomycin for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother. 2010;54(9):3678–85. 10.1128/AAC.00299-10
    1. O'Brien DP, McDonald A, Callan P, Robson M, Friedman ND, Hughes A, et al. Successful outcomes with oral fluoroquinolones combined with rifampicin in the treatment of Mycobacterium ulcerans: an observational cohort study. PLoS neglected tropical diseases. 2012;6(1):e1473 10.1371/journal.pntd.0001473
    1. Nienhuis WA, Stienstra Y, Thompson WA, Awuah PC, Abass KM, Tuah W, et al. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomised controlled trial. Lancet. 2010;375(9715):664–72. 10.1016/S0140-6736(09)61962-0
    1. Phillips RO, Sarfo FS, Abass MK, Abotsi J, Wilson T, Forson M, et al. Clinical and bacteriological efficacy of rifampin-streptomycin combination for two weeks followed by rifampin and clarithromycin for six weeks for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother. 2014;58(2):1161–6. 10.1128/AAC.02165-13
    1. . WHO Drug Study for Buruli Ulcer—Comparison of SR8 and CR8.
    1. .
    1. Kibadi K, Boelaert M, Fraga AG, Kayinua M, Longatto-Filho A, Minuku JB, et al. Response to treatment in a prospective cohort of patients with large ulcerated lesions suspected to be Buruli Ulcer (Mycobacterium ulcerans disease). PLoS neglected tropical diseases. 2010;4(7):e736 10.1371/journal.pntd.0000736
    1. Wadagni AC, Barogui YT, Johnson RC, Sopoh GE, Affolabi D, van der Werf TS, et al. Delayed versus standard assessment for excision surgery in patients with Buruli ulcer in Benin: a randomised controlled trial. Lancet Infect Dis. 2018;18(6):650–6. 10.1016/S1473-3099(18)30160-9
    1. Chauffour A, Robert J, Veziris N, Aubry A, Jarlier V. Sterilizing Activity of Fully Oral Intermittent Regimens against Mycobacterium Ulcerans Infection in Mice. PLoS neglected tropical diseases. 2016;10(10):e0005066 10.1371/journal.pntd.0005066
    1. Marsollier L, Honore N, Legras P, Manceau AL, Kouakou H, Carbonnelle B, et al. Isolation of three Mycobacterium ulcerans strains resistant to rifampin after experimental chemotherapy of mice. Antimicrob Agents Chemother. 2003;47(4):1228–32. 10.1128/AAC.47.4.1228-1232.2003
    1. Owusu E, Newman MJ, Kotey NK, Akumwena A, Bannerman E. Susceptibility Profiles of Mycobacterium ulcerans Isolates to Streptomycin and Rifampicin in Two Districts of the Eastern Region of Ghana. Int J Microbiol. 2016;2016:8304524 10.1155/2016/8304524
    1. Ballell L, Bates RH, Young RJ, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V, et al. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem. 2013;8(2):313–21. 10.1002/cmdc.201200428
    1. Ramon-Garcia S, Gonzalez Del Rio R, Villarejo AS, Sweet GD, Cunningham F, Barros D, et al. Repurposing clinically approved cephalosporins for tuberculosis therapy. Sci Rep. 2016;6:34293 10.1038/srep34293
    1. Diacon AH, van der Merwe L, Barnard M, von Groote-Bidlingmaier F, Lange C, Garcia-Basteiro AL, et al. beta-Lactams against Tuberculosis—New Trick for an Old Dog? N Engl J Med. 2016;375(4):393–4. 10.1056/NEJMc1513236
    1. Ramon-Garcia S, Ng C, Anderson H, Chao JD, Zheng X, Pfeifer T, et al. Synergistic drug combinations for tuberculosis therapy identified by a novel high-throughput screen. Antimicrob Agents Chemother. 2011;55(8):3861–9. 10.1128/AAC.00474-11
    1. Kaushik A, Makkar N, Pandey P, Parrish N, Singh U, Lamichhane G. Carbapenems and Rifampin Exhibit Synergy against Mycobacterium tuberculosis and Mycobacterium abscessus. Antimicrob Agents Chemother. 2015;59(10):6561–7. 10.1128/AAC.01158-15
    1. Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191(9):1058–65. 10.1164/rccm.201407-1264OC
    1. Hu Y, Liu A, Ortega-Muro F, Alameda-Martin L, Mitchison D, Coates A. High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo. Front Microbiol. 2015;6:641 10.3389/fmicb.2015.00641
    1. van Ingen J, Aarnoutse RE, Donald PR, Diacon AH, Dawson R, Plemper van Balen G, et al. Why Do We Use 600 mg of Rifampicin in Tuberculosis Treatment? Clin Infect Dis. 2011;52(9):e194–9. 10.1093/cid/cir184
    1. Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17(1):39–49. 10.1016/S1473-3099(16)30274-2
    1. Aarnoutse RE, Kibiki GS, Reither K, Semvua HH, Haraka F, Mtabho CM, et al. Pharmacokinetics, Tolerability, and Bacteriological Response of Rifampin Administered at 600, 900, and 1,200 Milligrams Daily in Patients with Pulmonary Tuberculosis. Antimicrob Agents Chemother. 2017;61(11). 10.1128/AAC.01054-17
    1. Omansen TF, Almeida D, Converse PJ, Li SY, Lee J, Stienstra Y, et al. High-dose rifamycins enable shorter oral treatment in a murine model of Mycobacterium ulcerans disease. Antimicrob Agents Chemother. 2018. 10.1128/AAC.01478-18
    1. Rolinson GN. Forty years of beta-lactam research. J Antimicrob Chemother. 1998;41(6):589–603.
    1. Chambers HF, Moreau D, Yajko D, Miick C, Wagner C, Hackbarth C, et al. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob Agents Chemother. 1995;39(12):2620–4.
    1. Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE 3rd, Blanchard JS. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science. 2009;323(5918):1215–8. 10.1126/science.1167498
    1. Payen MC, De Wit S, Martin C, Sergysels R, Muylle I, Van Laethem Y, et al. Clinical use of the meropenem-clavulanate combination for extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2012;16(4):558–60. 10.5588/ijtld.11.0414
    1. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. J Antimicrob Chemother. 2005;55(4):500–5. Epub 2005/02/26. dki023 [pii] 10.1093/jac/dki023
    1. .
    1. Almeida D, Converse PJ, Ahmad Z, Dooley KE, Nuermberger EL, Grosset JH. Activities of rifampin, Rifapentine and clarithromycin alone and in combination against Mycobacterium ulcerans disease in mice. PLoS neglected tropical diseases. 2011;5(1):e933 10.1371/journal.pntd.0000933
    1. Zhang T, Bishai WR, Grosset JH, Nuermberger EL. Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob Agents Chemother. 2010;54(7):2806–13. 10.1128/AAC.00400-10
    1. Scherr N, Pluschke G, Panda M. Comparative Study of Activities of a Diverse Set of Antimycobacterial Agents against Mycobacterium tuberculosis and Mycobacterium ulcerans. Antimicrob Agents Chemother. 2016;60(5):3132–7. 10.1128/AAC.02658-15
    1. Scherr N, Roltgen K, Witschel M, Pluschke G. Screening of antifungal azole drugs and agrochemicals with an adapted alamarBlue-based assay demonstrates antibacterial activity of croconazole against Mycobacterium ulcerans. Antimicrob Agents Chemother. 2012;56(12):6410–3. 10.1128/AAC.01383-12
    1. Cambau E, Saunderson P, Matsuoka M, Cole ST, Kai M, Suffys P, et al. Antimicrobial resistance in leprosy: results of the first prospective open survey conducted by a WHO surveillance network for the period 2009–15. Clin Microbiol Infect. 2018. 10.1016/j.cmi.2018.02.022
    1. Ma Z, Lienhardt C, McIlleron H, Nunn AJ, Wang X. Global tuberculosis drug development pipeline: the need and the reality. Lancet. 2010;375(9731):2100–9. 10.1016/S0140-6736(10)60359-9
    1. Pham PA, Bartlett JG. Johns Hopkins Antibiotic (ABX) guide. Cefdinir. .
    1. Pham PA, Bartlett JG. Johns Hopkins Antibiotic (ABX) guide. Amoxicillin + Clavulanate. .
    1. White AR, Kaye C, Poupard J, Pypstra R, Woodnutt G, Wynne B. Augmentin (amoxicillin/clavulanate) in the treatment of community-acquired respiratory tract infection: a review of the continuing development of an innovative antimicrobial agent. J Antimicrob Chemother. 2004;53 Suppl 1:i3–20. 10.1093/jac/dkh050
    1. Rendon A, Tiberi S, Scardigli A, D'Ambrosio L, Centis R, Caminero JA, et al. Classification of drugs to treat multidrug-resistant tuberculosis (MDR-TB): evidence and perspectives. J Thorac Dis. 2016;8(10):2666–71. 10.21037/jtd.2016.10.14
    1. Cynamon MH, Palmer GS. In vitro activity of amoxicillin in combination with clavulanic acid against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1983;24(3):429–31.
    1. Nadler JP, Berger J, Nord JA, Cofsky R, Saxena M. Amoxicillin-clavulanic acid for treating drug-resistant Mycobacterium tuberculosis. Chest. 1991;99(4):1025–6.
    1. Chambers HF, Kocagoz T, Sipit T, Turner J, Hopewell PC. Activity of amoxicillin/clavulanate in patients with tuberculosis. Clin Infect Dis. 1998;26(4):874–7.
    1. Donald PR, Sirgel FA, Venter A, Parkin DP, Van de Wal BW, Barendse A, et al. Early bactericidal activity of amoxicillin in combination with clavulanic acid in patients with sputum smear-positive pulmonary tuberculosis. Scand J Infect Dis. 2001;33(6):466–9.
    1. Gonzalo X, Drobniewski F. Is there a place for beta-lactams in the treatment of multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate. J Antimicrob Chemother. 2013;68(2):366–9. 10.1093/jac/dks395
    1. Pagliotto AD, Caleffi-Ferracioli KR, Lopes MA, Baldin VP, Leite CQ, Pavan FR, et al. Anti-Mycobacterium tuberculosis activity of antituberculosis drugs and amoxicillin/clavulanate combination. J Microbiol Immunol Infect. 2016;49(6):980–3. 10.1016/j.jmii.2015.08.025
    1. Abate G, Miorner H. Susceptibility of multidrug-resistant strains of Mycobacterium tuberculosis to amoxycillin in combination with clavulanic acid and ethambutol. J Antimicrob Chemother. 1998;42(6):735–40.
    1. Utrup LJ, Moore TD, Actor P, Poupard JA. Susceptibilities of nontuberculosis mycobacterial species to amoxicillin-clavulanic acid alone and in combination with antimycobacterial agents. Antimicrob Agents Chemother. 1995;39(7):1454–7.
    1. MacGowan A. Revisiting Beta-lactams—PK/PD improves dosing of old antibiotics. Curr Opin Pharmacol. 2011;11(5):470–6. 10.1016/j.coph.2011.07.006
    1. Sarpong-Duah M, Frimpong M, Beissner M, Saar M, Laing K, Sarpong F, et al. Clearance of viable Mycobacterium ulcerans from Buruli ulcer lesions during antibiotic treatment as determined by combined 16S rRNA reverse transcriptase /IS 2404 qPCR assay. PLoS neglected tropical diseases. 2017;11(7):e0005695 10.1371/journal.pntd.0005695
    1. Sarfo FS, Phillips RO, Zhang J, Abass MK, Abotsi J, Amoako YA, et al. Kinetics of mycolactone in human subcutaneous tissue during antibiotic therapy for Mycobacterium ulcerans disease. BMC Infect Dis. 2014;14:202 10.1186/1471-2334-14-202
    1. In vitro hollow fiber system model of tuberculosis (HSF-TB). 2015. EMA/CHMP/SAWP/47290/2015 Corr.
    1. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;371(17):1577–87. 10.1056/NEJMoa1407426
    1. Dorman SE, Goldberg S, Stout JE, Muzanyi G, Johnson JL, Weiner M, et al. Substitution of rifapentine for rifampin during intensive phase treatment of pulmonary tuberculosis: study 29 of the tuberculosis trials consortium. J Infect Dis. 2012;206(7):1030–40. 10.1093/infdis/jis461
    1. Solapure S, Dinesh N, Shandil R, Ramachandran V, Sharma S, Bhattacharjee D, et al. In vitro and in vivo efficacy of beta-lactams against replicating and slowly growing/nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2013;57(6):2506–10. 10.1128/AAC.00023-13
    1. Kropp H, Sundelof JG, Hajdu R, Kahan FM. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase. Antimicrob Agents Chemother. 1982;22(1):62–70.
    1. Fukasawa M, Sumita Y, Harabe ET, Tanio T, Nouda H, Kohzuki T, et al. Stability of meropenem and effect of 1 beta-methyl substitution on its stability in the presence of renal dehydropeptidase I. Antimicrob Agents Chemother. 1992;36(7):1577–9.

Source: PubMed

3
Abonner