Monthly intravenous methylprednisolone in relapsing-remitting multiple sclerosis - reduction of enhancing lesions, T2 lesion volume and plasma prolactin concentrations

Florian Then Bergh, Tania Kümpfel, Erina Schumann, Ulrike Held, Michaela Schwan, Mirjana Blazevic, Axel Wismüller, Florian Holsboer, Alexander Yassouridis, Manfred Uhr, Frank Weber, Martin Daumer, Claudia Trenkwalder, Dorothee P Auer, Florian Then Bergh, Tania Kümpfel, Erina Schumann, Ulrike Held, Michaela Schwan, Mirjana Blazevic, Axel Wismüller, Florian Holsboer, Alexander Yassouridis, Manfred Uhr, Frank Weber, Martin Daumer, Claudia Trenkwalder, Dorothee P Auer

Abstract

Background: Intravenous methylprednisolone (IV-MP) is an established treatment for multiple sclerosis (MS) relapses, accompanied by rapid, though transient reduction of gadolinium enhancing (Gd+) lesions on brain MRI. Intermittent IV-MP, alone or with immunomodulators, has been suggested but insufficiently studied as a strategy to prevent relapses.

Methods: In an open, single-cross-over study, nine patients with relapsing-remitting MS (RR-MS) underwent cranial Gd-MRI once monthly for twelve months. From month six on, they received a single i.v.-infusion of 500 mg methylprednisolone (and oral tapering for three days) after the MRI. Primary outcome measure was the mean number of Gd+ lesions during treatment vs. baseline periods; T2 lesion volume and monthly plasma concentrations of cortisol, ACTH and prolactin were secondary outcome measures. Safety was assessed clinically, by routine laboratory and bone mineral density measurements. Soluble immune parameters (sTNF-RI, sTNF-RII, IL1-ra and sVCAM-1) and neuroendocrine tests (ACTH test, combined dexamethasone/CRH test) were additionally analyzed.

Results: Comparing treatment to baseline periods, the number of Gd+ lesions/scan was reduced in eight of the nine patients, by a median of 43.8% (p = 0.013, Wilcoxon). In comparison, a pooled dataset of 83 untreated RR-MS patients from several studies, selected by the same clinical and MRI criteria, showed a non-significant decrease by a median of 14% (p = 0.32). T2 lesion volume decreased by 21% during treatment (p = 0.001). Monthly plasma prolactin showed a parallel decline (p = 0.027), with significant cross-correlation with the number of Gd+ lesions. Other hormones and immune system variables were unchanged, as were ACTH test and dexamethasone-CRH test. Treatment was well tolerated; routine laboratory and bone mineral density were unchanged.

Conclusion: Monthly IV-MP reduces inflammatory activity and T2 lesion volume in RR-MS.

Figures

Figure 1
Figure 1
Study flow chart
Figure 2
Figure 2
Time course of the mean number of active lesions on monthly Gd-enhanced brain MRI.

References

    1. Milligan NM, Newcombe R, Compston DA. A double-blind controlled trial of high dose methylprednisolone in patients with multiple sclerosis: 1. Clinical effects. J Neurol Neurosurg Psychiatry. 1987;50:511–6.
    1. Thompson AJ, Kennard C, Swash M, Summers B, Yuill GM, Shepherd DI, Roche S, Perkin GD, Loizou LA, Ferner R, Hughes RAC, Thompson M, Hand J. Relative efficacy of intravenous methylprednisolone and ACTH in the treatment of acute relapse in MS. Neurology. 1989;39:969–971.
    1. Optic Neuritis Study Group The 5-year risk of MS after optic neuritis. Experience of the optic neuritis treatment trial. Neurology. 1997;49:1404–1413.
    1. Beck RW, Trobe JD, Moke PS, Gal RL, Xing D, Bhatti MT, Brodsky MC, Buckley EG, Chrousos GA, Corbett J, Eggenberger E, Goodwin JA, Katz B, Kaufman DI, Keltner JL, Kupersmith MJ, Miller NR, Nazarian S, Orengo-Nania S, Savino PJ, Shults WT, Smith CH, Wall M. High- and low-risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: experience of the optic neuritis treatment trial. Arch Ophthalmol. 2003;121:944–949. doi: 10.1001/archopht.121.7.944.
    1. Kaufman DI, Trobe JD, Eggenberger ER, Whitaker JN. Practice parameter: The role of corticosteroids in the management of acute monosymptomatic optic neuritis: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2000;54:2039–2044.
    1. Goodkin DE, Kinkel RP, Weinstock-Guttman B, VanderBrug-Medendorp S, Secic M, Gogol D, Perryman JE, Uccelli MM, Neilley L. A phase II study of i.v. methylprednisolone in secondary-progressive multiple sclerosis. Neurology. 1998;51:239–45. doi: 10.1159/000006541.
    1. Zivadinov R, Rudick RA, De Masi R, Nasuelli D, Ukmar M, Pozzi-Mucelli RS, Grop A, Cazzato G, Zorzon M. Effects of IV methylprednisolone on brain atrophy in relapsing-remitting MS. Neurology. 2001;57:1239–1247.
    1. Miller DH, Thompson AJ, Morrissey SP, MacManus DG, Moore SG, Kendall BE, Moseley IF, McDonald WI. High dose steroids in acute relapses of multiple sclerosis: MRI evidence for a possible mechanism of therapeutic effect. J Neurol Neurosurg Psychiatry. 1992;55:450–453.
    1. Burnham JA, Wright RR, Dreisbach J, Murray RS. The effect of high-dose steroids on MRI gadolinium enhancement in acute demyelinating lesions. Neurology. 1991;41:1349–1354.
    1. Barkhof F, Hommes OR, Scheltens P, Valk J. Quantitative MRI changes in gadolinium-DTPA enhancement after high-dose intravenous methylprednisolone in multiple sclerosis. Neurology. 1991;41:1219–1222.
    1. Gold R, Buttgereit F, Toyka KV. Mechanism of action of glucocorticosteroid hormones: possible implications for therapy of neuroimmunological disorders. J Neuroimmunol. 2001;117:1–8. doi: 10.1016/S0165-5728(01)00330-7.
    1. Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation of immunity. Annu Rev Immunol. 2002;20:125–163. doi: 10.1146/annurev.immunol.20.082401.104914.
    1. Then Bergh F, Kümpfel T, Trenkwalder C, Rupprecht R, Holsboer F. Dysregulation of the hypothalamo-pituitary-adrenal axis is related to the clinical course of MS. Neurology. 1999;53:772–777.
    1. Schumann EM, Kümpfel T, Then Bergh F, Trenkwalder C, Holsboer F, Auer DP. Activity of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: correlations with gadolinium-enhancing lesions and ventricular volume. Ann Neurol. 2002;51:763–767. doi: 10.1002/ana.10187.
    1. Michelson D, Stone L, Galliven E, Magiakou MA, Chrousos GP, Sternberg EM, Gold PW. Multiple sclerosis is associated with alterations in hypothalamic-pituitary-adrenal axis function. J Clin Endocrinol Metab. 1994;79:848–853. doi: 10.1210/jc.79.3.848.
    1. Kira J, Harada M, Yamaguchi Y, Shida N, Goto I. Hyperprolactinemia in multiple sclerosis. J Neurol Sci. 1991;102:61–66. doi: 10.1016/0022-510X(91)90094-N.
    1. Miller DH, Albert PS, Barkhof F, Francis G, Frank JA, Hodgkinson S, Lublin FD, Paty DW, Reingold SC, Simon J. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. US National MS Society Task Force. Ann Neurol. 1996;39:6–16. doi: 10.1002/ana.410390104.
    1. Sormani MP, Miller DH, Comi G, Barkhof F, Rovaris M, Bruzzi P, Filippi M. Clinical trials of multiple sclerosis monitored with enhanced MRI: new sample size calculations based on large data sets. J Neurol Neurosurg Psychiatry. 2001;70:494–499. doi: 10.1136/jnnp.70.4.494.
    1. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, Johnson KP, Sibley WA, Silberberg DH, Tourtelotte WW. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13:227–231. doi: 10.1002/ana.410130302.
    1. Wismüller A, Behrends J, Lange O, Jukic M, Hahn K, Reiser MF, Auer DP. High-precision computer-assisted segmentation of multispectral data sets in patients with multiple sclerosis by a flexible machine learning image analysis approach. In: Wittenberg T, editor. Bildverarbeitung für die Medizin 2003. Berlin: Springer Verlag; 2003. pp. 403–407.
    1. Ge Y, Grossman RI, Udupa JK, Wei L, Mannon LJ, Polansky M, Kolson DL. Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology. 2000;214:665–670.
    1. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS) Neurology. 1983;33:1444–1452.
    1. Barkhof F, Tas M, Frequin ST, Scheltens P, Hommes OR, Nauta JJ, Valk J. Limited duration of the effect of methylprednisolone on changes on MRI in multiple sclerosis. Neuroradiology. 1994;36:382–387. doi: 10.1007/BF00612124.
    1. Stone LA, Frank JA, Albert PS, Bash C, Smith ME, Maloni H, McFarland HF. The effect of interferon-beta on blood-brain barrier disruptions demonstrated by contrast-enhanced magnetic resonance imaging in relapsing-remitting multiple sclerosis. Ann Neurol. 1995;37:611–619. doi: 10.1002/ana.410370511.
    1. Waubant E, Goodkin DE, Sloan R, Andersson PB. A pilot study of MRI activity before and during interferon beta-1a therapy. Neurology. 1999;53:874–876.
    1. Filippi M, Rovaris M, Capra R, Gasperini C, Prandini F, Martinelli V, Horsfield MA, Bastianello S, Sormani MP, Pozzilli C, Comi G. Interferon beta treatment for multiple sclerosis has a graduated effect on MRI enhancing lesions according to their size and pathology. J Neurol Neurosurg Psychiatry. 1999;67:386–389.
    1. Mancardi GL, Sardanelli F, Parodi RC, Melani E, Capello E, Inglese M, Ferrari A, Sormani MP, Ottonello C, Levrero F, Uccelli A, Bruzzi P. Effect of copolymer-1 on serial gadolinium-enhanced MRI in relapsing remitting multiple sclerosis. Neurology. 1998;50:1127–1133.
    1. Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F, Miller D, Guttmann CR, Weiner HL, Gasperini C, Filippi M. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet. 1999;353:964–9. doi: 10.1016/S0140-6736(98)03053-0.
    1. Hoogervorst EL, Polman CH, Barkhof F. Cerebral volume changes in multiple sclerosis patients treated with high-dose intravenous methylprednisolone. Mult Scler. 2002;8:415–419. doi: 10.1191/1352458502ms838oa.
    1. Rao AB, Richert N, Howard T, Lewis BK, Bash CN, McFarland HF, Frank JA. Methylprednisolone effect on brain volume and enhancing lesions in MS before and during IFNbeta-1b. Neurology. 2002;59:688–694.
    1. Kesselring J, Miller DH, MacManus DG, Johnson G, Milligan NM, Scolding N, Compston DA, McDonald WI. Quantitative magnetic resonance imaging in multiple sclerosis: the effect of high dose intravenous methylprednisolone. J Neurol Neurosurg Psychiatry. 1989;52:14–7.
    1. Azar ST, Yamout B. Prolactin secretion is increased in patients with multiple sclerosis. Endocr Res. 1999;25:207–14.
    1. Reder AT, Lowy MT. Serum prolactin levels in active multiple sclerosis and during cyclosporin treatment. J Neurol Sci. 1993;117:192–6. doi: 10.1016/0022-510X(93)90173-V.
    1. Heesen C, Gold SM, Bruhn M, Monch A, Schulz KH. Prolactin stimulation in multiple sclerosis – an indicator of disease subtypes and activity? Endocr Res. 2002;28:9–18. doi: 10.1081/ERC-120004533.
    1. Vera-Lastra O, Jara LJ, Espinoza LR. Prolactin and autoimmunity. Autoimmun Rev. 2002;1:360–364. doi: 10.1016/S1568-9972(02)00081-2.
    1. Koller M, Kotzmann H, Clodi M, Riedl M, Luger A. Effect of elevated serum prolactin concentrations on the immunophenotype of human lymphocytes, mitogen-induced proliferation and phagocytic activity of polymorphonuclear cells. Eur J Clin Invest. 1997;27:662–666. doi: 10.1046/j.1365-2362.1997.1670722.x.
    1. Matera L, Galetto A, Geuna M, Vekemans K, Ricotti E, Contarini M, Moro F, Basso G. Individual and combined effect of granulocyte-macrophage colony-stimulating factor and prolactin on maturation of dendritic cells from blood monocytes under serum-free conditions. Immunology. 2000;100:29–36. doi: 10.1046/j.1365-2567.2000.00996.x.
    1. Perez Castro C, Penalva R, Paez Pereda M, Renner U, Reul JM, Stalla GK, Holsboer F, Arzt E. Early activation of thyrotropin-releasing-hormone and prolactin plays a critical role during a T cell-dependent immune response. Endocrinology. 1999;140:690–697. doi: 10.1210/en.140.2.690.
    1. Krishnan N, Thellin O, Buckley DJ, Horseman ND, Buckley AR. Prolactin suppresses glucocorticoid-induced thymocyte apoptosis in vivo. Endocrinology. 2003;144:2102–2110. doi: 10.1210/en.2003-0053.
    1. Sarlis NJ, Chanock SJ, Nieman LK. Cortisolemic indices predict severe infections in Cushing syndrome due to ectopic production of adrenocorticotropin. J Clin Endocrinol Metab. 2000;85:42–47. doi: 10.1210/jc.85.1.42.
    1. Rupprecht M, Rupprecht R, Koch HU, Haack D, Muller OA, Hornstein OP. Multihormonal response to dexamethasone. A study in atopic dermatitis and normal controls. Acta Derm Venereol. 1991;71:214–218.
    1. Hubina E, Nagy GM, Toth BE, Ivan G, Gorombey Z, Szabolcs I, Kovacs L, Goth MI. Dexamethasone and adrenocorticotropin suppress prolactin secretion in humans. Endocrine. 2002;18:215–219. doi: 10.1385/ENDO:18:3:215.
    1. Zorzon M, Zivadinov R, Locatelli L, Giuntini D, Toncic M, Bosco A, Nasuelli D, Bratina A, Tommasi MA, Rudick RA, Cazzato G. Long-term effects of intravenous high dose methylprednisolone pulses on bone mineral density in patients with multiple sclerosis. Eur J Neurol. 2005;12:550–556. doi: 10.1111/j.1468-1331.2005.00988.x.
    1. Sylvia Lawry Center for Multiple Sclerosis Research

Source: PubMed

3
Abonner