Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles

Emi Yamano, Masahiro Sugimoto, Akiyoshi Hirayama, Satoshi Kume, Masanori Yamato, Guanghua Jin, Seiki Tajima, Nobuhito Goda, Kazuhiro Iwai, Sanae Fukuda, Kouzi Yamaguti, Hirohiko Kuratsune, Tomoyoshi Soga, Yasuyoshi Watanabe, Yosky Kataoka, Emi Yamano, Masahiro Sugimoto, Akiyoshi Hirayama, Satoshi Kume, Masanori Yamato, Guanghua Jin, Seiki Tajima, Nobuhito Goda, Kazuhiro Iwai, Sanae Fukuda, Kouzi Yamaguti, Hirohiko Kuratsune, Tomoyoshi Soga, Yasuyoshi Watanabe, Yosky Kataoka

Abstract

Chronic fatigue syndrome (CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, lasting at least 6 consecutive months. Its pathogenesis remains incompletely understood. Here, we performed comprehensive metabolomic analyses of 133 plasma samples obtained from CFS patients and healthy controls to establish an objective diagnosis of CFS. CFS patients exhibited significant differences in intermediate metabolite concentrations in the tricarboxylic acid (TCA) and urea cycles. The combination of ornithine/citrulline and pyruvate/isocitrate ratios discriminated CFS patients from healthy controls, yielding area under the receiver operating characteristic curve values of 0.801 (95% confidential interval [CI]: 0.711-0.890, P < 0.0001) and 0.750 (95% CI: 0.584-0.916, P = 0.0069) for training (n = 93) and validation (n = 40) datasets, respectively. These findings provide compelling evidence that a clinical diagnostic tool could be developed for CFS based on the ratios of metabolites in plasma.

Figures

Figure 1. Metabolic pathway map of quantified…
Figure 1. Metabolic pathway map of quantified metabolite concentrations, including for glycolysis, the tricarboxylic acid cycle, the urea cycle and glutamine metabolism, in chronic fatigue syndrome (CFS) patients and healthy controls (HCs).
Box-and-whisker plots of the concentrations of metabolites involved in energy metabolism in the plasma of HCs and CFS patients. The coloured plots denote HCs (green) and CFS patients (red). The horizontal lines indicate the minimum, maximum, median, and first and third quartile. #P < 0.10; *P < 0.05; **P < 0.01 (Mann–Whitney U-test).
Figure 2. Box-and-whisker plots of ratios of…
Figure 2. Box-and-whisker plots of ratios of pyruvate/isocitrate and ornithine/citrulline in training and validation datasets.
The horizontal lines indicate the minimum, maximum, median, and first and third quartile. *P < 0.05; ***P < 0.001; ****P < 0.0001 (Mann–Whitney U-test).
Figure 3. Overall flow of the development…
Figure 3. Overall flow of the development and validation of the multiple logistic regression model and results predicted by this model.
(a) The training data were used for development and internal validation of the model, starting from support vector machine-feature selection, feature selection based on metabolic pathways, model development and internal validation. The model predicted independent validation datasets that were not used for model training. (b) Box-and-whisker plots of the probability of chronic fatigue syndrome yielded by the developed model. Horizontal lines indicate the minimum, maximum, median and first and third quartile. (c) Receiver operating characteristic curves for training and validation datasets.

References

    1. Fukuda K. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 121, 953–959 (1994).
    1. Afari N. & Buchwald D. Chronic fatigue syndrome: a review. Am J Psychiatry 160, 221–236 (2003).
    1. Lange G. et al. Brain MRI abnormalities exist in a subset of patients with chronic fatigue syndrome. J Neurol Sci 171, 3–7 (1999).
    1. Okada T., Tanaka M., Kuratsune H., Watanabe Y. & Sadato N. Mechanisms underlying fatigue: a voxel-based morphometric study of chronic fatigue syndrome. BMC Neurol 4, 14, doi: 10.1186/1471-2377-4-14 (2004).
    1. Nakatomi Y. et al. Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET Study. J Nucl Med 55, 945–950, doi: 10.2967/jnumed.113.131045 (2014).
    1. Klimas N. G., Salvato F. R., Morgan R. & Fletcher M. A. Immunologic abnormalities in chronic fatigue syndrome. J Clin Microbiol 28, 1403–1410 (1990).
    1. Cleare A. J. The HPA axis and the genesis of chronic fatigue syndrome. Trends Endocrinol Metab 15, 55–59, doi: 10.1016/j.tem.2003.12.002 (2004).
    1. Kitani T., Kuratsune H. & Yamaguchi K. Diagnostic criteria for chronic fatigue syndrome by the CFS Study Group in Japan. Nihon Rinsho 50, 2600–2605 (1992).
    1. Matsuda Y. et al. A two-year follow-up study of chronic fatigue syndrome comorbid with psychiatric disorders. Psychiatry Clin Neurosci 63, 365–373, doi: 10.1111/j.1440-1819.2009.01954.x (2009).
    1. Vernon S. D. & Reeves W. C. Evaluation of autoantibodies to common and neuronal cell antigens in Chronic Fatigue Syndrome. J Autoimmune Dis 2, 5, doi: 10.1186/1740-2557-2-5 (2005).
    1. Shishioh-Ikejima N. et al. The increase of alpha-melanocyte-stimulating hormone in the plasma of chronic fatigue syndrome patients. BMC Neurol 10, 73, doi: 10.1186/1471-2377-10-73 (2010).
    1. Fletcher M. A. et al. Biomarkers in chronic fatigue syndrome: evaluation of natural killer cell function and dipeptidyl peptidase IV/CD26. Plos One 5, e10817, doi: 10.1371/journal.pone.0010817 (2010).
    1. Devanur L. D. & Kerr J. R. Chronic fatigue syndrome. J Clin Virol 37, 139–150, doi: 10.1016/j.jcv.2006.08.013 (2006).
    1. Lehmann M. et al. Serum amino acid concentrations in nine athletes before and after the 1993 Colmar ultra triathlon. Int J Sports Med 16, 155–159, doi: 10.1055/s-2007-972984 (1995).
    1. Blomstrand E., Hassmen P., Ekblom B. & Newsholme E. A. Administration of branched-chain amino acids during sustained exercise–effects on performance and on plasma concentration of some amino acids. Eur J Appl Physiol Occup Physiol 63, 83–88 (1991).
    1. Mizuno K. et al. Mental fatigue-induced decrease in levels of several plasma amino acids. J Neural Transm 114, 555–561, doi: 10.1007/s00702-006-0608-1 (2007).
    1. Kell D. B. et al. Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3, 557–565, doi: 10.1038/nrmicro1177 (2005).
    1. Fernie A. R., Trethewey R. N., Krotzky A. J. & Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5, 763–769, doi: 10.1038/nrm1451 (2004).
    1. Kume S. et al. Potential biomarkers of fatigue identified by plasma metabolome analysis in rats. Plos One 10, e0120106, doi: 10.1371/journal.pone.0120106 (2015).
    1. Armstrong C. W. et al. NMR metabolic profiling of serum identifies amino acid disturbances in chronic fatigue syndrome. Clin Chim Acta 413, 1525–1531, doi: 10.1016/j.cca.2012.06.022 (2012).
    1. Armstrong C. W., McGregor N. R., Lewis D. P., Butt H. L. & Gooley P. R. Metabolic profiling reveals anomalous energy metabolism and oxidative stress pathways in chronic fatigue syndrome patients. Metabolomics 11, 1626–1639, doi: 10.1007/s11306-015-0816-5 (2015).
    1. Neustadt J. & Pieczenik S. R. Medication-induced mitochondrial damage and disease. Mol Nutr Food Res 52, 780–788, doi: 10.1002/mnfr.200700075 (2008).
    1. Myhill S., Booth N. E. & McLaren-Howard J. Chronic fatigue syndrome and mitochondrial dysfunction. Int J Clin Exp Med 2, 1–16 (2009).
    1. Vermeulen R. C., Kurk R. M., Visser F. C., Sluiter W. & Scholte H. R. Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity. J Transl Med 8, 93, doi: 10.1186/1479-5876-8-93 (2010).
    1. De Becker P., Roeykens J., Reynders M., McGregor N. & De Meirleir K. Exercise capacity in chronic fatigue syndrome. Arch Intern Med 160, 3270–3277 (2000).
    1. Andersson U., Leighton B., Young M. E., Blomstrand E. & Newsholme E. A. Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide. Biochem Biophys Res Commun 249, 512–516, doi: 10.1006/bbrc.1998.9171 (1998).
    1. Kurose I. et al. Nitric oxide mediates Kupffer cell-induced reduction of mitochondrial energization in hepatoma cells: a comparison with oxidative burst. Cancer Res 53, 2676–2682 (1993).
    1. Drapier J. C. & Hibbs J. B. Jr. Murine cytotoxic activated macrophages inhibit aconitase in tumor cells. Inhibition involves the iron-sulfur prosthetic group and is reversible. J Clin Invest 78, 790–797, doi: 10.1172/JCI112642 (1986).
    1. Jammes Y., Steinberg J. G., Mambrini O., Bregeon F. & Delliaux S. Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. Journal of internal medicine 257, 299–310, doi: 10.1111/j.1365-2796.2005.01452.x (2005).
    1. Bulteau A. L., Ikeda-Saito M. & Szweda L. I. Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry 42, 14846–14855, doi: 10.1021/bi0353979 (2003).
    1. Jong C. J., Azuma J. & Schaffer S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42, 2223–2232, doi: 10.1007/s00726-011-0962-7 (2012).
    1. Jin G. et al. Changes in plasma and tissue amino acid levels in an animal model of complex fatigue. Nutrition 25, 597–607, doi: 10.1016/j.nut.2008.11.021 (2009).
    1. Kennedy G. et al. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 39, 584–589, doi: 10.1016/j.freeradbiomed.2005.04.020 (2005).
    1. Fukuda S. et al. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity. Biological psychology 118, 88–93, doi: 10.1016/j.biopsycho.2016.05.005 (2016).
    1. Dettmer K., Aronov P. A. & Hammock B. D. Mass spectrometry-based metabolomics. Mass spectrometry reviews 26, 51–78, doi: 10.1002/mas.20108 (2007).
    1. Kume S. et al. In The 10th Annual International Conference of the Metabolomics Society Abstract Book 42 (Tsuruoka, Japan, 2014).
    1. Kataoka Y. et al. In The 11th IACFS/ME Biennial Conference Syllabus 77 (San Fransisco, California, USA, 2014).
    1. Barr F. E. et al. Effect of cardiopulmonary bypass on urea cycle intermediates and nitric oxide levels after congenital heart surgery. J Pediatr 142, 26–30, doi: 10.1067/mpd.2003.mpd0311 (2003).
    1. Summar M. L. Molecular genetic research into carbamoyl-phosphate synthase I: molecular defects and linkage markers. J Inherit Metab Dis 21 Suppl 1, 30–39 (1998).
    1. Mori M., Miura S., Tatibana M. & Cohen P. P. Cell-free translation of carbamyl phosphate synthetase I and ornithine transcarbamylase messenger RNAs of rat liver. Effect of dietary protein and fasting on translatable mRNA levels. J Biol Chem 256, 4127–4132 (1981).
    1. Chen Z. P. et al. AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443, 285–289 (1999).
    1. Lubec B., Hayn M., Kitzmuller E., Vierhapper H. & Lubec G. L-Arginine reduces lipid peroxidation in patients with diabetes mellitus. Free Radic Biol Med 22, 355–357 (1997).
    1. Kuhlencordt P. J., Chen J., Han F., Astern J. & Huang P. L. Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation 103, 3099–3104 (2001).
    1. Tanaka M. et al. Effects of (-) -epigallocatechin gallate in liver of an animal model of combined (physical and mental) fatigue. Nutrition 24, 599–603, doi: 10.1016/j.nut.2008.03.001 (2008).
    1. Soga T. et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem 281, 16768–16776, doi: 10.1074/jbc.M601876200 (2006).
    1. Soga T. et al. Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem 81, 6165–6174, doi: 10.1021/ac900675k (2009).
    1. Sugimoto M., Wong D. T., Hirayama A., Soga T. & Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6, 78–95, doi: 10.1007/s11306-009-0178-y (2010).
    1. Sugimoto M., Kawakami M., Robert M., Soga T. & Tomita M. Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Current bioinformatics 7, 96–108, doi: 10.2174/157489312799304431 (2012).
    1. Sugimoto M. et al. Differential metabolomics software for capillary electrophoresis-mass spectrometry data analysis. Metabolomics 6, 27–41, doi: 10.1007/s11306-009-0175-1 (2010).
    1. Sun X. L. & Weckwerth W. COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 8, S81–S93, doi: 10.1007/s11306-012-0399-3 (2012).

Source: PubMed

3
Abonner