Aspirin as a potential treatment in sepsis or acute respiratory distress syndrome

Philip Toner, Danny Francis McAuley, Murali Shyamsundar, Philip Toner, Danny Francis McAuley, Murali Shyamsundar

Abstract

Sepsis is a common condition that is associated with significant morbidity, mortality and health-care cost. Pulmonary and non-pulmonary sepsis are common causes of the acute respiratory distress syndrome (ARDS). The mortality from ARDS remains high despite protective lung ventilation, and currently there are no specific pharmacotherapies to treat sepsis or ARDS. Sepsis and ARDS are characterised by activation of the inflammatory cascade. Although there is much focus on the study of the dysregulated inflammation and its suppression, the associated activation of the haemostatic system has been largely ignored until recently. There has been extensive interest in the role that platelet activation can have in the inflammatory response through induction, aggregation and activation of leucocytes and other platelets. Aspirin can modulate multiple pathogenic mechanisms implicated in the development of multiple organ dysfunction in sepsis and ARDS. This review will discuss the role of the platelet, the mechanisms of action of aspirin in sepsis and ARDS, and aspirin as a potential therapy in treating sepsis and ARDS.

Trial registration: ClinicalTrials.gov NCT01659307 NCT02326350.

Figures

Fig. 1
Fig. 1
Mechanisms in which aspirin can manipulate the process in sepsis and acute respiratory distress syndrome: Inhibit the enzyme COX, preventing the formation of pro-inflammatory thromboxane and prostaglandins. Inhibit the release of NFκB from its inhibitor IkB, preventing the formation of pro-inflammatory cytokines and chemokines. Production of aspirin triggered lipoxin, which induces the release of NO, inhibits production of IL-8 and MPO, restores neutrophil apoptosis and promotes resolution. Increase production of NO, resulting in reduced migration and infiltration of neutrophils and reduced permeability of endothelium. 15-epi-ATL, aspirin-triggered 15-epi-lipoxin A4, AA arachidonic acid, COX cyclooxygenase, eNO endothelial nitric oxide, IKK IkB kinase, IL-8 interleukin 8, MPO myeloperoxidase, NFκB nuclear factor kappa B, NO nitric oxide, PGE2 prostaglandin E2, TXA2 thromboxane

References

    1. Whittaker SA, Fuchs BD, Gaieski DF, Christie JD, Goyal MG, Meyer NJ, et al. Epidemiology and outcomes in patients with severe sepsis admitted to the hospital wards. J Crit Care. 2014;30:78–84. doi: 10.1016/j.jcrc.2014.07.012.
    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10. doi: 10.1097/00003246-200107000-00002.
    1. Matthay MA, Ware LB, Zimmerman GA. Review series: The acute respiratory distress syndrome. J Clin Invest. 2012;122:2731–40. doi: 10.1172/JCI60331.
    1. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353:1685–93. doi: 10.1056/NEJMoa050333.
    1. McAuley DF, Laffey JG, O’Kane CM, Perkins GD, Mullan B, Trinder J, et al. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371:1695–703. doi: 10.1056/NEJMoa1403285.
    1. Cheung AM, Tansey CM, Tomlinson G, Diaz-Granados N, Matte A, Barr A, et al. Two-year outcomes, health care use, and costs of survivors of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;174:538–44. doi: 10.1164/rccm.200505-693OC.
    1. Patel GP, Gurka DP, Balk RA. New treatment strategies for severe sepsis and septic shock. Curr Opin Crit Care. 2003;9:390–6. doi: 10.1097/00075198-200310000-00009.
    1. Martin-loeches I, Levy MM, Artigas A. Management of severe sepsis: advances, challenges, and current status. Drug Des Devel Ther. 2015;9:2079–88. doi: 10.2147/DDDT.S78757.
    1. Póvoa P, Salluh JIF, Martinez ML, Guillamat-Prats R, Gallup D, Al-Khalidi HR, et al. Clinical impact of stress dose steroids in patients with septic shock: insights from the PROWESS-Shock trial. Crit Care. 2015;19:1–10. doi: 10.1186/s13054-015-0921-x.
    1. Network ARDS. Ventilation with lower tidal volumes as compared with traditional tidal volumes for ALI and ARDS. N Engl J Med. 2000;342:1301–8. doi: 10.1056/NEJM200005043421801.
    1. Papazian L, Forel JM, Gacouin A, Penot-Rogan C, Gilles Perrin Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107. doi: 10.1056/NEJMoa1005372.
    1. The National Heart, Lung and Blood Institute ARDS CTN Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564–75. doi: 10.1056/NEJMoa062200.
    1. The National Heart, Lung and Blood Institute ARDS CTN Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671–84. doi: 10.1056/NEJMoa051693.
    1. Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Taylor B, Thompson T, et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am J Respir Crit Care Med. 2012;185:1307–15. doi: 10.1164/rccm.201111-2025OC.
    1. Duggal A, Ganapathy A, Ratnapalan M, Adhikari NKJ. Pharmacological treatments for acute respiratory distress syndrome: systematic review. Minerva Anestesiol. 2015;81:567–88.
    1. Boyle AJ, Mac Sweeney R, McAuley DF. Pharmacological treatments in ARDS: a state-of-the-art update. BMC Med. 2013;11:166. doi: 10.1186/1741-7015-11-166.
    1. Zarbock A, Polanowska-Grabowska RK, Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev. 2007;21:99–111. doi: 10.1016/j.blre.2006.06.001.
    1. Ruiz FA, Lea CR, Oldfield E, Docampo R. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem. 2004;279:44250–7. doi: 10.1074/jbc.M406261200.
    1. Shi G, Morrell CN. Platelets as initiators and mediators of inflammation at the vessel wall. Thromb Res. 2011;127:387–90. doi: 10.1016/j.thromres.2010.10.019.
    1. Bozza FA, Shah AM, Weyrich AS, Zimmerman GA. Amicus or adversary platelets in lung biology, acute injury, and inflammation. Am J Respir Cell Mol Biol. 2009;40:123–34. doi: 10.1165/rcmb.2008-0241TR.
    1. Fiusa MM, Carvalho-Filho MA, Annichino-Bizzacchi JM, De Paula EV. Causes and consequences of coagulation activation in sepsis: an evolutionary medicine perspective. BMC Med. 2015;13:105. doi: 10.1186/s12916-015-0327-2.
    1. Gando S. Microvascular thrombosis and multiple organ dysfunction syndrome. Crit Care Med. 2010;38(2 Suppl):S35–42. doi: 10.1097/CCM.0b013e3181c9e31d.
    1. Levi M, Van der Poll T. Inflammation and coagulation. Crit Care Med. 2010;38(2 Suppl):S26–34. doi: 10.1097/CCM.0b013e3181c98d21.
    1. Snow RL, Davies P, Pontoppidan H, Zapol WM, Reid L. Pulmonary vascular remodeling in adult respiratory distress syndrome. Am Rev Respir Dis. 1982;126:887–92.
    1. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346:1281–6. doi: 10.1056/NEJMoa012835.
    1. Yaguchi A, Lobo FLM, Vincent JL, Pradier O. Platelet function in sepsis. J Thromb Haemost. 2004;2:2096–102. doi: 10.1111/j.1538-7836.2004.01009.x.
    1. Gros A, Ollivier V, Ho-Tin-Noe B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol. 2015;5:1–8. doi: 10.3389/fimmu.2014.00678.
    1. Smith TL, Weyrich AS. Platelets as central mediators of systemic inflammatory responses. Thromb Res. 2011;127:391–4. doi: 10.1016/j.thromres.2010.10.013.
    1. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–33. doi: 10.1016/j.chom.2012.06.011.
    1. Zawrotniak M, Rapala-kozik M. Neutrophil extracellular traps (NETs)—formation and implications. Acta Biochim Pol. 2013;60:277–84.
    1. Fuchs T, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107:15880–5. doi: 10.1073/pnas.1005743107.
    1. Asaduzzaman M, Lavasani S, Rahman M, Rahman M, Zhang S, Braun OO, et al. Platelets support pulmonary recruitment of neutrophils in abdominal sepsis. Crit Care Med. 2009;37:1389–96. doi: 10.1097/CCM.0b013e31819ceb71.
    1. Hidalgo A, Chang J, Jang JE, Peired A, Chiang EY, Frenette PS. Heterotypic interactions enabled by polarized neutrophil microdomains mediate thrombo-inflammatiry injury. Nat Med. 2009;15:384–91. doi: 10.1038/nm.1939.
    1. Goff CD, Corbin RS, Theiss SD, Frierson HF, Cephas GA, Tribble CG, et al. Postinjury thromboxane receptor blockade ameliorates acute lung injury. Ann Thorac Surg. 1997;64:826–9. doi: 10.1016/S0003-4975(97)00490-6.
    1. Grommes J, Alard JE, Drechsler M, Wantha S, Morgelin M, Kuebler WM, et al. Disruption of platelet-derived chemokine heteromers prevents neutrophil extravasation in acute lung injury. Am J Respir Crit Care Med. 2012;185:628–36. doi: 10.1164/rccm.201108-1533OC.
    1. Wuescher LM, Takashima A, Worth RG. A novel conditional platelet depletion mouse model reveals the importance of platelets in protection against Staphylococcus aureus bacteremia. J Thromb Haemost. 2015;13:303–13. doi: 10.1111/jth.12795.
    1. De Stoppelaar SF, Veer C, Claushuis TM, Albersen BJ, Roelofs JJTH, Van Der Poll T. Thrombocytopenia impairs host defense in gram-negative pneumonia-derived sepsis in mice. Blood. 2014;124:3781–91. doi: 10.1182/blood-2014-05-573915.
    1. Eisen DP. Manifold beneficial effects of acetyl salicylic acid and nonsteroidal anti-inflammatory drugs on sepsis. Intensive Care Med. 2012;38:1249–57. doi: 10.1007/s00134-012-2570-8.
    1. Gawaz M, Dickfeld T, Bogner C, Fateh-Moghadam S, Neumann FJ. Platelet function in septic multiple organ dysfunction syndrome. Intensive Care Med. 1997;23:379–85. doi: 10.1007/s001340050344.
    1. Idell S, Maunder R, Fein AM, Switalska HI, Tuszynski GP, McLarty J, et al. Platelet-specific alpha-granule proteins and thrombospondin in bronchoalveolar lavage in the adult respiratory distress syndrome. Chest. 1989;96:1125–32. doi: 10.1378/chest.96.5.1125.
    1. Ortiz-Muñoz G, Mallavia B, Bins A, Headley M, Krummel MF, Looney MR. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. 2014;23:2625–34. doi: 10.1182/blood-2014-03-562876.
    1. Mandal RV, Mark EJ, Kradin RL. Megakaryocytes and platelet homeostasis in diffuse alveolar damage. Exp Mol Pathol. 2007;83:327–31. doi: 10.1016/j.yexmp.2007.08.005.
    1. Floyd CN, Ferro A. Mechanisms of aspirin resistance. Pharmacol Ther. 2014;141:69–78. doi: 10.1016/j.pharmthera.2013.08.005.
    1. Weber C, Erl W, Pietsch A, Weber PC. Aspirin inhibits nuclear factor B mobilization and monocyte adhesion in stimulated human endothelial cells. Circulation. 1995;91:1914–7. doi: 10.1161/01.CIR.91.7.1914.
    1. Taubert D, Berkels R, Grosser N, Schröder H, Gründemann D, Schömig E. Aspirin induces nitric oxide release from vascular endothelium: a novel mechanism of action. Br J Pharmacol. 2004;143:159–65. doi: 10.1038/sj.bjp.0705907.
    1. El Kebir D, József L, Pan W, Wang L, Petasis NA, Serhan CN, et al. 15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med. 2009;180:311–9. doi: 10.1164/rccm.200810-1601OC.
    1. Eliopoulos AG, Dumitru CD, Wang C, Cho J, Tsichlis PN. Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J. 2002;21:4831–40. doi: 10.1093/emboj/cdf478.
    1. Bishop-Bailey D, Pepper JR, Larkin SW, Mitchell JA. Differential induction of cyclooxygenase-2 in human arterial and venous smooth muscle: role of endogenous prostanoids. Arterioscler Thromb Vasc Biol. 1998;18:1655–61. doi: 10.1161/01.ATV.18.10.1655.
    1. Morris T, Stables M, Hobbs A, de Souza P, Coiville-Nash P, Watner P, et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol. 2009;183:2089–96. doi: 10.4049/jimmunol.0900477.
    1. Yoo C, Lee S, Lee C, Kim TW, Han SK, Shim YS. Effect of acetylsalicylic acid on endogenous IkB kinase activity in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2001;280:L3–9.
    1. Brune K, Graft P. Non-steroid anti-inflammatory drugs: influence of extra-cellular pH on biodistribution and pharmacological effects. Biochem Pharmacol. 1978;27:525–30. doi: 10.1016/0006-2952(78)90388-X.
    1. Cyrus T, Sung S, Zhao L, Funk CD, Tang S, Praticò D. Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation. 2002;106:1282–7. doi: 10.1161/01.CIR.0000027816.54430.96.
    1. Trzeciak S, Cinel IC, Dellinger P, Shapiro NI, Arnold RC, Parrillo JE, et al. Resuscitating the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials. Acad Emerg Med. 2008;15:399–413. doi: 10.1111/j.1553-2712.2008.00109.x.
    1. Fukunaga K, Kohli P, Bonnans C, Fredenburgh LE, Levy BD. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J Immunol. 2005;174:5033–9. doi: 10.4049/jimmunol.174.8.5033.
    1. Smith WL, De Witt DL. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs. Semin Nephrol. 1995;15:179–94.
    1. József L, Zouki C, Petasis N, Serhan CN, Filep JG. Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-kappa B and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc Natl Acad Sci U S A. 2002;99:13266–71. doi: 10.1073/pnas.202296999.
    1. Hussain M, Javeed A, Ashraf M, Zhao Y, Mukhtar MM, Rehman MU. Aspirin and immune system. Int Immunopharmacol. 2012;12:10–20. doi: 10.1016/j.intimp.2011.11.021.
    1. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR. Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol. 2000;164:1663–7. doi: 10.4049/jimmunol.164.4.1663.
    1. Matut T, Ell AD. Neutrophil apoptosis in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 1997;156:1969–77. doi: 10.1164/ajrccm.156.6.96-12081.
    1. Fang X, Abbott J, Cheng L, Colby JK, Lee JW, Levy BD, et al. Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through lipoxin A 4. J Immunol. 2015;195:875–81. doi: 10.4049/jimmunol.1500244.
    1. Halushka PV, Wise WC, Cook JA. Studies on the beneficial effects of aspirin in endotoxic shock. Relationship to inhibition of arachidonic acid metabolism. Am J Med. 1983;74:91–6. doi: 10.1016/0002-9343(83)90535-1.
    1. Zarbock A, Singbartl K, Ley K. Complete reversal of acid-induced acute lung injury by blocking of platelet-neutrophil aggregation. J Clin Invest. 2006;116:3211–9. doi: 10.1172/JCI29499.
    1. Looney MR, Nguyen JX, Hu Y, Van Ziffle JA, Lowell CA, Matthay MA. Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury. J Clin Invest. 2009;119:3450–61.
    1. Tsai MJ, Ou SM, Shih CJ, Chao PW, Wang LF, Shih YN, et al. Association of prior antiplatelet agents with mortality in sepsis patients: a nationwide population-based cohort study. Intensive Care Med. 2015;41:806–13. doi: 10.1007/s00134-015-3760-y.
    1. Mazzeffi M, Kassa W, Gammie J, Tanaka K, Roman P, Zhan M, et al. Preoperative aspirin use and lung injury after aortic valve replacement surgery. Anesth Analg. 2015;121:271–7. doi: 10.1213/ANE.0000000000000793.
    1. Lösche W, Boettel J, Kabisch B, Winning J, Claus RA, Bauer M. Do aspirin and other antiplatelet drugs reduce the mortality in critically ill patients? Thrombosis. 2012;2012:720254. doi: 10.1155/2012/720254.
    1. Winning J, Neumann J, Kohl M, Claus RA, Reinhard K, Bauer M, et al. Antiplatelet drugs and outcome in mixed admissions to an intensive care unit. Crit Care Med. 2010;38:32–7. doi: 10.1097/CCM.0b013e3181b4275c.
    1. Valerio-Rojas JC, Jaffer IJ, Kor DJ, Gajic O, Cartin-Ceba R. Outcomes of severe sepsis and septic shock patients on chronic antiplatelet treatment: a historical cohort study. Crit Care Res Pract. 2013;2013:782573.
    1. Erlich JM, Talmor DS, Cartin-Ceba R, Gajic O, Kor DJ. Prehospitalization antiplatelet therapy is associated with a reduced incidence of acute lung injury: a population-based cohort study. Chest. 2011;139:289–95. doi: 10.1378/chest.10-0891.
    1. Chen W, Janz DR, Bastarache JA, May AK, O'Neal HR, Bernard GR, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients. Crit Care Med. 2015;43:801–7. doi: 10.1097/CCM.0000000000000789.
    1. Harr JN, Moore EE, Johnson J, Chin TL, Wohlauer MV, Maier R, et al. Antiplatelet therapy is associated with decreased transfusion-associated risk of lung dysfunction, multiple organ failure, and mortality in trauma patients. Crit Care Med. 2013;41:399–404. doi: 10.1097/CCM.0b013e31826ab38b.
    1. Eisen DP, Reid D, McBryde ES. Acetyl salicylic acid usage and mortality in critically ill patients with the systemic inflammatory response syndrome and sepsis. Crit Care Med. 2012;40:1761–7. doi: 10.1097/CCM.0b013e318246b9df.
    1. Sossdorf M, Otto GP, Boettel J, Winning J, Lösche W. Benefit of low-dose aspirin and non-steroidal anti-inflammatory drugs in septic patients. Crit Care. 2013;17:402. doi: 10.1186/cc11886.
    1. Boyle AJ, Di Gangi S, Hamid UI, Mottram LJ, McNamee L, White G, et al. Aspirin therapy in patients with acute respiratory distress syndrome (ARDS) is associated with reduced intensive care unit mortality: a prospective analysis. Crit Care. 2015;19:1–8. doi: 10.1186/s13054-015-0846-4.
    1. O’Neal HR, Koyama T, Koehler EA, Siew E, Curtis BR, Fremont RD, et al. Prehospital statin and aspirin use and the prevalence of severe sepsis and ALI/ARDS. Crit Care Med. 2011;39:1343–50. doi: 10.1097/CCM.0b013e3182120992.
    1. Kor DJ, Erlich J, Gong MN, Malinchoc M, Carter RE, Gajic O, et al. Association of prehospitalization aspirin therapy and acute lung injury: results of a multicenter international observational study of at-risk patients. Crit Care Med. 2011;39:2393–400. doi: 10.1097/CCM.0b013e318225757f.
    1. Bernard G, Wheeler A. The effects of ibuprofen on the physiology and survival of patients with sepsis. N Engl J Med. 1997;336:912–8. doi: 10.1056/NEJM199703273361303.
    1. Drewes RE, Weinberger SE. Thrombocytopenic disorders in critically ill patients. Am J Respir Crit Care Med. 2000;162:347–51. doi: 10.1164/ajrccm.162.2.ncc3-00.
    1. Vanderschueren S, De Weerdt A, Malbrain M, Vankersschaever D, Frans E, Wilmer A, et al. Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2000;28:1871–6. doi: 10.1097/00003246-200006000-00031.
    1. Venkata C, Kashyap R, Farmer JC, Afessa B. Thrombocytopenia in adult patients with sepsis: incidence, risk factors, and its association with clinical outcome. J Intensive Care. 2013;1:9. doi: 10.1186/2052-0492-1-9.
    1. Sarkiss MG, Yusuf SW, Warneke CL, Botz G, Lakkis N, Hirch-Ginsburg C, et al. Impact of aspirin therapy in cancer patients with thrombocytopenia and acute coronary syndromes. Cancer. 2007;109:621–7. doi: 10.1002/cncr.22434.
    1. Kor DJ, Talmor DS, Banner-Goodspeed VM, Carter RE, Hindes R, Park PK, et al. Lung Injury Prevention with Aspirin (LIPS-A): a protocol for a multicentre randomised clinical trial in medical patients at high risk of acute lung injury. BMJ Open. 2012;2. doi: 10.1136/bmjopen-2012-001606
    1. Otto GP, Sossdorf M, Boettel J, Kabisch B, Breuel H, Winning J, et al. Effects of low-dose acetylsalicylic acid and atherosclerotic vascular diseases on the outcome in patients with severe sepsis or septic shock. Platelets. 2013;24:480–5. doi: 10.3109/09537104.2012.724482.

Source: PubMed

3
Abonner