A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses

Stavros I Dimitriadis, Nikolaos A Laskaris, Malamati P Bitzidou, Ioannis Tarnanas, Magda N Tsolaki, Stavros I Dimitriadis, Nikolaos A Laskaris, Malamati P Bitzidou, Ioannis Tarnanas, Magda N Tsolaki

Abstract

The detection of mild cognitive impairment (MCI), the transitional stage between normal cognitive changes of aging and the cognitive decline caused by AD, is of paramount clinical importance, since MCI patients are at increased risk of progressing into AD. Electroencephalographic (EEG) alterations in the spectral content of brainwaves and connectivity at resting state have been associated with early-stage AD. Recently, cognitive event-related potentials (ERPs) have entered into the picture as an easy to perform screening test. Motivated by the recent findings about the role of cross-frequency coupling (CFC) in cognition, we introduce a relevant methodological approach for detecting MCI based on cognitive responses from a standard auditory oddball paradigm. By using the single trial signals recorded at Pz sensor and comparing the responses to target and non-target stimuli, we first demonstrate that increased CFC is associated with the cognitive task. Then, considering the dynamic character of CFC, we identify instances during which the coupling between particular pairs of brainwave frequencies carries sufficient information for discriminating between normal subjects and patients with MCI. In this way, we form a multiparametric signature of impaired cognition. The new composite biomarker was tested using data from a cohort that consists of 25 amnestic MCI patients and 15 age-matched controls. Standard machine-learning algorithms were employed so as to implement the binary classification task. Based on leave-one-out cross-validation, the measured classification rate was found reaching very high levels (95%). Our approach compares favorably with the traditional alternative of using the morphology of averaged ERP response to make the diagnosis and the usage of features from spectro-temporal analysis of single-trial responses. This further indicates that task-related CFC measurements can provide invaluable analytics in AD diagnosis and prognosis.

Keywords: ERPs; cognitive impairment; connectomic biomarkers; dynamic coordination; dynome; functional connectomics; phase-amplitude coupling.

Figures

Figure 1
Figure 1
The algorithmic steps for PAC estimation. Using the first single-trial signal (A), from the cognitive responses of a control subject, we demonstrate the detection of coupling between θ and β1 rhythm. To estimate θ-β1 PAC, the raw signal was band-pass filtered into both a (B) low-frequency θ (4–8 Hz) component where its envelope is extracted as well as (C) a high-frequency β1 (13–20 Hz) component where its instantaneous phase is extracted. (D) We then extracted the amplitude and the instantaneous phase of the band-passed β1 (13–20 Hz) and filtered this amplitude time series at the same frequency as θ (4–8 Hz), giving us the θ modulation in lower β amplitude. (E) We then extracted the instantaneous phase of both the θ-filtered signal and the θ-filtered lower-β amplitude and computed the phase-locking between these two signals. The latency depended differences (F), will be used in estimating the phase-locking that will reflect the PAC-interaction between the two involved brain rhythms. This phase-locking represents the degree to which the lower β (β1) amplitude is comodulated with the θ phase.
Figure 2
Figure 2
Across-trials PAC-estimation. By repeating the steps shown in the previous figure, the instantaneous phase differences for the whole set of single-trials have been computed (A,B). The TVPAC trace [reflecting PLV(t) measurements for θ → β1 interaction], at full temporal resolution, is shown (C), together with the ensemble average waveform (from the wideband signals). TVPAC traces from a stepping window (of various widths) are shown in D).
Figure 3
Figure 3
An approximation of the temporal patterning of oscillatory cognitive responses by means of Grand Averaging. The GA-traces for Non-impaired controls (A), and aMCI patients (B), have been derived independently for each brain rhythm. Using the corresponding temporal patterns from all the 40 participants, the separability between aMCI patients and NI controls has been measured at every latency and for each brain rhythm. A common scale is used for all the traces within the same stack. (C) To demonstrate the temporal separability of oscillatory responses, Wscore is presented for each individual brain rhythm.
Figure 4
Figure 4
Contrasting the TVPAC profiles from the responses (of an NI subject) to target and non-target stimuli. (A) The averaged evoked/event-related response is shown in black/blue. (B) A rough summary of TVPAC measurements estimated by means of averaging across all frequency-pairs (LF, HF), independently for each latency. (C) A summarizing profile derived by keeping the maximum PLV value at every latency.
Figure 5
Figure 5
Contrasting the CFC during responses to target and non-target stimuli based on group-averaged data from NI subjects. (A) The N100, N200, P300, and SW deflections were first detected in the waveform of Grand-Averaged ERPs response. (B) Using the corresponding temporal segments, PAC-related connectivity snapshots were then derived, for target and non-target stimuli separately, and then used to express the relative increase in coupling. A common color scale was used across for all shown graphs.
Figure 6
Figure 6
Comparing the level of CFC in cognitive responses, between NI and aMCI participants. (A) Grand-Averaged waveforms from the cognitive responses (AERPs) of both groups. (B,C) Group-related (grand-averaged) PAC-connectivity patterns for the temporal-segments corresponding to N100, N200, and P300 deflections. (D) The corresponding patterns of relative differences, derived so as to express deviation from normality; red/blue indicates higher/lower PAC levels in MCI subjects relatively to NI subjects.
Figure 7
Figure 7
Identifying discriminative PAC-interactions (group-level analysis). (A) The temporal profile of the (quasi-instantaneous) maximal separability measure and the identification of the timing of most discriminative PAC couplings. The 9 red discs indicate the local maxima in the timecourse. (B) A graphical representation of the maximal PAC-couplings (stacked across time). (C) Snapshots of differences between grand-averaged PAC-patterns, at instances of high discriminability. The shown graphs correspond to the 9 segments detected in (A). Positive/negative values of Relative-Difference indicate higher/lower PAC for the MCI participants relatively to NI participants. To enhance visibility, edges associated with a Wscore* lower than 2 are not shown.

References

    1. Abásolo D., Hornero R., Escudero Espino, P. J. (2008). A study on the possible usefulness of detrended fluctuation analysis of electroencephalogram background activity in Alzheimer's disease. IEEE Trans. Biomed. Eng. 55, 2171–2179. 10.1109/TBME.2008.923145
    1. Axmacher N., Cohen M. X., Fell J., Haupt S., Dümpelmann M., Elger C. E., et al. . (2010a). Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleusaccum-bens. Neuron 65, 541–549. 10.1016/j.neuron.2010.02.006
    1. Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., Fell J. (2010b). Cross-frequency coupling supports multiitem working memory in the human hippocampus. Proc. Natl. Acad. Sci. U.S.A. 107, 3228–3233. 10.1073/pnas.0911531107
    1. Babiloni C. P. J., Visser P. J., Frisoni G., De Deyn P. P., Bresciani L., Jelic V., et al. . (2010). Cortical sources of resting EEG rhythms in mild cognitive impairment and subjective memory complaint. Neurobiol. Aging 31, 1787–1798. 10.1016/j.neurobiolaging.2008.09.020
    1. Bahar-Fuchs A., Clare L., Woods B. (2013). Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer's disease and vascular dementia. Cochrane Database Syst. Rev. 6:CD003260. 10.1002/14651858.CD003260
    1. Bajo R., Castellanos N. P., Cuesta P., Aurtenetxe S., Garcia-Prieto J., Gil-Gregorio P., et al. (2012a). Differential patterns of functional connectivity in progressive and stable mild cognitive impairment subjects. Brain Connect. 2, 21–24. 10.1089/brain.2011.0069
    1. Bajo R., Castellanos N. P., López M. E., Ruiz J. M., Montejo P., Montenegro M., et al. . (2012b). Early dysfunction of functional connectivity in healthy elderly with subjective memory complaints. Age 34, 497–506. 10.1007/s11357-011-9241-5
    1. Başar E., Başar-Eroğlu C., Güntekin B., Yener G. G. (2013). Brain's alpha, beta, gamma, delta and theta oscillations in neuropsychiatric diseases: proposal for biomarker strategies. Clin. Neurophysiol. 62, 287–324. 10.1016/b978-0-7020-5307-8.00002-8
    1. Becerra J., Fernández T., Roca-Stappung M., Díaz-Comas L., Galán L., Bosch J., et al. . (2012). Neurofeedback in healthy elderly humans with electroencephalographic risk of cognitive disorder. J. Alzheimers Dis. 28, 357–367. 10.3233/JAD-2011-111055
    1. Belluscio M. A., Mizuseki K., Schmidt R., Kempter R., Buzsáki G. (2012). Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus. J. Neurosci. 32, 423–435. 10.1523/JNEUROSCI.4122-11.2012
    1. Bengio Y., Courville A., Vincent P. (2013). Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828. 10.1109/TPAMI.2013.50
    1. Bennys K., Portet F., Touchon and, J., Rondouin G. (2007). Diagnostic value of event-related evoked potentials N200 and P300 subcomponents in early diagnosis of Alzheimer's disease and mild cognitive impairment. J Clin. Neurophysiol. 24, 405–412. 10.1097/WNP.0b013e31815068d5
    1. Berman M. H., Frederick J. A. (2009). Efficacy of neurofeedback for executive and memory function in dementia. Alzheimers Dement. 5, e8 10.1016/j.jalz.2009.07.046
    1. Braun U., Muldoon S. F., Bassett D. S. (2015). On human brain networks in health and disease. Encyclop. Life Sci. 1–9. 10.1002/9780470015902.a0025783
    1. Buzsaki G. (2006). Rhythms of the Brain. New York, NY: Oxford University Press.
    1. Buzsáki G., Draguhn A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926–1929. 10.1126/science.1099745
    1. Buzsáki G., Watson B. O. (2012). Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialog. Clin. Neurosci. 14, 345–367. 10.1371/journal.pcbi.1000879
    1. Canolty R. T., Knight R. T. (2010). The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515. 10.1016/j.tics.2010.09.001
    1. Caravaglios G., Costanzo E., Palermo F., Muscoso E. G. (2008). Decreased amplitude of auditory event-related delta responses in Alzheimer's disease. Int. J. Psychophysiol 70, 23–32. 10.1016/j.ijpsycho.2008.04.004
    1. Cibils D. (2002). Dementia and qEEG (Alzheimer's disease). Clin. Neurophysiol. 54, 289–294. 10.1016/s1567-424x(09)70463-5
    1. Cohen M. X. (2008). Assessing transient cross-frequency coupling in EEG data. J. Neurosci. Methods 168, 494–499. 10.1016/j.jneumeth.2007.10.012
    1. Cohen M. X., Axmacher N., Lenartz D., Elger C. E., Sturm V., Schlaepfer T. E. (2009a). Good vibrations: cross-frequency coupling in the human nucleus accumbens during reward processing. J. Cogn. Neurosci. 21, 875–889. 10.1162/jocn.2009.21062
    1. Cohen M. X., Elger C. E., Fell J. (2009b). Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making. J. Cogn. Neurosci. 21, 390–402. 10.1162/jocn.2008.21020
    1. Colgin L. L., Denninger T., Fyhn M., Hafting T., Bonnevie T., Jensen O. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357. 10.1038/nature08573
    1. Dauwels J., Srinivasan K., Ramasubba Reddy M., Musha T., Vialatte F. B., Latchoumane C, et al. . (2011). Slowing and loss of complexity in Alzheimer's EEG: two sides of the same coin? Int. J. Alzheimers Dis. 2011:539621. 10.4061/2011/539621
    1. Dauwels J., Vialatte F., Cichocki A. (2010). Diagnosis of Alzheimer's disease from EEG signals: where are we standing? Curr. Alzheimer Res. 7, 487–505. 10.2174/156720510792231720
    1. Dimitriadis S. I. (2015c). Quantifying the predictive power of resting-state functional connectivity (rs-fc) fMRI for identifying patients with Alzheimer's disease (AD). Clin. Neurophysiol. 10.1016/j.clinph.2015.03.011. [Epub ahead of print].
    1. Dimitriadis S. I., Laskaris N. A., Micheloyannis S. (2015b). Transition dynamics of EEG network microstates unmask developmental and task differences during mental arithmetic and resting wakefulness. Cogn. Neurodyn. 9, 371–387. 10.1007/s11571-015-9330-8
    1. Dimitriadis S. I., Laskaris N. A., Tzelepi A. (2013a). On the quantization of time-varying phase synchrony patterns into distinct Functional Connectivity Microstates (FCμstates) in a multi-trial visual ERP paradigm. Brain Topo. 26, 397–409. 10.1007/s10548-013-0276-z
    1. Dimitriadis S. I., Laskaris N. A., Simos P. G., Micheloyannis S., Fletcher J. M., Rezaie R., et al. . (2013b). Altered temporal correlations in resting-state connectivity fluctuations in children with reading difficulties detected via MEG. Neuroimage 83, 307–317. 10.1016/j.neuroimage.2013.06.036
    1. Dimitriadis S. I., Laskaris N. A., Tsirka V., Erimaki S., Vourkas M., Micheloyannis S., et al. . (2012b). A novel symbolization scheme for multichannel recordings with emphasis on phase information and its application to differentiate EEG activity from different mental tasks. Cogn. Neurodyn. 6, 107–113. 10.1007/s11571-011-9186-5
    1. Dimitriadis S. I., Laskaris N. A., Tsirka V., Vourkas M., Micheloyannis S. (2010a). What does delta band tell us about cognitive processes: a mental calculation study. Neurosci. Lett. 483, 11–15. 10.1016/j.neulet.2010.07.034
    1. Dimitriadis S. I., Laskaris N. A., Tsirka V., Vourkas M., Micheloyannis S. (2012a). An EEG study of brain connectivity dynamics at the resting state. Nonlin. Dynam. Psychol. Life Sci. 16, 5–22.
    1. Dimitriadis S. I., Laskaris N. A., Tsirka V., Vourkas M., Micheloyannis S., Fotopoulos S. (2010b). Tracking brain dynamics via time-dependent network analysis. J. Neurosci. Methods 193, 145–155. 10.1016/j.jneumeth.2010.08.027
    1. Dimitriadis S. I., Sun Y. U., Kwok K., Laskaris N. A., Thakor N., Bezerianos A. (2015a). Cognitive workload assessment based on the tensorial treatment of EEG estimates of cross-frequency phase interactions. Ann. Biomed. Eng. 43, 977–989. 10.1007/s10439-014-1143-0
    1. Donchin E., Karis D., Bashore T. R., Coles M. G. H., Gratton G. (1986). Cognitive psychophysiology and human information processing, in Psychophysiology: Systems, Processes, and Applications, eds Coles M. G. H., Donchin E., Porges S. W. (New York, NY: The Guilford Press; ), 244–267.
    1. Donchin E., Tueting T., Ritter W., Kutas M., Heffley E. (1975). On the independence of the CNV and the P300 components of the human averaged evoked potential. Electroencephalogr. Clin. Neurophysiol. 38, 449–461. 10.1016/0013-4694(75)90187-X
    1. Donchin E., Coles M. G. H. (1988). Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11, 357–374. 10.1017/S0140525X00058027
    1. Doody R. S., Thomas R. G., Farlow M., Iwatsubo T., Vellas B., Joffe S. (2014). Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N. Engl. J. Med. 370, 311–321. 10.1056/NEJMoa1312889
    1. Dunkin J., Leuchter A., Newton T., Cook I. (1994). Reduced EEG coherence in dementia: state or trait marker? Biol. Psychiat. 35, 870–879. 10.1016/0006-3223(94)90023-x
    1. Espinosa A., Alegret M., Valero S., Vinyes-Junqué G., Hernández I., Mauleón A., et al. . (2013). A longitudinal follow-up of 550 mild cognitive impairment patients: evidence for large conversion to dementia rates and detection of major risk factors involved. J Alzheimers Dis. 34, 769–780. 10.3233/JAD-122002
    1. Ewers M., Walsh C., Trojanowski J. Q., Shaw L. M., Petersen R. C., Jack C. R., Jr., et al. . (2010). Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol. Aging 33, 1203–1201. 10.1016/j.neurobiolaging.2010.10.019
    1. Fernández T., Becerra J., Roca M., Espino M., Bahlke M., Harmony T., et al. . (2008). Neurofeedback in healthy elderly humans with electroencephalographic risk of cognitive impairment. Front. Hum. Neurosci. Conference Abstract: 10th International Conference on Cognitive Neuroscience. 10.3389/conf.neuro.09.2009.01.173
    1. Folstein M., Folstein S., McHugh P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198. 10.1016/0022-3956(75)90026-6
    1. Fraga F. J., Falk T. H., Kanda P. A. M., Anghinah R. (2013). Characterizing Alzheimer's disease severity via resting-awake EEG amplitude modulation analysis. PLoS ONE 8:e72240. 10.1371/journal.pone.0072240
    1. Frodl T., Hampel H., Juckel G., Burger K., Padberg F., Engel R. R., et al. . (2002). Value of event-related P300 subcomponents in the clinical diagnosis of mild cognitive impairment and Alzheimer's disease. Psychophysiology 39, 175–181. 10.1111/1469-8986.3920175
    1. Golob E., Irimajiri R., Starr A. (2007). Auditory cortical activity in amnestic mild cognitive impairment: relationship to subtype and conversion to dementia. Brain 130, 740–752. 10.1093/brain/awl375
    1. Golob E., Johnson J., Starr A. (2001). Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clin. Neurophysiol. 113, 151–161. 10.1016/S1388-2457(01)00713-1
    1. Gozke E., Tomrukcu S., Erdal N. (in press). Visual event-related potentials in patients with mild cognitive impairment. Int. J. Gerontol. 10.1016/j.ijge.2013.03.006
    1. Güntekin B., Emek-Savaş D. D., Kurt P., Başar G. G. Y. E. (2013). Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment. Neuroimage 3, 39–46. 10.1016/j.nicl.2013.07.003
    1. Halgren E., Squires N. K., Wilson C. L., Rohrbaugh J. W., Babb T. L., Crandall P. H. (1980). Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science 210, 803–805. 10.1126/science.7434000
    1. Hastie T., Tibshirani R., Friedman J. (2003). The Elements of Statistical Learning. 2nd Edn. New York, NY: Springer-Verlag.
    1. Henderson G., Ifeachor E., Hudson N., Goh C., Outram N., Wimalaratna S., et al. . (2006). Development and assessment of methods for detecting dementia using the human electroencephalogram. IEEE Trans. Biomed. Eng. 53, 1557–1567. 10.1109/TBME.2006.878067
    1. Hillyard S. A., Hink R. F., Schwent V. L., Picton T. W. (1973). Electrical signs of selective attention in the human brain. Science 82, 177–180. 10.1126/science.182.4108.177
    1. Huang M. W., Chou F. H. C., Lo P. Y., Cheng K. S. (2011). A comparative study on long-term evoked auditory and visual potential responses between Schizophrenic patients and normal subjects. BMC Psychiatry 11:74. 10.1186/1471-244X-11-74
    1. Ioannides A. A., Dimitriadis S. I., Saridis G., Voultsidou M., Poghosyan V., Liu L., et al. . (2012). Source space analysis of event-related dynamic reorganization of brain networks. Comput. Math. Methods Med. 2012:452503. 10.1155/2012/452503
    1. Jackson C. E., Snyder P. J. (2008). Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer's disease. Alzheimers Dement. 4, 137–143. 10.1016/j.jalz.2007.10.008
    1. Jelic V., Johansson S. E., Almkvist O., Shigeta M., Julin P., Nordberg A., et al. . (2000). Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer's disease. Neurobiol. Aging 21, 4533–4540. 10.1016/S0197-4580(00)00153-6
    1. Jensen O., Colgin L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269. 10.1016/j.tics.2007.05.003
    1. Jensen O., Lisman J. E. (1998). An oscillatory short-term memory buffer model can account for data on the Sternberg task. J. Neurosci. 18, 10688–10699.
    1. Jirsa V., Müller V. (2013). Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 7:78. 10.3389/fncom.2013.00078
    1. Johnson R. (1993). Gn the neural generators of the P300 component of the event-related potential. Psychophysiology 30, 90–97. 10.1111/j.1469-8986.1993.tb03208.x
    1. Kaga K., Krauchi T., Yumoto M., Uno A. (2004). Middle-latency auditory-evoked magnetic fields in patients with auditory cortex lesions. Acta Otolaryngol. 124, 376–380. 10.1080/00016480310000647
    1. Kopell N. J., Gritton H. J., Whittington M. A., Kramer M. A. (2014). Beyond the connectome: the dynome. Neuron 83, 1319–1328. 10.1016/j.neuron.2014.08.016
    1. Kowalski J., Gawel M., Pfeffer A., Barcikowska M. (2001). The diagnostic value of EEG in Alzheimer disease: correlation with the severity of mental impairment. J. Clin. Neurophysiol. 18, 570–575. 10.1097/00004691-200111000-00008
    1. Kurt P., Emek-Savaş D. D., Batum K., Turp B., Güntekin B., Karşıdağ S., et al. . (2014). Patients with mild cognitive impairment display reduced auditory event-related delta oscillatory responses. Behav. Neurol. 2014, 11. 10.1155/2014/268967
    1. Lai C., Lin R., Liou L., Liu C. (2010). The role of event-related potentials in cognitive decline in Alzheimer's disease. Clin. Neurophysiol. 121, 194–199. 10.1016/j.clinph.2009.11.001
    1. Laskaris N. A., Tarnanas I., Tsolaki M. N., Vlaikidis N., Karlovasitou A. K. (2012). Improved detection of amnestic MCI by means of discriminative vector quantization of single-trial cognitive ERP responses. J. Neurosci. Methods 212, 344–354. 10.1016/j.jneumeth.2012.10.014
    1. Laskaris N., Ioannides A. (2001). Exploratory data analysis of evoked response single trials based on minimal spanning tree. Clin. Neurophysiol. 112, 698–712. 10.1016/S1388-2457(00)00560-5
    1. Laskaris N., Fotopoulos S., Papathanasopoulos P., Bezerianos A. (1997). Robust moving averages, with Hopfield neural network implementation, for the monitoring of evoked potential signals. Electroencephalogr. Clin. Neurophysiol. 104, 151–156. 10.1016/S0168-5597(97)96681-8
    1. Latchoumane C., Vialatte F., Sole-Casals J., Maurice M., Wimalaratra S. R., Hudson N., et al. . (2012). Multiway array decomposition analysis of EEGs in Alzheimer's disease. J. Neurosci. Methods 207, 41–50. 10.1016/j.jneumeth.2012.03.005
    1. Lehmann C., Koenig T., Jelic V., Prichep L., John R. E., Wahlund L. O., et al. . (2007). Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG). J. Neurosci Methods 161, 341–350. 10.1016/j.jneumeth.2006.10.023
    1. Lisman J., Buzsaki G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr. Bull. 34, 974–980. 10.1093/schbul/sbn060
    1. Locatelli T., Cursi M., Liberati D., Franceschi M., Comi G. (1998). EEG coherence in Alzheimer's disease. Electroenceph. Clin. Neurophysiol. 106, 229–237. 10.1016/S0013-4694(97)00129-6
    1. Mattis S. (1976). Mental status examination for organic mental syndrome in the elderly patient, in Geriatric Psychiatry, eds Bellak L., Karasu T. B. (New York, NY: Grune and Stratton; ), 77–101.
    1. Missonnier P. F. R., Herrmann A., Michon L., Fazio-Costa P., Gold G., Giannakopoulos P. (2010). Early disturbances of gamma band dynamics in mild cognitive impairment. J. Neural Transm. 117, 489–498. 10.1007/s00702-010-0384-9
    1. Moretti D. V., Zanetti O., Binetti G., Frisoni G. B. (2012). Quantitative EEG markers in mild cognitive impairment: degenerative versus vascular brain impairment. Int. J. Alzheimers Dis. 2012, 12. 10.1155/2012/917537
    1. Mosimann U. P., Felblinger J., Ballinari P., Hess C. W., Müri R. M. (2004). Visual exploration behaviour during clock reading in Alzheimer's disease. Brain 127, 431–438. 10.1093/brain/awh051
    1. Muscio C., Tiraboschi P., Guerra U. P., Defanti C. A., Frisoni G. B. (2015). Defanti and Giovanni B. Frisoni. Clinical trial design of serious gaming in mild cognitive impairment. Front. Aging Neurosci. 7:26. 10.3389/fnagi.2015.00026
    1. Muscoso E., Costanzo E., Daniele O., Maugeri D., Natale E., Caravaglios G. (2006). Auditory event-related potentials in subcortical vascular cognitive impairment and in Alzheimer's disease. J. Neural Transm. 113, 1779–186. 10.1007/s00702-006-0574-7
    1. Näätänen R., Gaillard A. W., Mäntysalo S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychol. 42, 313–329. 10.1016/0001-6918(78)90006-9
    1. Olichney J. M., Morris S. K., Ochoa C., Salmon D. P., Thal L. J., Kutas M., et al. . (2002). Abnormal verbal event related potentials in mild cognitive impairment and incipient Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 73, 377–384. 10.1136/jnnp.73.4.377
    1. Osipova D., Hermes D., Jensen O. (2008). Gamma power is phase- locked to posterior alpha activity. PLoS ONE 3:e3990. 10.1371/journal.pone.0003990
    1. Paajanen T., Hänninen T., Tunnard C., Hallikainen M., Mecocci M., Sobow T., et al. (2014). CERAD Neuropsychological compound scores are accurate in detecting prodromal alzheimer's disease: a prospective addneuromed study. J. Alzheimers Dis. 39, 679–690. 10.3233/JAD-122110
    1. Palva J. M., Palva S. (2011). Roles of multiscale brain activity fluctuations in shaping the variability and dynamics of psychophysical performance. Prog. Brain Res. 193, 335–350. 10.1016/B978-0-444-53839-0.00022-3
    1. Papaliagkas V., Kimiskidis V., Tsolaki M., Anogianakis G. (2008). Usefulness of event-related potentials in the assessment of mild cognitive impairment. BMC Neurosci. 9:107. 10.1186/1471-2202-9-107
    1. Papaliagkas V., Kimiskidis V., Tsolaki M., Anogianakis G. (2011). Cognitive event-related potentials: longitudinal changes in mild cognitive impairment. Clin. Neurophysiol. 122, 1322–1326. 10.1016/j.clinph.2010.12.036
    1. Patel S., Azzam P. (2005). Characterization of N200 and P300: selected studies of the event-related potential. Int. J. Med. Sci. 2, 147–154. 10.7150/ijms.2.147
    1. Patterson J. C., Lilien D. L., Takalkar A., Pinkston J. B. (2011). Early detection of brain pathology suggestive of early AD using objective evaluation of FDG-PET scans. Int. J. Alzheimers Dis. 2011, 9. 10.4061/2011/946590
    1. Petersen R. C., Morris J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Arch. Neurol. 62, 1160–1163. 10.1001/archneur.62.7.1160
    1. Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., Kokmen E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 56, 303–308. 10.1001/archneur.56.3.303
    1. Picton T. W. (1992). The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 9, 456–479. 10.1097/00004691-199210000-00002
    1. Pinal D., Zurrón M., Díaz F., Paul Sauseng P. (2015). Stuck in default mode: inefficient cross frequency synchronization may lead to age-related short-term memory decline. Neurobiol. Aging 36, 1611–1618. 10.1016/j.neurobiolaging.2015.01.009
    1. Polich J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148. 10.1016/j.clinph.2007.04.019
    1. Polich J., Corey-Bloom J. (2005). Alzheimer's disease and P300: review and evaluation of task and modality. Curr. Alzheimer Res. 2, 515–525. 10.2174/156720505774932214
    1. Ponomareva N., Andreeva T., Protasova M., Shagam L., Malina D., Goltsov A., et al. . (2013). Age-dependent effect of Alzheimer's risk variant of CLU on EEG alpha rhythm in non-demented adults. Front. Aging Neurosci. 5:86. 10.3389/fnagi.2013.00086
    1. Porta A., Baumert M., Cysarz D., Wessel N. (2015). Enhancing dynamical signatures of complex systems through symbolic computation. Philos. Trans. A. Math Phys Eng. Sci. 373, 20140099. 10.1098/rsta.2014.0099
    1. Ritter W., Ford J. M., Gaillard A. W., Harter M. R., Kutas M., Näätänen R., et al. . (1984). Cognition and event-related potential. I. The relation of negative potentials and cognitive processes. Ann. N. Y. Acad. Sci. 425, 24–38. 10.1111/j.1749-6632.1984.tb23521.x
    1. Sauseng P., Klimesch W., Gruber W. R., Birbaumer N. (2008). Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage 40, 308–317. 10.1016/j.neuroimage.2007.11.032
    1. Schack B., Vath N., Petsche H., Geissler H. G., Möller E. (2002). Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 44, 143–163. 10.1016/S0167-8760(01)00199-4
    1. Sporns O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17, 652–660. 10.1038/nn.3690
    1. Stam C. J. (2014). Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695. 10.1038/nrn3801
    1. Stephan B. C., Hunter S., Harris D., Llewellyn D. J., Siervo M., Matthews F. E., et al. . (2012). The neuropathological profile of mild cognitive impairment (MCI): a systematic review. Mol. Psychiatry 17, 1056–1076. 10.1038/mp.2011.147
    1. Tarnanas I., Dimitriadis S. I., Laskaris N. A., Bamidis P., Tsolaki M., Rene M. (2014b). Serious gaming enhances cognitive function in MCI due to Alzheimer's disease. Alzheimers Dement. 10, P922 10.1016/j.jalz.2014.07.135
    1. Tarnanas I., Laskaris N., Tsolaki M., Muri R., Nef T., Mosimann U. P. (2015a). On the comparison of a novel serious game and electroencephalography biomarkers for early dementia screening. Adv. Exp. Med. Biol. 821, 63–77. 10.1007/978-3-319-08939-3_11
    1. Tarnanas I., Papagiannopoulos S., Kazis D., Wiederhold M., Widerhold B., Tsolaki M. (2015b). Reliability of a novel serious game using dual-task gait profiles to early characterize aMCI. Front. Aging Neurosci. 7:50. 10.3389/fnagi.2015.00050
    1. Tarnanas I., Tsolaki M., Nef T., Müri R., Mosimann U. P. (2014a). Can a novel computerized cognitive screening test provide additional information for early detection of Alzheimer Disease? Alzheimers Dement. 10, 790–798. 10.1016/j.jalz.2014.01.002
    1. Tort A. B., Komorowski R. W., Manns J. R., Kopell N. J., Eichenbaum H. (2009). Theta–gamma coupling increases during the learning of item–context associations. Proc. Natl. Acad. Sci. U.S.A. 106, 20942–20947. 10.1073/pnas.0911331106
    1. Tort A. B., Komorowski R., Eichenbaum H., Kopell N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104, 1195–1210. 10.1152/jn.00106.2010
    1. Tort A. B. L., Kramer M. A., Thorn C., Gibson D. J., Kubota Y., Graybiel A. M. (2008). Dynamic cross-frequency couplings of local field potential oscillations in ratstriatum and hippocampus during performance of aT-mazetask. Proc. Natl. Acad. Sci. U.S.A. 105, 20517–20522. 10.1073/pnas.0810524105
    1. VanRullen R., Koch C. (2003). Is perception discrete or continuous? Trends Cogn. Sci. 7, 207–213. 10.1016/S1364-6613(03)00095-0
    1. Varela F., Lachaux J. P., Rodrigues E., Martinerie J. (2001). The brainweb: phase synchronization and largescale integration. Nat. Rev. Neurosci. 2, 229–239. 10.1038/35067550
    1. Voytek B., Canolty R. T., Shestyuk A., Crone N. E., Parvizi J., Knight R. T. (2010). Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Hum. Neurosci 4:191. 10.3389/fnhum.2010.00191
    1. Wen D., Zhou Y., Li X. (2015). A critical review: coupling and synchronization analysis methods of EEG signal with mild cognitive impairment. Front. Aging Neurosci. 7:54. 10.3389/fnagi.2015.00054
    1. Winblad B., Palmer K., Kivipelto M. (2004). Mild cognitive impairment - beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J. Intern. Med. 256, 240–246. 10.1111/j.1365-2796.2004.01380.x
    1. Yener G. G., Basar E. (2013). Biomarkers in Alzheimer's disease with a special emphasis on event-related oscillatory responses. Suppl. Clin. Neurophysiol. 62, 237–258. 10.1016/B978-0-7020-5307-8.00020-X
    1. Yener G. G., Güntekin B., Örken D. N., T¨ulay E., Forta H., Basar E. (2012). Auditory delta event-related oscillatory responses are decreased in Alzheimer's disease. Behav. Neurol. 25, 3–11. 10.1155/2012/810173
    1. Young J., Modat M., Cardoso M. J., Mendelson A., Cash D., Ourselin S. (2013). Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. Neuroimage 2, 735–745. 10.1016/j.nicl.2013.05.004

Source: PubMed

3
Abonner