Molecular and Functional Verification of Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) Pluripotency

Aleksandra Musiał-Wysocka, Marta Kot, Maciej Sułkowski, Bogna Badyra, Marcin Majka, Aleksandra Musiał-Wysocka, Marta Kot, Maciej Sułkowski, Bogna Badyra, Marcin Majka

Abstract

The properties of mesenchymal stem cells (MSCs), especially their self-renewal and ability to differentiate into different cell lines, are widely discussed. Considering the fact that MSCs isolated from perinatal tissues reveal higher differentiation capacity than most adult MSCs, we examined mesenchymal stem cells isolated from Wharton's jelly of umbilical cord (WJ-MSCs) in terms of pluripotency markers expression. Our studies showed that WJ-MSCs express some pluripotency markers-such as NANOG, OCT-4, and SSEA-4-but in comparison to iPS cells expression level is significantly lower. The level of expression can be raised under hypoxic conditions. Despite their high proliferation potential and ability to differentiate into different cells type, WJ-MSCs do not form tumors in vivo, the major caveat of iPS cells. Owing to their biological properties, high plasticity, proliferation capacity, and ease of isolation and culture, WJ-MSCs are turning out to be a promising tool of modern regenerative medicine.

Keywords: Nanog; OCT-4; SSEA-4; WJ-MSC; iPS; mesenchymal stem cells; pluripotency.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
(AC)—The cultures of WJ-MSCs, fifth passage. The cells grow in a monolayer, show adherent properties and fibroblast-like morphology; Morphology of cells cultured in (AC)—normoxia—magnification 100×, white bars correspond to 50 µm. (D)—Flow cytometry analysis of surface markers expression of WJ-MSCs. The WJ-MSCs were labelled with anti-CD3-FITC and anti-CD45-FITC antibodies (negative markers) and anti-CD73-PE, anti-CD90-PE, anti-CD105-PE antibodies (positive markers), and analyzed by flow cytometry. (D)—Representative histograms showing expression of set of markers for WJ-MSCs (detailed analysis presented in the table—(E). (F)—a heatmap showing the transcription profile of investigated WJ-MSCs. (G)—transcripts of selected genes expressed in the WJ-MSCs. The colors of the circles correspond to the colors on the heatmap (F): yellow—high expression; orange—medium expression; red—low expression; triangle—genes with different expression level.
Figure 2
Figure 2
Pluripotency markers expression on mRNA (A,B) and protein level (C,D) determined with RT-qPCR and flow cytometry (intracellular staining) respectively. (A,B)—Comparison of NANOG and OCT-4 relative expression level by RT-qPCR in WJ-MSCs and iPS. iPS exhibits relatively very high expression compared to WJ-MSCs. Note that hypoxia promotes NANOG expression in WJ-MSCs. Results are presented as means ± standard error, * p ≤ 0.0001 (A); * p ≤ 0.0006 (B). (C,D)—expression of NANOG and OCT-4 examined using intracellular staining and flow cytometry analysis. The iPS show a high expression of NANOG and OCT-4. In the case of WJ-MSCs the visible higher expression of NANOG was noticed in hypoxic conditions. H—hypoxia, N—normoxia. (E)—Expression level of pluripotency markers: SSEA-3, SSEA-4, TRA 1-60 (antibody labelling and flow cytometric analysis). Note that iPS exhibit high expression all of examined pluripotency markers whereas on WJ-MSCs only SSEA-4 is expressed. H—hypoxia; N—normoxia.
Figure 3
Figure 3
Immunofluorescence staining demonstrate distribution of pluripotency markers: NANOG, OCT-4 (transcription factors) and SSEA-3, SSEA-4, TRA 1-60 (surface markers) in iPS (A) and WJ-MSCs (B,C). (D,E)—expression of NANOG and OCT-4 in WJ-MSC Luc+ (the modified cell line expressing luciferase gene). Nuclear staining–Hoechst 33342: blue; NANOG and OCT-4 –Alexa Fluor 555: red; SSEA-4-FITC: green; TRA 1-60-PE, SSEA-3-PE: red. (AE)—Florescence microscope, (A) magnification ×150, insets- magnification ×100; (BE)—magnification ×100, insets—magnification ×80.
Figure 4
Figure 4
NOD-SCID mice injected subcutaneously with cells transduced with the vector transferring the luciferase gene (Luc): WJ-MSCs Luc+ (AH) and iPS Luc+ (IL). The modified WJ-MSCs were cultured in two oxygen conditions: WJ-MSCs Luc+ normoxia (AD) and WJ-MSCs Luc+ hypoxia (EH). The presence of injected cells was observed after luciferin administration by measuring the bioluminescence signal. After 30 days, in mice with normoxia, WJ-MSCs Luc+ signal was not detectable (C), whereas in mice with WJ-MSCs Luc+ hypoxia signal persisted. In mice with iPS Luc+ luminescence signal increased as a result of tumor development (G,H). 30 days after transplantation the tumors were isolated (M,N) and subsequently analyzed with hematoxylin and eosin staining (O). (O)—Light microscopy, magnification ×100, white bar corresponds to 150µm. Black asterisks—control mice without injected cells.

References

    1. Melton D. Essentials of Stem Cell Biology. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2013. ‘Stemness’: Definitions, Criteria, and Standards.
    1. Kim D., Kim C.H., Moon J.J., Chung Y.G., Chang M.Y., Han B.S., Ko S., Yang E., Cha K.Y., Lanza R., et al. Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. Cell Stem Cell. 2009;4:472–476. doi: 10.1016/j.stem.2009.05.005.
    1. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F.C., Krause D.S., Deans R.J., Keating A., Prockop D.J., Horwitz E.M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905.
    1. Secunda R., Vennila R., Mohanashankar A.M., Rajasundari M., Jeswanth S., Surendran R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: A comparative study. Cytotechnology. 2015;67:793–807. doi: 10.1007/s10616-014-9718-z.
    1. Wobus A.M., Boheler K.R. Embryonic Stem Cells: Prospects for Developmental Biology and Cell Therapy. Physiol. Rev. 2005;85:635–678. doi: 10.1152/physrev.00054.2003.
    1. Sachs P.C., Francis M.P., Zhao M., Brumelle J., Rao R.R., Elmore L.W., Holt S.E. Defining essential stem cell characteristics in adipose-derived stromal cells extracted from distinct anatomical sites. Cell Tissue Res. 2012;349:505–515. doi: 10.1007/s00441-012-1423-7.
    1. Takemitsu H., Zhao D., Yamamoto I., Harada Y., Michishita M., Arai T. Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC Vet Res. 2012;8:150–159. doi: 10.1186/1746-6148-8-150.
    1. Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Schöler H., Smith A. Formation of pluripotent stem cells in the mammalian embryo dependes on the POU transcription factor Oct4. Cell. 1998;95:379–391. doi: 10.1016/S0092-8674(00)81769-9.
    1. Mitsui K., Tokuzawa Y., Itoh H., Segawa K., Murakami M., Takahashi K., Maruyama M., Maeda M., Yamanaka S. The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells avoid such ethical issues is to generate pluripotent cells directly from somatic stem and other cells. The first step toward this goal is to understand molecular mechanisms. Cell. 2003;113:631–642. doi: 10.1016/S0092-8674(03)00393-3.
    1. Gao L.R., Zhang N.K., Ding Q.A., Chen H.Y., Hu X., Jiang S., Li T.C., Chen Y., Wang Z.G., Ye Y., et al. Common expression of stemness molecular markers and early cardiac transcription factors in human Wharton’s jelly-derived mesenchymal stem cells and embryonic stem cells. Cell Transpl. 2013;22:1883–1900. doi: 10.3727/096368912X662444.
    1. Smyth D. A Guide to Irish Mythology. 2nd ed. Irish Academic Press; Dublin, Ireland: 1996.
    1. Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S., Smith A. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–655. doi: 10.1016/S0092-8674(03)00392-1.
    1. Kumazaki T., Kurata S., Matsuo T., Mitsui Y., Takahashi T. Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1. Hum. Cell. 2011;24:96–103. doi: 10.1007/s13577-011-0016-1.
    1. Abumaree M.H., Abomaray F.M., Alshehri N.A., Almutairi A., Alaskar A.S., Kalionis B. Phenotypic and Functional Characterization of Mesenchymal Stem/Multipotent Stromal Cells from Decidua Parietalis of Human Term Placenta. Reprod. Sci. 2016;23:1193–1207. doi: 10.1177/1933719116632924.
    1. Wegmeyer H., Bröske A.M., Leddin M., Kuentzer K., Nisslbeck A.K., Hupfeld J., Wiechmann K., Kuhlen J., von Schwerin C., Stein C., et al. Mesenchymal Stromal Cell Characteristics Vary Depending on Their Origin. Stem Cells Dev. 2013;22:2606–2618. doi: 10.1089/scd.2013.0016.
    1. Majka M., Sułkowski M., Badyra B., Musiałek P. Concise Review: Mesenchymal Stem Cells in Cardiovascular Regeneration: Emerging Research Directions and Clinical Applications. Stem Cells Transl. Med. 2017;6:1859–1867. doi: 10.1002/sctm.16-0484.
    1. Zhao G., Liu F., Lan S., Li P., Wang L., Kou J., Qi X., Fan R., Hao D., Wu C., et al. Large-scale expansion of Wharton’s jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem Cell Res Ther. 2015;6:1–16. doi: 10.1186/s13287-015-0031-3.
    1. Bobis S., Jarocha D., Majka M. Mesenchymal stem cells: Characteristics and clinical applications. Folia Histochem. Cytobiol. 2006;44:215–230.
    1. D Teng Y., Yu D., E Ropper A., Li J., Kabatas S., R Wakeman D., Wang J., P Sullivan M., Redmond E., Jr., Langer R., Y Snyder E. Functional multipotency of stem cells: A conceptual review of neurotrophic factor-based evidence and its role in translational research. Curr. Neuropharmacol. 2011;9:574–585. doi: 10.2174/157015911798376299.
    1. Teng Y.D. Functional multipotency of stem cells: Biological traits gleaned from neural progeny studies. Semin. Cell Dev Biol. 2019 doi: 10.1016/j.semcdb.2019.02.002.
    1. Zomer H.D., Vidane A.S., Goncalves N.N., Ambrosio C.E. Mesenchymal and induced pluripotent stem cells: General insights and clinical perspectives. Stem Cells Cloning. 2015;8:125–134. doi: 10.1016/S1525-0016(16)34271-X.
    1. Rachakatla R.S., Marini F., Weiss M.L., Tamura M., Troyer D. Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther. 2007;14:828–835. doi: 10.1038/sj.cgt.7701077.
    1. Bongso A., Fong C.Y., Gauthaman K. Taking stem cells to the clinic: Major challenges. J. Cell. Biochem. 2008;105:1352–1360. doi: 10.1002/jcb.21957.
    1. Amiri F., Halabian R., Dehgan Harati M., Bahadori M., Mehdipour A., Mohammadi Roushandeh A., Habibi Roudkenar M. Positive selection of Wharton’s jelly-derived CD105(+) cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology. 2015;20:208–216. doi: 10.1179/1607845414Y.0000000185.
    1. Kim D.W., Staples M., Shinozuka K., Pantcheva P., Kang S.D., Borlongan C.V. Wharton’s Jelly-Derived Mesenchymal Stem Cells: Phenotypic Characterization and Optimizing Their Therapeutic Potential for Clinical Applications. Int. J. Mol. Sci. 2013;14:11692–11712. doi: 10.3390/ijms140611692.
    1. Takahashi K., Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024.
    1. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019.
    1. Parsons X.H., Teng Y.D., Parsons J.F., Snyder E.Y., Smotrich D.B., Moore D.A. Efficient derivation of human cardiac precursors and cardiomiocytes from pluripotent human embryonic stem cells with small molecule induction. J. Vis. Exp. 2011;57:3274–3279. doi: 10.3791/3274.
    1. Teixeira F.G., Panchalingam K.M., Anjo S.I., Manadas B., Pereira R., Sousa N., Salgado A.J., Behie L.A. Do hypoxia/normoxia culturing conditions change the neuroregulatory profile of Wharton Jelly mesenchymal stem cell secretome? Stem Cell Res Ther. 2015;6:1–14. doi: 10.1186/s13287-015-0124-z.
    1. Ejtehadifar M., Shamsasenjan K., Movassaghpour A., Akbarzadehlaleh P., Dehdilani N., Abbasi P., Molaeipour Z., Saleh M. The effect of hypoxia on mesenchymal stem cell biology. Adv. Pharm. Bull. 2015;5:141–149. doi: 10.15171/apb.2015.021.
    1. Drela K., Sarnowska A., Siedlecka P., Szablowska-Gadomska I., Wielgos M., Jurga M., Lukomska B., Domanska-Janik K. Low oxygen atmosphere facilitates proliferation and maintains undifferentiated state of umbilical cord mesenchymal stem cells in an hypoxia inducible factor-dependent manner. Cytotherapy. 2014;16:881–892. doi: 10.1016/j.jcyt.2014.02.009.
    1. Wu D., Yotnda P. Induction and testing an hypoxia in cell culture. J. Vis. Exp. 2011;54:2899–2995. doi: 10.3791/2899.
    1. Dos Santos F., Andrade P.Z., Boura J.S., Abecasis M.M., da Silva C.L., Cabral J.M. Ex vivo expansion of human mesenchymal stem cells: A more effective cell proliferation kinetics and metabolism under hypoxia. J. Cell. Physiol. 2010;223:27–35. doi: 10.1002/jcp.21987.
    1. Bakmiwewa S.M., Heng B., Guillemin G.J., Ball H.J., Hunt N.A. An effective, low-cost method for achieving and maintaining hypoxia during cell culture studies. Biotechniques. 2015;59:223–229. doi: 10.2144/000114341.
    1. Fisher S.A., Doree C., Mathur A., Taggart D.P., Martin-Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst. Rev. 2016;29:265–278. doi: 10.1002/14651858.CD007888.pub3.
    1. Cui Y., Ma S., Zhang C., Cao W., Liu M., Li D., Lv P., Xing Q., Qu R., Yao N., et al. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav. Brain Res. 2017;320:291–301. doi: 10.1016/j.bbr.2016.12.021.
    1. Prasad V.K., Lucas K.G., Kleiner G.I., Talano J.A., Jacobsohn D., Broadwater G., Monroy R., Kurtzberg J. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol. Blood Marrow Transpl. 2011;17:534–541. doi: 10.1016/j.bbmt.2010.04.014.
    1. Fong C.Y., Chak L.L., Biswas A., Tan J.H., Gauthaman K., Chan W.K., Bongso A. Human Wharton’s Jelly Stem Cells Have Unique Transcriptome Profiles Compared to Human Embryonic Stem Cells and Other Mesenchymal. Stem Cells Stem Cell Rev. Rep. 2011;7:1–16. doi: 10.1007/s12015-010-9166-x.
    1. Nekanti U., Dastidar S., Venugopal P., Totey S., Ta M. Increased proliferation and analysis of differential gene expression in human Wharton’s jelly-derived mesenchymal stromal cells under hypoxia. Int. J. Biol. Sci. 2010;6:499–512. doi: 10.7150/ijbs.6.499.
    1. Doi D., Morizane A., Kikuchi T., Onoe H., Hayashi T., Kawasaki T. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells. 2012;30:935–945. doi: 10.1002/stem.1060.
    1. Kwon A., Kim Y., Kim M., Kim J., Choi H., Jekarl D.W., Lee S., Kim J.M., Shin J.C., Park I.Y. Tissue-specific Differentiation Potency of Mesenchymal Stromal Cells from Perinatal Tissues. Nat. Publ. Gr. 2016;6:1–11. doi: 10.1038/srep23544.
    1. Toma C., Pittenger M.F., Cahill K.S., Byrne B.J., Kessler P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105:93–98. doi: 10.1161/hc0102.101442.
    1. Gyöngyösi M., Blanco J., Marian T., Trón L., Petneházy Ö., Petrasi Z., Hemetsberger R., Rodriguez J., Font G., Pavo I.J., et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ. Cardiovasc. Imaging. 2008;1:94–103. doi: 10.1161/CIRCIMAGING.108.797449.
    1. McGinley L.M., McMahon J., Stocca A., Duffy A., Flynn A., O’Toole D., O’Brien T. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum. Gene Ther. 2013;24:840–851. doi: 10.1089/hum.2011.009.
    1. Bieback K., Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World J. Stem Cells. 2010;2:81–92. doi: 10.4252/wjsc.v2.i4.81.
    1. Moldovan N.I., Goldschmidt-Clermont P.J., Parker-Thornburg J., Shapiro S.D., Kolattukudy P.E. Contribution of Monocytes / Macrophages to The Drilling of Metalloelastase-Positive Tunnels in Ischemic Myocardium. Circ. Res. 2000;4:378–385. doi: 10.1161/01.RES.87.5.378.
    1. Wang H.S., Hung S.C., Peng S.T., Huang C.C., Wei H.M., Guo Y.J., Fu Y.S., Lai M.C., Chen C.C. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22:1330–1337. doi: 10.1634/stemcells.2004-0013.
    1. Tong C.K., Vellasamy S., Chong Tan B., Abdullah M., Vidyadaran S., Seow H.F., Ramasamy R. Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol. Int. 2011;35:221–226. doi: 10.1042/CBI20100326.
    1. Dehkordi M.B., Madjd Z., Chaleshtori M.H., Meshkani R., Nikfarjam L., Kajbafzadeh A.M. A simple, rapid, and efficient method for isolating mesenchymal stem cells from the entire umbilical cord. Cell Transpl. 2016;25:1287–1297. doi: 10.3727/096368915X582769.
    1. Du Y., Roh D.S., Funderburgh M.L., Mann M.M., Marra K.G., Rubin J.P., Li X., Funderburgh J.L. Adipose-derived stem cells differentiate to keratocytes in vitro. Mol. Vis. 2010;16:2680–2689.
    1. Krampera M., Marconi S., Pasini A., Galiè M., Rigotti G., Mosna F., Tinelli M., Lovato L., Anghileri E., Andreini A., et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone. 2007;40:382–390. doi: 10.1016/j.bone.2006.09.006.
    1. Strioga M., Viswanathan S., Darinskas A., Slaby O., Michalek J. Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells. Stem Cells Dev. 2012;21:2724–2752. doi: 10.1089/scd.2011.0722.
    1. Spaeth E., Klopp A., Dembinski J., Andreeff M., Marini F. Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15:730–738. doi: 10.1038/gt.2008.39.
    1. Yi T., Song S.U. Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Arch. Pharm. Res. 2012;35:213–221. doi: 10.1007/s12272-012-0202-z.

Source: PubMed

3
Abonner