Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects of AST-120

Wen-Chih Liu, Yasuhiko Tomino, Kuo-Cheng Lu, Wen-Chih Liu, Yasuhiko Tomino, Kuo-Cheng Lu

Abstract

Uremic toxins, such as indoxyl sulfate (IS) and p-cresol, or p-cresyl sulfate (PCS), are markedly accumulated in the organs of chronic kidney disease (CKD) patients. These toxins can induce inflammatory reactions and enhance oxidative stress, prompting glomerular sclerosis and interstitial fibrosis, to aggravate the decline of renal function. Consequently, uremic toxins play an important role in the worsening of renal and cardiovascular functions. Furthermore, they destroy the quantity and quality of bone. Oral sorbent AST-120 reduces serum levels of uremic toxins in CKD patients by adsorbing the precursors of IS and PCS generated by amino acid metabolism in the intestine. Accordingly, AST-120 decreases the serum IS levels and reduces the production of reactive oxygen species by endothelial cells, to impede the subsequent oxidative stress. This slows the progression of cardiovascular and renal diseases and improves bone metabolism in CKD patients. Although large-scale studies showed no obvious benefits from adding AST-120 to the standard therapy for CKD patients, subsequent sporadic studies may support its use. This article summarizes the mechanisms of the uremic toxins, IS, and PCS, and discusses the multiple effects of AST-120 in CKD patients.

Keywords: chronic kidney disease-mineral bone disease; indoxyl sulfate; reactive oxygen species; uremic toxin; uremic toxin adsorbent.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Figures

Figure 1
Figure 1
Mechanisms of IS pathology. IS enters renal tubular cells or VSMCs through OAT1 and OAT3. It induces free radical production, reduces nitric oxide levels, and activates AHR to produce ROS that damage cells. In the cardiovascular system, damaged endothelial cells and VSMCs secrete elevated amounts of NADPH and Nox4, while secreting less KLOTHO, a protective role in the kidney. This causes dysfunction of endothelial cells and osteoblastic phenotyped-VSMCs, which ultimately lead to atherosclerosis and arteriosclerosis. In the kidney, injured tubular cells and mesangial cells secrete various cytokines to promote EMT transition, which results in tubular and interstitial cell fibrosis. In the bone, at early-stage CKD, hyperphosphatemia, hypocalcemia, vitamin D deficiency, FGF23 elevation, and parathyroid hormone (PTH) elevation lead to bone fragility and fracture. IS potentiates this condition. Upon further worsening of the renal function, the viability and function of osteoblasts and osteoclasts are impaired and PTH is secreted, leading to reduced bone quantity. This is called CKD-MBD, or renal osteodystrophy. IS causes deterioration of some material properties of the bone. Changes in these material properties perturb bone elasticity, leading to a decline in bone quality. This disease concept is called “uremic osteoporosis”. AHR, aryl hydrocarbon receptor; CBF-1, core binding factor 1; CKD-MBD, chronic kidney disease-mineral bone disease; CYP1A1, cytochrome P450 family 1 subfamily A member 1; EMT, epithelial-to-mesenchymal transition; FGF23, fibroblast growth factor 23; ICAM-1, intercellular adhesion molecule 1; IS, indoxyl sulfate; NADPH, nicotinamide adenine dinucleotide phosphate hydrogen; NF-κB, nuclear factor kappa B; NO, nitric oxide; Nox4, NADPH Oxidase 4; OAT, organic anion transporters; ROS, reactive oxygen species; PAI-1, plasminogen activation inhibitor -1; PTH, parathyroid hormone; TGF-β1, transforming growth factor β-1; VSMCs, vascular smooth muscle cells.

References

    1. Murray C.J.L., Lim S.S., Vos T., Lozano R., Naghavi M. Challenges of measuring the Healthcare Access and Quality Index—Authors’ reply. Lancet. 2018;391:429–430. doi: 10.1016/S0140-6736(18)30147-8.
    1. Vanholder R., Glorieux G., De Smet R., Lameire N., European Uremic Toxin Work Group New insights in uremic toxins. Kidney Int. Suppl. 2003:S6–S10. doi: 10.1046/j.1523-1755.63.s84.43.x.
    1. Vanholder R., Baurmeister U., Brunet P., Cohen G., Glorieux G., Jankowski J., European Uremic Toxin Work Group A bench to bedside view of uremic toxins. J. Am. Soc. Nephrol. 2008;19:863–870. doi: 10.1681/ASN.2007121377.
    1. Miyazaki T., Ise M., Seo H., Niwa T. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int. Suppl. 1997;62:S15–S22.
    1. Muteliefu G., Enomoto A., Jiang P., Takahashi M., Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol. Dial. Transplant. 2009;24:2051–2058. doi: 10.1093/ndt/gfn757.
    1. Bolati D., Shimizu H., Higashiyama Y., Nishijima F., Niwa T. Indoxyl sulfate induces epithelial-to-mesenchymal transition in rat kidneys and human proximal tubular cells. Am. J. Nephrol. 2011;34:318–323. doi: 10.1159/000330852.
    1. Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J. Ren. Nutr. 2010;20(Suppl. 5):S2–S6. doi: 10.1053/j.jrn.2010.05.002.
    1. Kdoqi KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am. J. Kidney Dis. 2007;49(Suppl. 2):S12–S154. doi: 10.1053/j.ajkd.2006.12.005.
    1. Vaziri N.D., Wong J., Pahl M., Piceno Y.M., Yuan J., DeSantis T.Z., Ni Z., Nguyen T.H., Andersen G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–315. doi: 10.1038/ki.2012.345.
    1. Koppe L., Mafra D., Fouque D. Probiotics and chronic kidney disease. Kidney Int. 2015;88:958–966. doi: 10.1038/ki.2015.255.
    1. Glorieux G., Tattersall J. Uraemic toxins and new methods to control their accumulation: Game changers for the concept of dialysis adequacy. Clin. Kidney J. 2015;8:353–362. doi: 10.1093/ckj/sfv034.
    1. Musso C.G., Michelangelo H., Reynaldi J., Martinez B., Vidal F., Quevedo M., Parot M., Waisman G., Algranati L. Combination of oral activated charcoal plus low protein diet as a new alternative for handling in the old end-stage renal disease patients. Saudi J. Kidney Dis. Transpl. 2010;21:102–104.
    1. Deguchi T., Ohtsuki S., Otagiri M., Takanaga H., Asaba H., Mori S., Terasaki T. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney. Kidney Int. 2002;61:1760–1768. doi: 10.1046/j.1523-1755.2002.00318.x.
    1. Sun C.Y., Hsu H.H., Wu M.S. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrol. Dial. Transplant. 2013;28:70–78. doi: 10.1093/ndt/gfs133.
    1. Yavuz A., Tetta C., Ersoy F.F., D’Intini V., Ratanarat R., De Cal M., Bonello M., Bordoni V., Salvatori G., Andrikos E., et al. Uremic toxins: A new focus on an old subject. Semin. Dial. 2005;18:203–211. doi: 10.1111/j.1525-139X.2005.18313.x.
    1. De Smet R., Van Kaer J., Van Vlem B., De Cubber A., Brunet P., Lameire N., Vanholder R. Toxicity of free p-cresol: A prospective and cross-sectional analysis. Clin. Chem. 2003;49:470–478. doi: 10.1373/49.3.470.
    1. Bammens B., Evenepoel P., Keuleers H., Verbeke K., Vanrenterghem Y. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 2006;69:1081–1087. doi: 10.1038/sj.ki.5000115.
    1. Bammens B., Evenepoel P., Verbeke K., Vanrenterghem Y. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int. 2003;64:2238–2243. doi: 10.1046/j.1523-1755.2003.00310.x.
    1. Meijers B.K., Bammens B., De Moor B., Verbeke K., Vanrenterghem Y., Evenepoel P. Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney Int. 2008;73:1174–1180. doi: 10.1038/ki.2008.31.
    1. Meijers B.K., Claes K., Bammens B., de Loor H., Viaene L., Verbeke K., Kuypers D., Vanrenterghem Y., Evenepoel P. p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 2010;5:1182–1189. doi: 10.2215/CJN.07971109.
    1. Liabeuf S., Barreto D.V., Barreto F.C., Meert N., Glorieux G., Schepers E., Temmar M., Choukroun G., Vanholder R., Massy Z.A., et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol. Dial. Transplant. 2010;25:1183–1191. doi: 10.1093/ndt/gfp592.
    1. Wang C.P., Lu L.F., Yu T.H., Hung W.C., Chiu C.A., Chung F.M., Yeh L.R., Chen H.J., Lee Y.J., Houng J.Y. Serum levels of total p-cresylsulphate are associated with angiographic coronary atherosclerosis severity in stable angina patients with early stage of renal failure. Atherosclerosis. 2010;211:579–583. doi: 10.1016/j.atherosclerosis.2010.03.036.
    1. Gelasco A.K., Raymond J.R. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am. J. Physiol. Ren. Physiol. 2006;290:F1551–F1558. doi: 10.1152/ajprenal.00281.2004.
    1. Motojima M., Hosokawa A., Yamato H., Muraki T., Yoshioka T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int. 2003;63:1671–1680. doi: 10.1046/j.1523-1755.2003.00906.x.
    1. Owada S., Goto S., Bannai K., Hayashi H., Nishijima F., Niwa T. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am. J. Nephrol. 2008;28:446–454. doi: 10.1159/000112823.
    1. Lu Z., Lu F., Zheng Y., Zeng Y., Zou C., Liu X. Grape seed proanthocyanidin extract protects human umbilical vein endothelial cells from indoxyl sulfate-induced injury via ameliorating mitochondrial dysfunction. Ren. Fail. 2016;38:100–108. doi: 10.3109/0886022X.2015.1104609.
    1. Yu M., Kim Y.J., Kang D.H. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin. J. Am. Soc. Nephrol. 2011;6:30–39. doi: 10.2215/CJN.05340610.
    1. Stejskalova L., Dvorak Z., Pavek P. Endogenous and exogenous ligands of aryl hydrocarbon receptor: Current state of art. Curr. Drug Metab. 2011;12:198–212. doi: 10.2174/138920011795016818.
    1. Beischlag T.V., Luis Morales J., Hollingshead B.D., Perdew G.H. The aryl hydrocarbon receptor complex and the control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 2008;18:207–250. doi: 10.1615/CritRevEukarGeneExpr.v18.i3.20.
    1. Murray I.A., Patterson A.D., Perdew G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer. 2014;14:801–814. doi: 10.1038/nrc3846.
    1. Schroeder J.C., Dinatale B.C., Murray I.A., Flaveny C.A., Liu Q., Laurenzana E.M., Lin J.M., Strom S.C., Omiecinski C.J., Amin S., et al. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry. 2010;49:393–400. doi: 10.1021/bi901786x.
    1. Fritz W.A., Lin T.M., Cardiff R.D., Peterson R.E. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in TRAMP mice. Carcinogenesis. 2007;28:497–505. doi: 10.1093/carcin/bgl179.
    1. Moennikes O., Loeppen S., Buchmann A., Andersson P., Ittrich C., Poellinger L., Schwarz M. A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res. 2004;64:4707–4710. doi: 10.1158/0008-5472.CAN-03-0875.
    1. Young G.H., Wu V.C. KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012;81:611–612. doi: 10.1038/ki.2011.461.
    1. Stenvinkel P., Karimi M., Johansson S., Axelsson J., Suliman M., Lindholm B., Heimburger O., Barany P., Alvestrand A., Nordfors L., et al. Impact of inflammation on epigenetic DNA methylation—A novel risk factor for cardiovascular disease? J. Intern. Med. 2007;261:488–499. doi: 10.1111/j.1365-2796.2007.01777.x.
    1. Turek-Plewa J., Jagodzinski P.P. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell. Mol. Biol. Lett. 2005;10:631–647.
    1. Ting A.H., Jair K.W., Schuebel K.E., Baylin S.B. Differential requirement for DNA methyltransferase 1 in maintaining human cancer cell gene promoter hypermethylation. Cancer Res. 2006;66:729–735. doi: 10.1158/0008-5472.CAN-05-1537.
    1. Sun C.Y., Chang S.C., Wu M.S. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. 2012;81:640–650. doi: 10.1038/ki.2011.445.
    1. Haruna Y., Kashihara N., Satoh M., Tomita N., Namikoshi T., Sasaki T., Fujimori T., Xie P., Kanwar Y.S. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc. Natl. Acad. Sci. USA. 2007;104:2331–2336. doi: 10.1073/pnas.0611079104.
    1. Hu M.C., Shi M., Zhang J., Quinones H., Griffith C., Kuro-o M., Moe O.W. Klotho deficiency causes vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 2011;22:124–136. doi: 10.1681/ASN.2009121311.
    1. Zacchia M., Capasso G. Dehydration: A new modulator of klotho expression. Am. J. Physiol. Ren. Physiol. 2011;301:F743–F744. doi: 10.1152/ajprenal.00412.2011.
    1. Lindberg K., Amin R., Moe O.W., Hu M.C., Erben R.G., Ostman Wernerson A., Lanske B., Olauson H., Larsson T.E. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 2014;25:2169–2175. doi: 10.1681/ASN.2013111209.
    1. Taki K., Tsuruta Y., Niwa T. Indoxyl sulfate and atherosclerotic risk factors in hemodialysis patients. Am. J. Nephrol. 2007;27:30–35. doi: 10.1159/000098542.
    1. Shimizu H., Hirose Y., Goto S., Nishijima F., Zrelli H., Zghonda N., Niwa T., Miyazaki H. Indoxyl sulfate enhances angiotensin II signaling through upregulation of epidermal growth factor receptor expression in vascular smooth muscle cells. Life Sci. 2012;91:172–177. doi: 10.1016/j.lfs.2012.06.033.
    1. Adijiang A., Goto S., Uramoto S., Nishijima F., Niwa T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol. Dial. Transplant. 2008;23:1892–1901. doi: 10.1093/ndt/gfm861.
    1. Ellis R.J., Small D.M., Vesey D.A., Johnson D.W., Francis R., Vitetta L., Gobe G.C., Morais C. Indoxyl sulphate and kidney disease: Causes, consequences and interventions. Nephrology. 2016;21:170–177. doi: 10.1111/nep.12580.
    1. Ochi A., Mori K., Nakatani S., Emoto M., Morioka T., Motoyama K., Fukumoto S., Imanishi Y., Shoji T., Ishimura E., et al. Indoxyl sulfate suppresses hepatic fetuin-A expression via the aryl hydrocarbon receptor in HepG2 cells. Nephrol. Dial. Transplant. 2015;30:1683–1692. doi: 10.1093/ndt/gfv250.
    1. Chen W.T., Chen Y.C., Hsieh M.H., Huang S.Y., Kao Y.H., Chen Y.A., Lin Y.K., Chen S.A., Chen Y.J. The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis. J. Cardiovasc. Electrophysiol. 2015;26:203–210. doi: 10.1111/jce.12554.
    1. Niwa T., Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 1994;124:96–104.
    1. Duranton F., Cohen G., De Smet R., Rodriguez M., Jankowski J., Vanholder R., Argiles A., European Uremic Toxin Work G. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012;23:1258–1270. doi: 10.1681/ASN.2011121175.
    1. Enomoto A., Takeda M., Taki K., Takayama F., Noshiro R., Niwa T., Endou H. Interactions of human organic anion as well as cation transporters with indoxyl sulfate. Eur. J. Pharmacol. 2003;466:13–20. doi: 10.1016/S0014-2999(03)01530-9.
    1. D’Apolito M., Du X., Zong H., Catucci A., Maiuri L., Trivisano T., Pettoello-Mantovani M., Campanozzi A., Raia V., Pessin J.E., et al. Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure. J. Clin. Investig. 2010;120:203–213. doi: 10.1172/JCI37672.
    1. Sun C.Y., Chang S.C., Wu M.S. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS ONE. 2012;7:e34026. doi: 10.1371/journal.pone.0034026.
    1. Wu I.W., Hsu K.H., Lee C.C., Sun C.Y., Hsu H.J., Tsai C.J., Tzen C.Y., Wang Y.C., Lin C.Y., Wu M.S. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011;26:938–947. doi: 10.1093/ndt/gfq580.
    1. Tumur Z., Niwa T. Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. Am. J. Nephrol. 2009;29:551–557. doi: 10.1159/000191468.
    1. Stockler-Pinto M.B., Saldanha J.F., Yi D., Mafra D., Fouque D., Soulage C.O. The uremic toxin indoxyl sulfate exacerbates reactive oxygen species production and inflammation in 3T3-L1 adipose cells. Free Radic. Res. 2016;50:337–344. doi: 10.3109/10715762.2015.1125996.
    1. Shivanna S., Kolandaivelu K., Shashar M., Belghasim M., Al-Rabadi L., Balcells M., Zhang A., Weinberg J., Francis J., Pollastri M.P., et al. The Aryl Hydrocarbon Receptor is a Critical Regulator of Tissue Factor Stability and an Antithrombotic Target in Uremia. J. Am. Soc. Nephrol. 2016;27:189–201. doi: 10.1681/ASN.2014121241.
    1. Kim Y.H., Kwak K.A., Gil H.W., Song H.Y., Hong S.Y. Indoxyl sulfate promotes apoptosis in cultured osteoblast cells. BMC Pharmacol. Toxicol. 2013;14:60. doi: 10.1186/2050-6511-14-60.
    1. Mozar A., Louvet L., Godin C., Mentaverri R., Brazier M., Kamel S., Massy Z.A. Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol. Dial. Transplant. 2012;27:2176–2181. doi: 10.1093/ndt/gfr647.
    1. Iwasaki Y., Yamato H., Nii-Kono T., Fujieda A., Uchida M., Hosokawa A., Motojima M., Fukagawa M. Insufficiency of PTH action on bone in uremia. Kidney Int. Suppl. 2006:S34–S36. doi: 10.1038/sj.ki.5001600.
    1. Iwasaki Y., Kazama J.J., Yamato H., Matsugaki A., Nakano T., Fukagawa M. Altered material properties are responsible for bone fragility in rats with chronic kidney injury. Bone. 2015;81:247–254. doi: 10.1016/j.bone.2015.07.015.
    1. Zheng C.M., Zheng J.Q., Wu C.C., Lu C.L., Shyu J.F., Yung-Ho H., Wu M.Y., Chiu I.J., Wang Y.H., Lin Y.F., et al. Bone loss in chronic kidney disease: Quantity or quality? Bone. 2016;87:57–70. doi: 10.1016/j.bone.2016.03.017.
    1. Lu K.C., Wu C.C., Yen J.F., Liu W.C. Vascular calcification and renal bone disorders. Sci. World J. 2014;2014:637065. doi: 10.1155/2014/637065.
    1. West S.L., Patel P., Jamal S.A. How to predict and treat increased fracture risk in chronic kidney disease. J. Intern. Med. 2015;278:19–28. doi: 10.1111/joim.12361.
    1. Miller P.D., Bolognese M.A., Lewiecki E.M., McClung M.R., Ding B., Austin M., Liu Y., San Martin J., Amg Bone Loss Study G. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: A randomized blinded phase 2 clinical trial. Bone. 2008;43:222–229. doi: 10.1016/j.bone.2008.04.007.
    1. Miller P.D. Bone disease in CKD: A focus on osteoporosis diagnosis and management. Am. J. Kidney Dis. 2014;64:290–304. doi: 10.1053/j.ajkd.2013.12.018.
    1. Kazama J.J., Matsuo K., Iwasaki Y., Fukagawa M. Chronic kidney disease and bone metabolism. J. Bone Miner. Metab. 2015;33:245–252. doi: 10.1007/s00774-014-0639-x.
    1. Iwasaki Y., Kazama J.J., Yamato H., Shimoda H., Fukagawa M. Accumulated uremic toxins attenuate bone mechanical properties in rats with chronic kidney disease. Bone. 2013;57:477–483. doi: 10.1016/j.bone.2013.07.037.
    1. Kazama J.J., Iwasaki Y., Fukagawa M. Uremic osteoporosis. Kidney Int. Suppl. (2011) 2013;3:446–450. doi: 10.1038/kisup.2013.93.
    1. Boskey A.L. Bone composition: Relationship to bone fragility and antiosteoporotic drug effects. Bonekey Rep. 2013;2:447. doi: 10.1038/bonekey.2013.181.
    1. Liu W.C., Wu C.C., Lim P.S., Chien S.W., Hou Y.C., Zheng C.M., Shyu J.F., Lin Y.F., Lu K.C. Effect of uremic toxin-indoxyl sulfate on the skeletal system. Clin. Chim. Acta. 2018;484:197–206. doi: 10.1016/j.cca.2018.05.057.
    1. National Kidney Foundation K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003;42:S1–S201.
    1. Hruska K.A., Sugatani T., Agapova O., Fang Y. The chronic kidney disease—Mineral bone disorder (CKD-MBD): Advances in pathophysiology. Bone. 2017;100:80–86. doi: 10.1016/j.bone.2017.01.023.
    1. Nii-Kono T., Iwasaki Y., Uchida M., Fujieda A., Hosokawa A., Motojima M., Yamato H., Kurokawa K., Fukagawa M. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007;71:738–743. doi: 10.1038/sj.ki.5002097.
    1. Viaene L., Evenepoel P., Meijers B., Vanderschueren D., Overbergh L., Mathieu C. Uremia suppresses immune signal-induced CYP27B1 expression in human monocytes. Am. J. Nephrol. 2012;36:497–508. doi: 10.1159/000345146.
    1. Liu W.C., Wu C.C., Hung Y.M., Liao M.T., Shyu J.F., Lin Y.F., Lu K.C., Yeh K.C. Pleiotropic effects of vitamin D in chronic kidney disease. Clin. Chim. Acta. 2016;453:1–12. doi: 10.1016/j.cca.2015.11.029.
    1. Sallee M., Dou L., Cerini C., Poitevin S., Brunet P., Burtey S. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: A new concept to understand cardiovascular complications of chronic kidney disease. Toxins. 2014;6:934–949. doi: 10.3390/toxins6030934.
    1. Liu W.C., Zheng C.M., Lu C.L., Lin Y.F., Shyu J.F., Wu C.C., Lu K.C. Vitamin D and immune function in chronic kidney disease. Clin. Chim. Acta. 2015;450:135–144. doi: 10.1016/j.cca.2015.08.011.
    1. Miyazaki T., Aoyama I., Ise M., Seo H., Niwa T. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-beta1 in uraemic rat kidneys. Nephrol. Dial. Transplant. 2000;15:1773–1781. doi: 10.1093/ndt/15.11.1773.
    1. Akiyama Y., Takeuchi Y., Kikuchi K., Mishima E., Yamamoto Y., Suzuki C., Toyohara T., Suzuki T., Hozawa A., Ito S., et al. A metabolomic approach to clarifying the effect of AST-120 on 5/6 nephrectomized rats by capillary electrophoresis with mass spectrometry (CE-MS) Toxins. 2012;4:1309–1322. doi: 10.3390/toxins4111309.
    1. Schulman G., Agarwal R., Acharya M., Berl T., Blumenthal S., Kopyt N. A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (Kremezin) in patients with moderate to severe CKD. Am. J. Kidney Dis. 2006;47:565–577. doi: 10.1053/j.ajkd.2005.12.036.
    1. Akizawa T., Asano Y., Morita S., Wakita T., Onishi Y., Fukuhara S., Gejyo F., Matsuo S., Yorioka N., Kurokawa K., et al. Effect of a carbonaceous oral adsorbent on the progression of CKD: A multicenter, randomized, controlled trial. Am. J. Kidney Dis. 2009;54:459–467. doi: 10.1053/j.ajkd.2009.05.011.
    1. Kanai F., Takahama T., Yamazaki Z., Idezuki Y., Koide K. Effects of oral adsorbent on experimental uremic rats. Nihon Jinzo Gakkai Shi. 1986;28:1249–1259.
    1. Lee Y.K., Moon S.J., An H.R., Kim J.K., Bae S.C., Kim B.S., Park H.C., Ha S.K. Effects of oral adsorbent ast-120 (kremezin (r)) on the progression of chronic kidney disease. Kidney Res. Clin. Pract. 2010;29:450–457.
    1. Ito S., Higuchi Y., Yagi Y., Nishijima F., Yamato H., Ishii H., Osaka M., Yoshida M. Reduction of indoxyl sulfate by AST-120 attenuates monocyte inflammation related to chronic kidney disease. J. Leukoc. Biol. 2013;93:837–845. doi: 10.1189/jlb.0112023.
    1. Rossi M., Campbell K.L., Johnson D.W., Stanton T., Vesey D.A., Coombes J.S., Weston K.S., Hawley C.M., McWhinney B.C., Ungerer J.P., et al. Protein-bound uremic toxins, inflammation and oxidative stress: A cross-sectional study in stage 3-4 chronic kidney disease. Arch. Med. Res. 2014;45:309–317. doi: 10.1016/j.arcmed.2014.04.002.
    1. Inami Y., Hamada C., Seto T., Hotta Y., Aruga S., Inuma J., Azuma K., Io H., Kaneko K., Watada H., et al. Effect of AST-120 on Endothelial Dysfunction in Adenine-Induced Uremic Rats. Int. J. Nephrol. 2014;2014:164125. doi: 10.1155/2014/164125.
    1. Six I., Gross P., Remond M.C., Chillon J.M., Poirot S., Drueke T.B., Massy Z.A. Deleterious vascular effects of indoxyl sulfate and reversal by oral adsorbent AST-120. Atherosclerosis. 2015;243:248–256. doi: 10.1016/j.atherosclerosis.2015.09.019.
    1. Yamamoto S., Zuo Y., Ma J., Yancey P.G., Hunley T.E., Motojima M., Fogo A.B., Linton M.F., Fazio S., Ichikawa I., et al. Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice. Nephrol. Dial. Transplant. 2011;26:2491–2497. doi: 10.1093/ndt/gfq759.
    1. Lekawanvijit S., Kompa A.R., Manabe M., Wang B.H., Langham R.G., Nishijima F., Kelly D.J., Krum H. Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uremic toxin, indoxyl sulfate. PLoS ONE. 2012;7:e41281. doi: 10.1371/journal.pone.0041281.
    1. Lekawanvijit S., Kompa A.R., Wang B.H., Kelly D.J., Krum H. Cardiorenal syndrome: The emerging role of protein-bound uremic toxins. Circ. Res. 2012;111:1470–1483. doi: 10.1161/CIRCRESAHA.112.278457.
    1. Lekawanvijit S., Kumfu S., Wang B.H., Manabe M., Nishijima F., Kelly D.J., Krum H., Kompa A.R. The uremic toxin adsorbent AST-120 abrogates cardiorenal injury following myocardial infarction. PLoS ONE. 2013;8:e83687. doi: 10.1371/journal.pone.0083687.
    1. Kuwahara M., Bannai K., Segawa H., Miyamoto K., Yamato H. Cardiac remodeling associated with protein increase and lipid accumulation in early-stage chronic kidney disease in rats. Biochim. Biophys. Acta. 2014;1842:1433–1443. doi: 10.1016/j.bbadis.2014.04.026.
    1. Aoki K., Teshima Y., Kondo H., Saito S., Fukui A., Fukunaga N., Nawata T., Shimada T., Takahashi N., Shibata H. Role of Indoxyl Sulfate as a Predisposing Factor for Atrial Fibrillation in Renal Dysfunction. J. Am. Heart Assoc. 2015;4:e002023. doi: 10.1161/JAHA.115.002023.
    1. Goto S., Kitamura K., Kono K., Nakai K., Fujii H., Nishi S. Association between AST-120 and abdominal aortic calcification in predialysis patients with chronic kidney disease. Clin. Exp. Nephrol. 2013;17:365–371. doi: 10.1007/s10157-012-0717-0.
    1. Nakamura T., Kawagoe Y., Matsuda T., Ueda Y., Shimada N., Ebihara I., Koide H. Oral ADSORBENT AST-120 decreases carotid intima-media thickness and arterial stiffness in patients with chronic renal failure. Kidney Blood Press. Res. 2004;27:121–126. doi: 10.1159/000077536.
    1. Cao X.S., Chen J., Zou J.Z., Zhong Y.H., Teng J., Ji J., Chen Z.W., Liu Z.H., Shen B., Nie Y.X., et al. Association of indoxyl sulfate with heart failure among patients on hemodialysis. Clin. J. Am. Soc. Nephrol. 2015;10:111–119. doi: 10.2215/CJN.04730514.
    1. Sanaka T., Akizawa T., Koide K., Koshikawa S. Protective effect of an oral adsorbent on renal function in chronic renal failure: Determinants of its efficacy in diabetic nephropathy. Ther. Apher. Dial. 2004;8:232–240. doi: 10.1111/j.1526-0968.2004.00137.x.
    1. Yamaguchi J., Tanaka T., Inagi R. Effect of AST-120 in Chronic Kidney Disease Treatment: Still a Controversy? Nephron. 2017;135:201–206. doi: 10.1159/000453673.
    1. Kobayashi N., Maeda A., Horikoshi S., Shirato I., Tomino Y., Ise M. Effects of oral adsorbent AST-120 (Kremezin) on renal function and glomerular injury in early-stage renal failure of subtotal nephrectomized rats. Nephron. 2002;91:480–485. doi: 10.1159/000064291.
    1. Konishi K., Nakano S., Tsuda S., Nakagawa A., Kigoshi T., Koya D. AST-120 (Kremezin) initiated in early stage chronic kidney disease stunts the progression of renal dysfunction in type 2 diabetic subjects. Diabetes Res. Clin. Pract. 2008;81:310–315. doi: 10.1016/j.diabres.2008.04.024.
    1. Niwa T., Nomura T., Sugiyama S., Miyazaki T., Tsukushi S., Tsutsui S. The protein metabolite hypothesis, a model for the progression of renal failure: An oral adsorbent lowers indoxyl sulfate levels in undialyzed uremic patients. Kidney Int. Suppl. 1997;62:S23–S28.
    1. Lau W.L., Savoj J., Nakata M.B., Vaziri N.D. Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins. Clin. Sci. 2018;132:509–522. doi: 10.1042/CS20171107.
    1. Turner J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009;9:799–809. doi: 10.1038/nri2653.
    1. Yoshifuji A., Wakino S., Irie J., Matsui A., Hasegawa K., Tokuyama H., Hayashi K., Itoh H. Oral adsorbent AST-120 ameliorates gut environment and protects against the progression of renal impairment in CKD rats. Clin. Exp. Nephrol. 2018 doi: 10.1007/s10157-018-1577-z.
    1. Wu I.W., Hsu K.H., Sun C.Y., Tsai C.J., Wu M.S., Lee C.C. Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on Stage 5 chronic kidney disease patients: A randomized crossover study. Nephrol. Dial. Transplant. 2014;29:1719–1727. doi: 10.1093/ndt/gfu061.
    1. Chiang C.K., Tanaka T., Inagi R., Fujita T., Nangaku M. Indoxyl sulfate, a representative uremic toxin, suppresses erythropoietin production in a HIF-dependent manner. Lab. Investig. 2011;91:1564–1571. doi: 10.1038/labinvest.2011.114.
    1. Asai H., Hirata J., Hirano A., Hirai K., Seki S., Watanabe-Akanuma M. Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expression by indoxyl sulfate. Am. J. Physiol. Cell Physiol. 2016;310:C142–C150. doi: 10.1152/ajpcell.00172.2015.
    1. Hamano H., Ikeda Y., Watanabe H., Horinouchi Y., Izawa-Ishizawa Y., Imanishi M., Zamami Y., Takechi K., Miyamoto L., Ishizawa K., et al. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol. Dial. Transplant. 2017 doi: 10.1093/ndt/gfx252.
    1. Wu C.J., Chen C.Y., Lai T.S., Wu P.C., Chuang C.K., Sun F.J., Liu H.L., Chen H.H., Yeh H.I., Lin C.S., et al. The role of indoxyl sulfate in renal anemia in patients with chronic kidney disease. Oncotarget. 2017;8:83030–83037. doi: 10.18632/oncotarget.18789.
    1. Nishikawa M., Ishimori N., Takada S., Saito A., Kadoguchi T., Furihata T., Fukushima A., Matsushima S., Yokota T., Kinugawa S., et al. AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress. Nephrol. Dial. Transplant. 2015;30:934–942. doi: 10.1093/ndt/gfv103.
    1. Bested A.C., Logan A.C., Selhub E.M. Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part III—Convergence toward clinical trials. Gut Pathog. 2013;5:4. doi: 10.1186/1757-4749-5-4.
    1. Maeda K., Hamada C., Hayashi T., Shou I., Wakabayashi M., Fukui M., Horikoshi S., Tomino Y. Long-term effects of the oral adsorbent, AST-120, in patients with chronic renal failure. J. Int. Med. Res. 2009;37:205–213. doi: 10.1177/147323000903700125.
    1. Nakamura T., Sato E., Fujiwara N., Kawagoe Y., Suzuki T., Ueda Y., Yamagishi S. Oral adsorbent AST-120 ameliorates tubular injury in chronic renal failure patients by reducing proteinuria and oxidative stress generation. Metabolism. 2011;60:260–264. doi: 10.1016/j.metabol.2010.01.023.
    1. Maeda K., Hamada C., Hayashi T., Shou I., Wakabayashi M., Fukui M., Horikoshi S., Tomino Y. Efficacy of adsorbent in delaying dialysis initiation among chronic kidney disease patients. Dial. Transpl. 2011;40:212–216. doi: 10.1002/dat.20569.
    1. Hatakeyama S., Yamamoto H., Okamoto A., Imanishi K., Tokui N., Okamoto T., Suzuki Y., Sugiyama N., Imai A., Kudo S., et al. Effect of an Oral Adsorbent, AST-120, on Dialysis Initiation and Survival in Patients with Chronic Kidney Disease. Int. J. Nephrol. 2012;2012:376128. doi: 10.1155/2012/376128.
    1. Ueda H., Shibahara N., Takagi S., Inoue T., Katsuoka Y. AST-120, an Oral Adsorbent, Delays the Initiation of Dialysis in Patients With Chronic Kidney Diseases. Ther. Apher. Dial. 2007;11:189–195. doi: 10.1111/j.1744-9987.2007.00430.x.
    1. Sato E., Tanaka A., Oyama J., Yamasaki A., Shimomura M., Hiwatashi A., Ueda Y., Amaha M., Nomura M., Matsumura D., et al. Long-term effects of AST-120 on the progression and prognosis of pre-dialysis chronic kidney disease: A 5-year retrospective study. Heart Vessel. 2016;31:1625–1632. doi: 10.1007/s00380-015-0785-7.
    1. Schulman G., Berl T., Beck G.J., Remuzzi G., Ritz E., Arita K., Kato A., Shimizu M. Randomized Placebo-Controlled EPPIC Trials of AST-120 in CKD. J. Am. Soc. Nephrol. 2015;26:1732–1746. doi: 10.1681/ASN.2014010042.
    1. Cha R.H., Kang S.W., Park C.W., Cha D.R., Na K.Y., Kim S.G., Yoon S.A., Kim S., Han S.Y., Park J.H., et al. Sustained uremic toxin control improves renal and cardiovascular outcomes in patients with advanced renal dysfunction: Post-hoc analysis of the Kremezin Study against renal disease progression in Korea. Kidney Res. Clin. Pract. 2017;36:68–78. doi: 10.23876/j.krcp.2017.36.1.68.
    1. Schulman G., Berl T., Beck G.J., Remuzzi G., Ritz E., Shimizu M., Shobu Y., Kikuchi M. The effects of AST-120 on chronic kidney disease progression in the United States of America: A post hoc subgroup analysis of randomized controlled trials. BMC Nephrol. 2016;17:141. doi: 10.1186/s12882-016-0357-9.
    1. Schulman G., Berl T., Beck G.J., Remuzzi G., Ritz E., Shimizu M., Kikuchi M., Shobu Y. Risk factors for progression of chronic kidney disease in the EPPIC trials and the effect of AST-120. Clin. Exp. Nephrol. 2018;22:299–308. doi: 10.1007/s10157-017-1447-0.

Source: PubMed

3
Abonner