Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence

Vincenzo Sorrenti, Davide Augusto Castagna, Stefano Fortinguerra, Alessandro Buriani, Giovanni Scapagnini, Donald Craig Willcox, Vincenzo Sorrenti, Davide Augusto Castagna, Stefano Fortinguerra, Alessandro Buriani, Giovanni Scapagnini, Donald Craig Willcox

Abstract

Spirulina microalgae contain a plethora of nutrient and non-nutrient molecules providing brain health benefits. Numerous in vivo evidence has provided support for the brain health potential of spirulina, highlighting antioxidant, anti-inflammatory, and neuroprotective mechanisms. Preliminary clinical studies have also suggested that spirulina can help to reduce mental fatigue, protect the vascular wall of brain vessels from endothelial damage and regulate internal pressure, thus contributing to the prevention and/or mitigating of cerebrovascular conditions. Furthermore, the use of spirulina in malnourished children appears to ameliorate motor, language, and cognitive skills, suggesting a reinforcing role in developmental mechanisms. Evidence of the central effect of spirulina on appetite regulation has also been shown. This review aims to understand the applicative potential of spirulina microalgae in the prevention and mitigation of brain disorders, highlighting the nutritional value of this "superfood", and providing the current knowledge on relevant molecular mechanisms in the brain associated with its dietary introduction.

Keywords: BDNF; brain health; nutraceuticals; seaweeds; spirulina.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Putative absorption, metabolism, and distribution in the CNS of spirulina nutrients and phyto-derivatives. Spirulina microalgae contain a plethora of nutrient molecules and phyto-derivatives which, once taken orally, can follow different ways of absorption. In particular, most of the nutrients such as minerals, vitamins, and amino acids are rapidly absorbed through specific transporters present in the colon and duodenum although a small part can also be absorbed at the sublingual level and in the stomach. The phyto-derivatives, on the other hand, mainly undergo metabolism by phase 1 and 2 enzymes residing in the small intestine despite the majority of phytoderivates metabolism taking place in the duodenum by the intestinal microbiota that biotransforms the phyto-derivatives into small bioactive metabolites able to enter the bloodstream [31,32,33,34].

References

    1. Frackowiak R.S. Human Brain Function. Elsevier; Amsterdam, The Netherlands: 2004.
    1. Gómez-Pinilla F. Brain foods: The effects of nutrients on brain function. Nat. Rev. Neurosci. 2008;9:568–578. doi: 10.1038/nrn2421.
    1. Williams R.J., Mohanakumar K.P., Beart P.M. Neuro-Nutraceuticals: The Path to Brain Health via Nourishment Is Not So Distant. Elsevier; Amsterdam, The Netherlands: 2015.
    1. Cian R.E., Drago S.R., De Medina F.S., Martínez-Augustin O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar. Drugs. 2015;13:5358–5383. doi: 10.3390/md13085358.
    1. Reilly P., O’doherty J., Pierce K., Callan J., O’sullivan J., Sweeney T. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. Animal. 2008;2:1465–1473. doi: 10.1017/S1751731108002711.
    1. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133. doi: 10.1016/j.brainres.2018.03.015.
    1. Cornish M.L., Critchley A.T., Mouritsen O.G. Consumption of seaweeds and the human brain. J. Appl. Phycol. 2017;29:2377–2398. doi: 10.1007/s10811-016-1049-3.
    1. Rosa G.P., Tavares W.R., Sousa P., Seca A.M., Pinto D.C. Seaweed secondary metabolites with beneficial health effects: An overview of successes in in vivo studies and clinical trials. Mar. Drugs. 2020;18:8. doi: 10.3390/md18010008.
    1. Pereira L., Valado A. The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar. Drugs. 2021;19:128. doi: 10.3390/md19030128.
    1. Wang Y., Chang C.-F., Chou J., Chen H.-L., Deng X., Harvey B.K., Cadet J.L., Bickford P.C. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Exp. Neurol. 2005;193:75–84. doi: 10.1016/j.expneurol.2004.12.014.
    1. Miranda M., Cintra R., Barros S.d.M., Mancini-Filho J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 1998;31:1075–1079. doi: 10.1590/S0100-879X1998000800007.
    1. Kim J.H., Lee N.S., Jeong Y.G., Lee J.-H., Kim E.J., Han S.Y. Protective efficacy of an Ecklonia cava extract used to treat transient focal ischemia of the rat brain. Anat. Cell Biol. 2012;45:103. doi: 10.5115/acb.2012.45.2.103.
    1. Um M.Y., Lim D.W., Son H.J., Cho S., Lee C. Phlorotannin-rich fraction from Ishige foliacea brown seaweed prevents the scopolamine-induced memory impairment via regulation of ERK-CREB-BDNF pathway. J. Funct. Foods. 2018;40:110–116. doi: 10.1016/j.jff.2017.10.014.
    1. Allaert F.-A., Demais H., Collén P.N. A randomized controlled double-blind clinical trial comparing versus placebo the effect of an edible algal extract (Ulva Lactuca) on the component of depression in healthy volunteers with anhedonia. BMC Psychiatry. 2018;18:215. doi: 10.1186/s12888-018-1784-x.
    1. Reid S.N., Ryu J.-K., Kim Y., Jeon B.H. The effects of fermented Laminaria japonica on short-term working memory and physical fitness in the elderly. Evid. Based Complementary Altern. Med. 2018;2018:8109621.
    1. Haskell-Ramsay C.F., Jackson P.A., Dodd F.L., Forster J.S., Bérubé J., Levinton C., Kennedy D.O. Acute post-prandial cognitive effects of brown seaweed extract in humans. Nutrients. 2018;10:85. doi: 10.3390/nu10010085.
    1. Hannan M., Dash R., Haque M., Mohibbullah M., Sohag A.A.M., Rahman M., Uddin M.J., Alam M., Moon I.S. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs. 2020;18:347. doi: 10.3390/md18070347.
    1. Khan Z., Bhadouria P., Bisen P. Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 2005;6:373–379. doi: 10.2174/138920105774370607.
    1. Clément G., Giddey C., Menzi R. Amino acid composition and nutritive value of the alga Spirulina maxima. J. Sci. Food Agric. 1967;18:497–501. doi: 10.1002/jsfa.2740181101.
    1. Tomaselli L. Spirulina Platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor & Francis; Abingdon, UK: 1997. Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis; pp. 1–16.
    1. Belay A. Spirulina in Human Nutrition and Health. Volume 1 CRC Press; Boca Raton, FL, USA: 2008. Spirulina (Arthrospira): Production and quality assurance.
    1. Babadzhanov A., Abdusamatova N., Yusupova F., Faizullaeva N., Mezhlumyan L., Malikova M.K. Chemical Composition of Spirulina platensis Cultivated in Uzbekistan. Chem. Nat. Compd. 2004;40:276–279. doi: 10.1023/B:CONC.0000039141.98247.e8.
    1. Vonshak A. Spirulina Platensis Arthrospira: Physiology, Cell-Biology and Biotechnology. CRC Press; Boca Raton, FL, USA: 1997.
    1. Liestianty D., Rodianawati I., Arfah R.A., Assa A. Nutritional analysis of spirulina sp to promote as superfood candidate. IOP Conf. Ser. Mater. Sci. Eng. 2019;509:012031. doi: 10.1088/1757-899X/509/1/012031.
    1. Karkos P., Leong S., Karkos C., Sivaji N., Assimakopoulos D. Spirulina in clinical practice: Evidence-based human applications. Evid. Based Complementary Altern. Med. 2011;2011:531053. doi: 10.1093/ecam/nen058.
    1. Kennedy D.O. B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients. 2016;8:68. doi: 10.3390/nu8020068.
    1. Wells M.L., Potin P., Craigie J.S., Raven J.A., Merchant S.S., Helliwell K.E., Smith A.G., Camire M.E., Brawley S.H. Algae as nutritional and functional food sources: Revisiting our understanding. J. Appl. Phycol. 2017;29:949–982. doi: 10.1007/s10811-016-0974-5.
    1. Makkar R., Behl T., Bungau S., Zengin G., Mehta V., Kumar A., Uddin M., Ashraf G.M., Abdel-Daim M.M., Arora S. Nutraceuticals in neurological disorders. Int. J. Mol. Sci. 2020;21:4424. doi: 10.3390/ijms21124424.
    1. Sorrenti V., Fortinguerra S., Caudullo G., Buriani A. Deciphering the Role of Polyphenols in Sports Performance: From Nutritional Genomics to the Gut Microbiota toward Phytonutritional Epigenomics. Nutrients. 2020;12:1265. doi: 10.3390/nu12051265.
    1. Sorrenti V., Ali S., Mancin L., Davinelli S., Paoli A., Scapagnini G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients. 2020;12:1908. doi: 10.3390/nu12071908.
    1. Neyrinck A.M., Taminiau B., Walgrave H., Daube G., Cani P.D., Bindels L.B., Delzenne N.M. Spirulina protects against hepatic inflammation in aging: An effect related to the modulation of the gut microbiota? Nutrients. 2017;9:633. doi: 10.3390/nu9060633.
    1. Hu J., Li Y., Pakpour S., Wang S., Pan Z., Liu J., Wei Q., She J., Cang H., Zhang R.X. Dose effects of orally administered Spirulina suspension on colonic microbiota in healthy mice. Front. Cell. Infect. Microbiol. 2019;9:243. doi: 10.3389/fcimb.2019.00243.
    1. Morais L.H., Schreiber H.L., Mazmanian S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021;119:241–255. doi: 10.1038/s41579-020-00460-0.
    1. Westfall S., Lomis N., Kahouli I., Dia S.Y., Singh S.P., Prakash S. Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cell. Mol. Life Sci. 2017;74:3769–3787. doi: 10.1007/s00018-017-2550-9.
    1. Yu T., Wang Y., Chen X., Xiong W., Tang Y., Lin L. Spirulina platensis alleviates chronic inflammation with modulation of gut microbiota and intestinal permeability in rats fed a high-fat diet. J. Cell. Mol. Med. 2020;24:8603–8613. doi: 10.1111/jcmm.15489.
    1. Xie Y., Li W., Zhu L., Zhai S., Qin S., Du Z. Effects of phycocyanin in modulating the intestinal microbiota of mice. MicrobiologyOpen. 2019;8:e00825. doi: 10.1002/mbo3.825.
    1. Park J.-C., Han S.-H., Byun M.S., Yi D., Lee J.H., Park K., Lee D.Y., Mook-Jung I. Low serum phosphorus correlates with cerebral Aβ deposition in cognitively impaired subjects: Results from the KBASE study. Front. Aging Neurosci. 2017;9:362. doi: 10.3389/fnagi.2017.00362.
    1. Slutsky I., Abumaria N., Wu L.-J., Huang C., Zhang L., Li B., Zhao X., Govindarajan A., Zhao M.-G., Zhuo M. Enhancement of learning and memory by elevating brain magnesium. Neuron. 2010;65:165–177. doi: 10.1016/j.neuron.2009.12.026.
    1. Takeda A. Manganese action in brain function. Brain Res. Rev. 2003;41:79–87. doi: 10.1016/S0165-0173(02)00234-5.
    1. Sperringer J.E., Addington A., Hutson S.M. Branched-chain amino acids and brain metabolism. Neurochem. Res. 2017;42:1697–1709. doi: 10.1007/s11064-017-2261-5.
    1. Fernstrom J.D. Dietary amino acids and brain function. J. Am. Diet. Assoc. 1994;94:71–77. doi: 10.1016/0002-8223(94)92045-1.
    1. Kapoor R., Huang Y.-S. Gamma linolenic acid: An antiinflammatory omega-6 fatty acid. Curr. Pharm. Biotechnol. 2006;7:531–534. doi: 10.2174/138920106779116874.
    1. Biessels G.J., Smale S., Duis S.E., Kamal A., Gispen W.H. The effect of gamma-linolenic acid–alpha-lipoic acid on functional deficits in the peripheral and central nervous system of streptozotocin-diabetic rats. J. Neurol. Sci. 2001;182:99–106. doi: 10.1016/S0022-510X(00)00456-1.
    1. Desai K., Sivakami S. Purification and biochemical characterization of a superoxide dismutase from the soluble fraction of the cyanobacterium, Spirulina platensis. World J. Microbiol. Biotechnol. 2007;23:1661–1666. doi: 10.1007/s11274-007-9413-8.
    1. Bachstetter A.D., Jernberg J., Schlunk A., Vila J.L., Hudson C., Cole M.J., Shytle R.D., Tan J., Sanberg P.R., Sanberg C.D. Spirulina promotes stem cell genesis and protects against LPS induced declines in neural stem cell proliferation. PLoS ONE. 2010;5:e10496. doi: 10.1371/journal.pone.0010496.
    1. Patil J., Matte A., Nissbrandt H., Mallard C., Sandberg M. Sustained effects of neonatal systemic lipopolysaccharide on IL-1β and Nrf2 in adult rat substantia nigra are partly normalized by a spirulina-enriched diet. Neuroimmunomodulation. 2016;23:250–259. doi: 10.1159/000452714.
    1. Patil J., Matte A., Mallard C., Sandberg M. Spirulina diet to lactating mothers protects the antioxidant system and reduces inflammation in post-natal brain after systemic inflammation. Nutr. Neurosci. 2018;21:59–69. doi: 10.1080/1028415X.2016.1221496.
    1. Fried R. Superoxide dismutase activity in the nervous system. J. Neurosci. Res. 1979;4:435–441. doi: 10.1002/jnr.490040511.
    1. Hwang J.-H., Lee I.-T., Jeng K.-C., Wang M.-F., Hou R.C.-W., Wu S.-M., Chan Y.-C. Spirulina prevents memory dysfunction, reduces oxidative stress damage and augments antioxidant activity in senescence-accelerated mice. J. Nutr. Sci. Vitaminol. 2011;57:186–191. doi: 10.3177/jnsv.57.186.
    1. Koh E.-J., Kim K.-J., Song J.-H., Choi J., Lee H.Y., Kang D.-H., Heo H.J., Lee B.-Y. Spirulina maxima extract ameliorates learning and memory impairments via inhibiting GSK-3β phosphorylation induced by intracerebroventricular injection of amyloid-β 1–42 in mice. Int. J. Mol. Sci. 2017;18:2401. doi: 10.3390/ijms18112401.
    1. Pabon M.M., Jernberg J.N., Morganti J., Contreras J., Hudson C.E., Klein R.L., Bickford P.C. A Spirulina-Enhanced diet provides neuroprotection in an α-synuclein model of Parkinson’s disease. PLoS ONE. 2012;7:e45256. doi: 10.1371/journal.pone.0045256.
    1. Lima F.A.V., Joventino I.P., Joventino F.P., de Almeida A.C., Neves K.R.T., do Carmo M.R., Leal L.K.A.M., de Andrade G.M., de Barros Viana G.S. Neuroprotective activities of Spirulina platensis in the 6-OHDA model of Parkinson’s disease are related to its anti-inflammatory effects. Neurochem. Res. 2017;42:3390–3400. doi: 10.1007/s11064-017-2379-5.
    1. Choi W.Y., Kang D.H., Lee H.Y. Effect of fermented Spirulina maxima extract on cognitive-enhancing activities in mice with scopolamine-induced dementia. Evid. Based Complementary Altern. Med. 2018;2018:7218504. doi: 10.1155/2018/7218504.
    1. Chan Y.-C., Hwang J.-H. Effects of Spirulina on the functions and redox status of auditory system in senescence-accelerated prone-8 mice. PLoS ONE. 2017;12:e0178916. doi: 10.1371/journal.pone.0178916.
    1. Gargouri M., Ghorbel-Koubaa F., Bonenfant-Magné M., Magné C., Dauvergne X., Ksouri R., Krichen Y., Abdelly C., El Feki A. Spirulina or dandelion-enriched diet of mothers alleviates lead-induced damages in brain and cerebellum of newborn rats. Food Chem. Toxicol. 2012;50:2303–2310. doi: 10.1016/j.fct.2012.04.003.
    1. Galal M.K., Elleithy E.M., Abdrabou M.I., Yasin N.A., Shaheen Y.M. Modulation of caspase-3 gene expression and protective effects of garlic and spirulina against CNS neurotoxicity induced by lead exposure in male rats. NeuroToxicology. 2019;72:15–28. doi: 10.1016/j.neuro.2019.01.006.
    1. Banji D., Banji O.J., Pratusha N.G., Annamalai A. Investigation on the role of Spirulina platensis in ameliorating behavioural changes, thyroid dysfunction and oxidative stress in offspring of pregnant rats exposed to fluoride. Food Chem. 2013;140:321–331. doi: 10.1016/j.foodchem.2013.02.076.
    1. Ibrahim F., Nomier M.A., Sabik L.M., Shaheen M.A. Manganese-induced neurotoxicity and the potential protective effects of lipoic acid and Spirulina platensis. Toxicol. Mech. Methods. 2020;30:497–507. doi: 10.1080/15376516.2020.1771803.
    1. Thaakur S., Sravanthi R. Neuroprotective effect of Spirulina in cerebral ischemia–reperfusion injury in rats. J. Neural Transm. 2010;117:1083–1091. doi: 10.1007/s00702-010-0440-5.
    1. Madhavadas S., Subramanian S. Combination of Spirulina with glycyrrhizin prevents cognitive dysfunction in aged obese rats. Indian J. Pharmacol. 2015;47:39.
    1. Zhu H.-Z., Zhang Y., Zhu M.-J., Wu R.-L., Zeng Z.-G. Protective effects of spirulina on hippocampal injury in exercise-fatigue mice and its mechanism. Chin. J. Appl. Physiol. 2018;34:562.
    1. Okamoto T., Kawashima H., Osada H., Toda E., Homma K., Nagai N., Imai Y., Tsubota K., Ozawa Y. Dietary spirulina supplementation protects visual function from photostress by suppressing retinal neurodegeneration in mice. Transl. Vis. Sci. Technol. 2019;8:20. doi: 10.1167/tvst.8.6.20.
    1. Zhao B., Cui Y., Fan X., Qi P., Liu C., Zhou X., Zhang X. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS ONE. 2019;14:e0218543. doi: 10.1371/journal.pone.0218543.
    1. Moradi-Kor N., Ghanbari A., Rashidipour H., Bandegi A.R., Yousefi B., Barati M., Kokhaei P., Rashidy-Pour A. Therapeutic effects of spirulina platensis against adolescent stress-induced oxidative stress, brain-derived neurotrophic factor alterations and morphological remodeling in the amygdala of adult female rats. J. Exp. Pharmacol. 2020;12:75. doi: 10.2147/JEP.S237378.
    1. Sinha S., Patro N., Tiwari P., Patro I.K. Maternal Spirulina supplementation during pregnancy and lactation partially prevents oxidative stress, glial activation and neuronal damage in protein malnourished F1 progeny. Neurochem. Int. 2020;141:104877. doi: 10.1016/j.neuint.2020.104877.
    1. Khalil S.R., Khalifa H.A., Abdel-Motal S.M., Mohammed H.H., Elewa Y.H., Mahmoud H.A. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate. Ecotoxicol. Environ. Saf. 2018;157:255–265. doi: 10.1016/j.ecoenv.2018.03.068.
    1. Park H.J., Lee Y.J., Ryu H.K., Kim M.H., Chung H.W., Kim W.Y. A randomized double-blind, placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann. Nutr. Metab. 2008;52:322–328. doi: 10.1159/000151486.
    1. Johnson M., Hassinger L., Davis J., Devor S.T., DiSilvestro R.A. A randomized, double blind, placebo controlled study of spirulina supplementation on indices of mental and physical fatigue in men. Int. J. Food Sci. Nutr. 2016;67:203–206. doi: 10.3109/09637486.2016.1144719.
    1. Hernández-Lepe M.A., Wall-Medrano A., López-Díaz J.A., Juárez-Oropeza M.A., Luqueño-Bocardo O.I., Hernández-Torres R.P., Ramos-Jiménez A. Hypolipidemic effect of Arthrospira (Spirulina) maxima supplementation and a systematic physical exercise program in overweight and obese men: A double-blind, randomized, and crossover controlled trial. Mar. Drugs. 2019;17:270. doi: 10.3390/md17050270.
    1. Masuda K., Chitundu M. Multiple micronutrient supplementation using Spirulina platensis during the first 1000 days is positively associated with development in children under five years: A follow up of a randomized trial in Zambia. Nutrients. 2019;11:730. doi: 10.3390/nu11040730.
    1. Miczke A., Szulinska M., Hansdorfer-Korzon R., Kregielska-Narozna M., Suliburska J., Walkowiak J., Bogdanski P. Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: A double-blind, placebo-controlled, randomized trial. Eur. Rev. Med. Pharm. Sci. 2016;20:150–156.
    1. Zeinalian R., Farhangi M.A., Shariat A., Saghafi-Asl M. The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: A randomized double blinded placebo controlled trial. BMC Complementary Altern. Med. 2017;17:225. doi: 10.1186/s12906-017-1670-y.
    1. Martínez-Sámano J., Torres-Montes de Oca A., Luqueño-Bocardo O.I., Torres-Durán P.V., Juárez-Oropeza M.A. Spirulina maxima decreases endothelial damage and oxidative stress indicators in patients with systemic arterial hypertension: Results from exploratory controlled clinical trial. Mar. Drugs. 2018;16:496. doi: 10.3390/md16120496.
    1. Buriani A., Fortinguerra S., Carrara M., Pelkonen O. Toxicology of Herbal Products. Springer; Berlin/Heidelberg, Germany: 2017. Systems network pharmaco-toxicology in the study of herbal medicines; pp. 129–164.
    1. Buriani A., Fortinguerra S., Sorrenti V., Caudullo G., Carrara M. Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules. 2020;25:1833. doi: 10.3390/molecules25081833.

Source: PubMed

3
Abonner