Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

Maria Vadalà, Annamaria Vallelunga, Lucia Palmieri, Beniamino Palmieri, Julio Cesar Morales-Medina, Tommaso Iannitti, Maria Vadalà, Annamaria Vallelunga, Lucia Palmieri, Beniamino Palmieri, Julio Cesar Morales-Medina, Tommaso Iannitti

Abstract

Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease.

References

    1. Granado N, Ares-Santos S, Moratalla R. Methamphetamine and Parkinson’s disease. Parkinsons Dis. 2013;1:1–10.
    1. Popa LCA, Constantinescu A, Popescu CD. Differences of cortical excitability between Parkinson’s disease patients and healthy subjects. A comparative TMS study. Romanian J Neurol. 2012;11:1.
    1. Furukawa T, Izumi S, Toyokura M, Masakado Y. Effects of low-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease. Tokai J Exp Clin Med. 2009;34(3):63–71.
    1. Desplats P, Patel P, Kosberg K, Mante M, Patrick C, Rockenstein E, et al. Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease. Mol Neurodegener. 2012;7:49. doi: 10.1186/1750-1326-7-49.
    1. Subramaniam SR, Chesselet MF. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106–107:17–32. doi: 10.1016/j.pneurobio.2013.04.004.
    1. Vallelunga A, Ragusa M, Di Mauro S, Iannitti T, Pilleri M, Biundo R, et al. Identification of circulating microRNAs for the differential diagnosis of Parkinson’s disease and Multiple System Atrophy. Front Cell Neurosci. 2014;8:156. doi: 10.3389/fncel.2014.00156.
    1. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65–74. doi: 10.2174/157015909787602823.
    1. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909. doi: 10.1016/S0896-6273(03)00568-3.
    1. Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE, Caputo V, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004;56:336–341. doi: 10.1002/ana.20256.
    1. Polymeropoulos MHLC, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–2047. doi: 10.1126/science.276.5321.2045.
    1. Chou KL. Diagnosis and management of the patient with tremor. Med Health R I. 2004;87(5):135–138.
    1. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909. doi: 10.1016/S0896-6273(03)00568-3.
    1. McGeer PL, McGeer EG. Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord. 2004;10(1):S3–S7. doi: 10.1016/j.parkreldis.2004.01.005.
    1. Mendez I, Viñuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, et al. Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med. 2008;14(5):507–509. doi: 10.1038/nm1752.
    1. Richardson PJ, Kase H, Jenner PG. Adenosine A2A receptor antagonists as new agents for the treatment of Parkinson’s disease. Trends Pharmacol Sci. 1997;18(9):338–344. doi: 10.1016/S0165-6147(97)01096-1.
    1. Schapira AH, Bezard E, Brotchie J, Calon F, Collingridge GL, Ferger B, et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov. 2006;5(10):845–854. doi: 10.1038/nrd2087.
    1. Bezard E, Gerlach I, Moratalla R, Gross CE, Jork R. 5-HT1A receptor agonist-mediated protection from MPTP toxicity in mouse and macaque models of Parkinson’s disease. Neurobiol Dis. 2006;23(1):77–86. doi: 10.1016/j.nbd.2006.02.003.
    1. Poryazova RG, Zachariev ZI. REM sleep behavior disorder in patients with Parkinson’s disease. Folia Med (Plovdiv) 2005;47(1):5–10.
    1. Eisensehr I, v Lindeiner H, Jäger M, Noachtar S. REM sleep behavior disorder in sleep-disordered patients with versus without Parkinson’s disease: is there a need for polysomnography? J Neurol Sci. 2001;186(1–2):7–11. doi: 10.1016/S0022-510X(01)00480-4.
    1. Kales A, Ansel RD, Markham CH, Scharf MB, Tan TL. Sleep in patients with Parkinson’s disease and normal subjects prior to and following levodopa administration. Clin Pharmacol Ther. 1971;12(2):397–406.
    1. Factor SA, McAlarney T, Sanchez-Ramos JR, Weiner WJ. Sleep disorders and sleep effect in Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 1990;5(4):280–285. doi: 10.1002/mds.870050404.
    1. Lees AJ, Blackburn NA, Campbell VL. The nighttime problems of Parkinson’s disease. Clin Neuropharmacol. 1988;11(6):512–519. doi: 10.1097/00002826-198812000-00004.
    1. Comella CL, Nardine TM, Diederich NJ, Stebbins GT. Sleep-related violence, injury, and REM sleep behavior disorder in Parkinson’s disease. Neurology. 1998;51(2):526–529. doi: 10.1212/WNL.51.2.526.
    1. Chaudhuri KR, Healy DG, Schapira AH, FmedSci Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5(3):235–245. doi: 10.1016/S1474-4422(06)70373-8.
    1. Lieberman A. Depression in Parkinson’s disease—a review. Acta Neurol Scand. 2006;113(1):1–8. doi: 10.1111/j.1600-0404.2006.00536.x.
    1. Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol. 2008;15(1):14–20. doi: 10.1111/j.1468-1331.2008.02056.x.
    1. Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9(8):445–454. doi: 10.1038/nrneurol.2013.132.
    1. Lubbe S, Morris HR. Recent advances in Parkinson’s disease genetics. J Neurol. 2014;261(2):259–266. doi: 10.1007/s00415-013-7003-2.
    1. Taymans JM, Baekelandt V. Phosphatases of alpha-synuclein, LRRK2, and tau: important players in the phosphorylation-dependent pathology of Parkinsonism. Front Genet. 2014;5:382. doi: 10.3389/fgene.2014.00382.
    1. van der Vegt JP, van Nuenen BF, Bloem BR, Klein C, Siebner HR. Imaging the impact of genes on Parkinson’s disease. Neuroscience. 2009;164(1):191–204. doi: 10.1016/j.neuroscience.2009.01.055.
    1. Kimura H, Kurimura M, Kurokawa K, Nagaoka U, Arawaka S, Wada M, et al. A comprehensive study of repetitive transcranial magnetic stimulation in Parkinson’s disease. ISRN Neurol. 2011;2011:845453. doi: 10.5402/2011/845453.
    1. Lees AJ. The on-off phenomenon. J Neurol Neurosurg Psychiatry. 1989;52(1):29–37. doi: 10.1136/jnnp.52.Suppl.29.
    1. Hattoria N, Wanga M, Taka H, Fujimura T, Yoritaka A, Kubo S, et al. Toxic effects of dopamine metabolism in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(1):S35–S38. doi: 10.1016/S1353-8020(09)70010-0.
    1. Belcastro V, Tozzi A, Tantucci M, Costa C, Di Filippo M, Autuori A, et al. A2A adenosine receptor antagonists protect the striatum against rotenone-induced neurotoxicity. Exp Neurol. 2009;217(1):231–234. doi: 10.1016/j.expneurol.2009.01.010.
    1. Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8(1):67–81. doi: 10.1016/S1474-4422(08)70291-6.
    1. Wang Z, Che PL, Du J, Ha B, Yarema KJ. Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS One. 2010;5(11):e13883. doi: 10.1371/journal.pone.0013883.
    1. Anderkova L, Rektorova I. Cognitive effects of repetitive transcranial magnetic stimulation in patients with neurodegenerative diseases—clinician’s perspective. J Neurol Sci. 2014;339(1–2):15–25. doi: 10.1016/j.jns.2014.01.037.
    1. Caspar S. Invasive and non-invasive stimulation in Parkinson’s disease. Germany: Department of Clinical Neurophysiol; 2011.
    1. Sandyk R. Weak magnetic fields as a novel therapeutic modality in Parkinson’s disease. Int J Neurosci. 1992;66(1–2):1–15.
    1. Sandyk R. Treatment with weak electromagnetic fields restores dream recall in a parkinsonian patient. Int J Neurosci. 1997;90(1–2):75–86. doi: 10.3109/00207459709000627.
    1. Vonloh M, Chen R, Kluger B. Safety of transcranial magnetic stimulation in Parkinson’s disease: a review of the literature. Parkinsonism Relat Disord. 2013;19(6):573–585. doi: 10.1016/j.parkreldis.2013.01.007.
    1. Wade B. A review of pulsed electromagnetic field (PEMF) mechanisms at a cellular level: a rationale for clinical use. Am J Health Res. 2013;1(3):51–55. doi: 10.11648/j.ajhr.20130103.13.
    1. Markov MS. Expanding use of pulsed electromagnetic field therapies. Electromagn Biol Med. 2007;26(3):257–274. doi: 10.1080/15368370701580806.
    1. Weintraub MI. Magnetotherapy: historical background with a stimulating future. Phys Rehabil Med. 2004;16(2):95–108.
    1. De Loecker W, Cheng N, Delport PH. Emerging electromagnetic medicine. New York: Springer; 1990. Effects of pulsed electromagnetic fields on membrane transport; pp. 45–57.
    1. Wassermann EM, Lisanby SH. Therapeutic application of repetitive transcranial magnetic stimulation: a review. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2001;112(8):1367–1377. doi: 10.1016/S1388-2457(01)00585-5.
    1. Wassermann EM, Grafman J, Berry C, Hollnagel C, Wild K, Clark K, et al. Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr Clin Neurophysiol. 1996;101(5):412–417. doi: 10.1016/0924-980X(96)96004-X.
    1. Edwards MJ, Talelli P, Rothwell JC. Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol. 2008;7(9):827–840. doi: 10.1016/S1474-4422(08)70190-X.
    1. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;2:145–156. doi: 10.1016/S1474-4422(03)00321-1.
    1. Rudiak D, Marg E. Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol. 1994;93(5):358–371. doi: 10.1016/0168-5597(94)90124-4.
    1. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;1(8437):1106–1107. doi: 10.1016/S0140-6736(85)92413-4.
    1. Fuhr P, Agostino R, Hallett M. Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol. 1991;81(4):257–262. doi: 10.1016/0168-5597(91)90011-L.
    1. Inghilleri M, Berardelli A, Cruccu G, Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol. 1993;466:521–534.
    1. Farzan F, Barr MS, Hoppenbrouwers SS, Fitzgerald PB, Chen R, Pascual-Leone A, et al. The EEG correlates of the TMS-induced EMG silent period in humans. Neuroimage. 2013;83:120–134. doi: 10.1016/j.neuroimage.2013.06.059.
    1. Cantello R, Gianelli M, Bettucci D, Civardi C, De Angelis MS, Mutani R. Parkinson’s disease rigidity: magnetic motor evoked potentials in a small hand muscle. Neurology. 1991;41(9):1449–1456. doi: 10.1212/WNL.41.9.1449.
    1. Khedr EM, Farweez HM, Islam H. Therapeutic effect of repetitive transcranial magnetic stimulation on motor function in Parkinson’s disease patients. Eur J Neurol. 2003;10(5):567–572. doi: 10.1046/j.1468-1331.2003.00649.x.
    1. Lefaucheur JP. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol. 2005;116(2):244–253. doi: 10.1016/j.clinph.2004.11.017.
    1. Anninos P, Adamopoulos A, Kotini A, Tsagas N, Tamiolakis D, Prassopoulos P. MEG evaluation of Parkinson’s diseased patients after external magnetic stimulation. Acta Neurol Belg. 2007;107(1):5–10.
    1. Stam CJ. Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci. 2010;289(1–2):128–134. doi: 10.1016/j.jns.2009.08.028.
    1. Fregni F, Simon DK, Wu A, Pascual-Leone A. Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J Neurol Neurosurg Psychiatry. 2005;76(12):1614–1623. doi: 10.1136/jnnp.2005.069849.
    1. Hallett M. Transcranial magnetic stimulation: a primer. Neuron. 2007;55(2):187–199. doi: 10.1016/j.neuron.2007.06.026.
    1. Greenberg BD, Malone DA, Friehs GM, Rezai AR, Kubu CS, Malloy PF, et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive-compulsive disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2006;31(11):2384–2393. doi: 10.1038/sj.npp.1301165.
    1. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48(5):1398–1403. doi: 10.1212/WNL.48.5.1398.
    1. Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain J Neurol. 1994;117(Pt 4):847–858. doi: 10.1093/brain/117.4.847.
    1. Okabe S, Ugawa Y, Kanazawa I. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord. 2003;18(4):382–388. doi: 10.1002/mds.10370.
    1. Elahi B, Chen R. Effect of transcranial magnetic stimulation on Parkinson motor function—systematic review of controlled clinical trials. Mov Disord. 2009;24(3):357–363. doi: 10.1002/mds.22364.
    1. Wang M, Ping GU, Xiao-wei MA, Yan-min LI. Effects of low frequency repetitive transcranial magnetic stimulation on motor function and affective disorder in patients with Parkinson’s disease. Chin J Geriatr. 2009;28:729–732.
    1. Niu X, G Y. Observation of repetitively transcranial magnetic stimulation in the treatment of depression induced by Parkinson’s disease. Chin J Pract Nerv Dis. 2012;15:11–13.
    1. Shirota Y, Ohtsu H, Hamada M, Enomoto H, Ugawa Y. Supplementary motor area stimulation for Parkinson disease: a randomized controlled study. Neurology. 2013;80(15):1400–1405. doi: 10.1212/WNL.0b013e31828c2f66.
    1. Pizzolato G, Mandat T. Deep brain stimulation for movement disorders. Mini Rev Art Front Integr Neurosci. 2012;6(2):1–5.
    1. Boutros NN, Berman RM, Hoffman R, Miano AP, Campbell D, Ilmoniemi R. Electroencephalogram and repetitive transcranial magnetic stimulation. Depress Anxiety. 2000;12(3):166–169. doi: 10.1002/1520-6394(2000)12:3<166::AID-DA8>;2-M.
    1. Fregni F, Boggio PS, Valle AC, Rocha RR, Duarte J, Ferreira MJ, et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke. 2006;37(8):2115–2122. doi: 10.1161/01.STR.0000231390.58967.6b.
    1. Fox MD, Liu H, Pascual-Leone A. Identification of reproducible individualized targets for treatment of depression with TMS based on intrinsic connectivity. Neuroimage. 2013;66:151–160. doi: 10.1016/j.neuroimage.2012.10.082.
    1. Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H. Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson’s disease. J Neurol. 2001;248(3):III48–III52. doi: 10.1007/PL00007826.
    1. Eckert T, Peschel T, Heinze HJ, Rotte M. Increased pre-SMA activation in early PD patients during simple self-initiated hand movements. J Neurol. 2006;253(2):199–207. doi: 10.1007/s00415-005-0956-z.
    1. Buhmann C, Glauche V, Stürenburg HJ, Oechsner M, Weiller C, Büchel C. Pharmacologically modulated fMRI–cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain. 2003;126(Pt 2):451–461. doi: 10.1093/brain/awg033.
    1. Ceballos-Baumann AO, Boecker H, Bartenstein P, von Falkenhayn I, Riescher H, Conrad B, et al. A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol. 1999;56(8):997–1003. doi: 10.1001/archneur.56.8.997.
    1. Jahanshahi M, Jenkins IN, Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain. J Neurol. 1995;118(Pt 4):913–933.
    1. Jenkins IH, Fernandez W, Playford ED, Lees AJ, Frackowiak RS, Passingham RE, et al. Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol. 1992;32(6):749–757. doi: 10.1002/ana.410320608.
    1. Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RSJ, Brooks DJ. Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol. 1992;32(2):151–161. doi: 10.1002/ana.410320206.
    1. Rascol O, Sabatini U, Chollet F, Fabre N, Senard JM, Montastruc JL, et al. Normal activation of the supplementary motor area in patients with Parkinson’s disease undergoing long-term treatment with levodopa. J Neurol Neurosurg Psychiatry. 1994;57(5):567–571. doi: 10.1136/jnnp.57.5.567.
    1. Randhawa BK, Farley BG, Boyd LA. Repetitive transcranial magnetic stimulation improves handwriting in Parkinson’s disease. Parkinsons Dis. 2013;2013:751925.
    1. Morari M, Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L. Reciprocal dopamine-glutamate modulation of release in the basal ganglia. Neurochem Int. 1998;33(5):383–397. doi: 10.1016/S0197-0186(98)00052-7.
    1. Keck ME, Welt T, Müller MB, Erhardt A, Ohl F, Toschi N, et al. Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology. 2002;43(1):101–109. doi: 10.1016/S0028-3908(02)00069-2.
    1. Grafman J, Pascual-Leone A, Alway D, Nichelli P, Gomez-Tortosa E, Hallett M. Induction of a recall deficit by rapid-rate transcranial magnetic stimulation. Neuroreport. 1994;5(9):1157–1160. doi: 10.1097/00001756-199405000-00034.
    1. Jahanshahi M, Profice P, Brown RG, Ridding MC, Dirnberger G, Rothwell JC. The effects of transcranial magnetic stimulation over the dorsolateral prefrontal cortex on suppression of habitual counting during random number generation. Brain. 1998;121(Pt 8):1533–1544. doi: 10.1093/brain/121.8.1533.
    1. Pascual-Leone A, Bartres-Faz D, Keenan JP. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1229–1238. doi: 10.1098/rstb.1999.0476.
    1. Mottaghy FM, Krause BJ, Kemna LJ, Töpper R, Tellmann L, Beu M, et al. Modulation of the neuronal circuitry subserving working memory in healthy human subjects by repetitive transcranial magnetic stimulation. Neurosci Lett. 2000;280(3):167–170. doi: 10.1016/S0304-3940(00)00798-9.
    1. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci. 2001;21(15):RC157.
    1. Gessler M, Bruns GA. A physical map around the WAGR complex on the short arm of chromosome 11. Genomics. 1989;5(1):43–55. doi: 10.1016/0888-7543(89)90084-0.
    1. Dragasevic N, Potrebic A, Damjanović A, Stefanova E, Kostić VS. Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson’s disease: an open study. Mov Disord Off J Mov Disord Soc. 2002;17(3):528–532. doi: 10.1002/mds.10109.
    1. Fregni F, Santos CM, Myczkowski ML, Rigolino R, Gallucci-Neto J, Barbosa ER, et al. Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(8):1171–1174. doi: 10.1136/jnnp.2003.027060.
    1. Boylan LS, Pullman SL, Lisanby SH, Spicknall KE, Sackeim HA. Repetitive transcranial magnetic stimulation to SMA worsens complex movements in Parkinson’s disease. Clin Neurophysiol. 2001;112(2):259–264. doi: 10.1016/S1388-2457(00)00519-8.
    1. Ghabra MB, Hallett M, Wassermann EM. Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology. 1999;52(4):768–770. doi: 10.1212/WNL.52.4.768.
    1. Garcia L, D’Alessandro G, Bioulac B, Hammond C. High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci. 2005;28(4):209–216. doi: 10.1016/j.tins.2005.02.005.
    1. Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P. The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology. 2002;59(5):706–713. doi: 10.1212/WNL.59.5.706.
    1. Beurrier C, Bioulac B, Audin J, Hammond C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol. 2001;85(4):1351–1356.
    1. McIntyre CC, Savasta M, Walter BL, Vitek JL. How does deep brain stimulation work? Present understanding and future questions. J Clin Neurophysiol. 2004;21(1):40–50. doi: 10.1097/00004691-200401000-00006.
    1. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349(20):1925–1934. doi: 10.1056/NEJMoa035275.
    1. Maltete D, Jodoin N, Karachi C, Houeto JL, Navarro S, Cornu P, et al. Subthalamic stimulation and neuronal activity in the substantia nigra in Parkinson’s disease. J Neurophysiol. 2007;97(6):4017–4022. doi: 10.1152/jn.01104.2006.
    1. Kita H, Tachibana Y, Nambu A, Chiken S. Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. J Neurosci Off J Soc Neurosci. 2005;25(38):8611–8619. doi: 10.1523/JNEUROSCI.1719-05.2005.
    1. Zhao XD, Cao YQ, Liu HH, Li FQ, You BM, Zhou XP. Long term high frequency stimulation of STN increases dopamine in the corpus striatum of hemiparkinsonian rhesus monkey. Brain Res. 2009;1286:230–238. doi: 10.1016/j.brainres.2009.06.069.
    1. Putzke JD, Wharen RE, Wszolek ZK, Turk MF, Strongosky AJ, Uitti RJ. Thalamic deep brain stimulation for tremor-predominant Parkinson’s disease. Parkinsonism Relat Disord. 2003;10(2):81–88. doi: 10.1016/j.parkreldis.2003.09.002.
    1. Dipti P, Yogesh B, Kain AK, Pauline T, Anju B, Sairam M, et al. Lead induced oxidative stress: beneficial effects of Kombucha tea. Biomed Environ Sci. 2003;16(3):276–282.
    1. Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol. 2005;62(4):554–560. doi: 10.1001/archneur.62.4.554.
    1. Peppe A, Pierantozzi M, Altibrandi MG, Giacomini P, Stefani A, Bassi A, et al. Bilateral GPi DBS is useful to reduce abnormal involuntary movements in advanced Parkinson’s disease patients, but its action is related to modality and site of stimulation. Eur J Neurol Off J Eur Fed Neurol Soc. 2001;8(6):579–586.
    1. Benabid AL, Pollak P, Gao D, Hofmann D, Limousin P, Gay E, et al. Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg. 1996;84(2):203–214. doi: 10.3171/jns.1996.84.2.0203.
    1. Brown P, Mazzone P, Oliviero A, Altibrandi MG, Pilato F, Tonali PA, et al. Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp Neurol. 2004;188(2):480–490. doi: 10.1016/j.expneurol.2004.05.009.
    1. Hassani OK, Fèger J. Effects of intrasubthalamic injection of dopamine receptor agonists on subthalamic neurons in normal and 6-hydroxydopamine-lesioned rats: an electrophysiological and c-Fos study. Neuroscience. 1999;92(2):533–543. doi: 10.1016/S0306-4522(98)00765-9.
    1. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res. 2004;156(3):274–281. doi: 10.1007/s00221-003-1784-y.
    1. Lozano AM, Dostrovsky J, Chen R, Ashby P. Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol. 2002;1(4):225–231. doi: 10.1016/S1474-4422(02)00101-1.
    1. Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, et al. Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol. 2004;61(1):89–96. doi: 10.1001/archneur.61.1.89.
    1. Burbaud P, Gross C, Bioulac B. Effect of subthalamic high frequency stimulation on substantia nigra pars reticulata and globus pallidus neurons in normal rats. J Physiol Paris. 1994;88(6):359–361. doi: 10.1016/0928-4257(94)90029-9.
    1. Tai CH, Boraud T, Bezard E, Bioulac B, Gross C, Benazzouz A. Electrophysiological and metabolic evidence that high-frequency stimulation of the subthalamic nucleus bridles neuronal activity in the subthalamic nucleus and the substantia nigra reticulata. FASEB J Off Publ Fed Am Soc Exp Biol. 2003;17(13):1820–1830.
    1. Garcia L, Audin J, D’Alessandro G, Bioulac B, Hammond C. Dual effect of high-frequency stimulation on subthalamic neuron activity. J Neurosci Off J Soc Neurosci. 2003;23(25):8743–8751.
    1. Lee KH, Chang SY, Roberts DW, Kim U. Neurotransmitter release from high-frequency stimulation of the subthalamic nucleus. J Neurosurg. 2004;101(3):511–517. doi: 10.3171/jns.2004.101.3.0511.
    1. Jaggi JL, Umemura A, Hurtig HI, Siderowf AD, Colcher A, Stern MB, et al. Bilateral stimulation of the subthalamic nucleus in Parkinson’s disease: surgical efficacy and prediction of outcome. Stereotact Funct Neurosurg. 2004;82(2–3):104–114. doi: 10.1159/000078145.
    1. Holden KR (2012) Biological effects of pulsed electromagnetic field (PEMF) therapy. Med News
    1. Siskin BF, Walker J. Therapeutic aspects of electromagnetic fields for soft-tissue healing. In: Blank M, editor. Electromagnetic fields: biological interactions and mechanisms. Washington, DC: American Chemical Society; 1995. pp. 277–285.
    1. Iannitti T, Fistetto G, Esposito A, Rottigni V, Palmieri B. Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly. Clin Interv Aging. 2013;8:1289–1293. doi: 10.2147/CIA.S35926.
    1. Aktas I, Akgun K, Cakmak B. Therapeutic effect of pulsed electromagnetic field in conservative treatment of subacromial impingement syndrome. Clin Rheumatol. 2007;26(8):1234–1239. doi: 10.1007/s10067-006-0464-2.
    1. Thomas AW, Graham K, Prato FS, McKay J, Forster PM, Moulin DE, et al. A randomized, double-blind, placebo-controlled clinical trial using a low-frequency magnetic field in the treatment of musculoskeletal chronic pain. Pain Res Manage J Can Pain Soc (journal de la societe canadienne pour le traitement de la douleur) 2007;12(4):249–258.
    1. Lee PB, Kim YC, Lim YJ, Lee CJ, Choi SS, Park SH, et al. Efficacy of pulsed electromagnetic therapy for chronic lower back pain: a randomized, double-blind, placebo-controlled study. J Int Med Res. 2006;34(2):160–167. doi: 10.1177/147323000603400205.
    1. Lappin MS, Lawrie FW, Richards TL, Kramer ED. Effects of a pulsed electromagnetic therapy on multiple sclerosis fatigue and quality of life: a double-blind, placebo controlled trial. Altern Ther Health Med. 2003;9(4):38–48.
    1. Richards TL, Lappin MS, Acosta-Urquidi J, Kraft GH, Heide AC, Lawrie FW, et al. Double-blind study of pulsing magnetic field effects on multiple sclerosis. J Altern Complement Med. 1997;3(1):21–29. doi: 10.1089/acm.1997.3.21.
    1. Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, et al. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res. 2009;28:51. doi: 10.1186/1756-9966-28-51.
    1. Sandyk R. Freezing of gait in Parkinson’s disease is improved by treatment with weak electromagnetic fields. Int J Neurosci. 1996;85(1–2):111–124. doi: 10.3109/00207459608986356.
    1. Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, Runfeldt M, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis. 2010;19(1):191–210.
    1. Ericsson AD, Hazlewood CF, Markov M, Crawford F. Biological effects of EMF’s. Greece: KOS; 2004. Specific Biochemical changes in circulating lymphocytes following acute ablation of symptoms in Reflex Sympathetic Dystrophy (RSD): a pilot study; pp. 683–688.
    1. Yost MG, Liburdy RP. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Lett. 1992;296(2):117–122. doi: 10.1016/0014-5793(92)80361-J.
    1. Edmonds DT. Larmor precession as a mechanism for the detection of static and alternating magnetic fields. Bioelectrochem Bioenerg. 1993;30:3–12. doi: 10.1016/0302-4598(93)80057-2.
    1. Liboff AR, Cherng S, Jenrow KA, Bull A. Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 microT magnetostatic fields. Bioelectromagnetics. 2003;24(1):32–38. doi: 10.1002/bem.10063.
    1. Demitrack MA, Thase ME. Clinical significance of transcranial magnetic stimulation (TMS) in the treatment of pharmacoresistant depression: synthesis of recent data. Psychopharmacol Bull. 2009;42(2):5–38.
    1. Liboff AR (2004) Signal shapes in electromagnetic therapies: a primer. In: Rosch PJ, Markov MS (eds) Bioelectromagnetic medicine. Marcel Dekker, NY, pp 17–37
    1. Sandyk R. Reversal of a body image disorder (macrosomatognosia) in Parkinson’s disease by treatment with AC pulsed electromagnetic fields. Int J Neurosci. 1998;93(1–2):43–54. doi: 10.3109/00207459808986411.
    1. Sandyk R. A drug naive parkinsonian patient successfully treated with weak electromagnetic fields. Int J Neurosci. 1994;79(1–2):99–110.
    1. Sandyk R. Reversal of visuospatial deficit on the Clock Drawing Test in Parkinson’s disease by treatment with weak electromagnetic fields. Int J Neurosci. 1995;82(3–4):255–268. doi: 10.3109/00207459508999805.
    1. Ben-Shachar D, Belmaker RH, Grisaru N, Klein E. TMS induces alterations in brain monoamines. J Neural Trans. 1997;104:191–197. doi: 10.1007/BF01273180.
    1. Cerasa A, Koch G, Donzuso G, Mangone G, Morelli M, Brusa L, et al. A network centred on the inferior frontal cortex is critically involved in levodopa-induced dyskinesias. Brain. 2015;138(2):414–427. doi: 10.1093/brain/awu329.
    1. Keck ME, Welt T, Post A, Müller MB, Toschi N, Wigger A, et al. Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2001;24(4):337–349. doi: 10.1016/S0893-133X(00)00191-3.
    1. Fitzgerald PB, Brown TL, Marston NA, Daskalakis ZJ, De Castella A, Kulkarni J. Transcranial magnetic stimulation in the treatment of depression: a double-blind, placebo-controlled trial. Arch Gen Psychiatry. 2003;60(10):1002–1008.
    1. Loo CK, Mitchell PB, Croker VM, Malhi GS, Wen W, Gandevia SC, et al. Double-blind controlled investigation of bilateral prefrontal transcranial magnetic stimulation for the treatment of resistant major depression. Psychol Med. 2003;33(1):33–40. doi: 10.1017/S0033291702006839.
    1. Janicak PG, O’Reardon RJ, et al. Transcranial magnetic stimulation in the treatment of major depressive disorder: a comprehensive summary of safety experience from acute exposure, extended exposure, and during reintroduction treatment. J Clin Psychiatry. 2008;69(2):222–232. doi: 10.4088/JCP.v69n0208.
    1. Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol. 1998;108(1):1–16. doi: 10.1016/S0168-5597(97)00096-8.
    1. Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol. 2013;7(2):193–224. doi: 10.1111/jnp.12028.
    1. Narayanan NS, Rodnitzky RL, Uc EY. Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci. 2013;24(3):267–278. doi: 10.1515/revneuro-2013-0004.
    1. Aziz TZ, Peggs D, Sambrook MA, Crossman AR. Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord Off J Mov Disord Soc. 1991;6(4):288–292. doi: 10.1002/mds.870060404.
    1. Benazzouz A, Gross C, Féger J, Boraud T, Bioulac B. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci. 1993;5(4):382–389. doi: 10.1111/j.1460-9568.1993.tb00505.x.
    1. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990;249(4975):1436–1438. doi: 10.1126/science.2402638.
    1. Lang AE. Surgery for Parkinson disease: a critical evaluation of the state of the art. Arch Neurol. 2000;57(8):1118–1125. doi: 10.1001/archneur.57.8.1118.
    1. Levy R, Lang AE, Dostrovsky JO, Pahapill P, Romas J, Saint-Cyr J, et al. Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain J Neurol. 2001;124(Pt 10):2105–2118. doi: 10.1093/brain/124.10.2105.
    1. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci Off J Soc Neurosci. 2003;23(5):1916–1923.
    1. Lacombe E, Carcenac C, Boulet S, Feuerstein C, Bertrand A, Poupard A, et al. High-frequency stimulation of the subthalamic nucleus prolongs the increase in striatal dopamine induced by acute l-3,4-dihydroxyphenylalanine in dopaminergic denervated rats. Eur J Neurosci. 2007;26(6):1670–1680. doi: 10.1111/j.1460-9568.2007.05747.x.
    1. Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology. 2000;12(6):S40–S44.
    1. Welter ML, Houeto J, Tezenas du Montcel S, Mesnage V, Bonnet AM, Pillon B, et al. Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain J Neurol. 2002;125(Pt 3):575–583. doi: 10.1093/brain/awf050.
    1. Stoffers D, Bosboom JL, Wolters E, Stam CJ, Berendse HW. Dopaminergic modulation of cortico-cortical functional connectivity in Parkinson’s disease: an MEG study. Exp Neurol. 2008;213(1):191–195. doi: 10.1016/j.expneurol.2008.05.021.
    1. Degos B, Deniau JM, Thierry AM, Glowinski J, Pezard L, Maurice N. Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J Neurosci Off J Soc Neurosci. 2005;25(33):7687–7696. doi: 10.1523/JNEUROSCI.1056-05.2005.
    1. Salin P, Manrique C, Forni C, Kerkerian-Le Goff L. High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat. J Neurosci. 2002;22(12):5137–5148.
    1. Poulet E, Haesebaert F, Saoud M, Suaud-Chagny MF, Brunelin J. Treatment of schizophrenic patients and rTMS. Psychiatr Danub. 2010;22(1):S143–S146.
    1. Markov MS (2007) History of Pulsed Electro Magnetic Field Therapy. PEMF Systems Inc
    1. Sklar B (2014) Announcing the iMRS from swiss bionic solutions. Relax Restore Massage
    1. Sklar B (2009) MRS 2000 + the revolutionary “sawtooth” wave impulse. Relax and Restore Massage Services
    1. Andras V (1999) Proof of ion transport due to application of QRS System Salut-II. Quantron Medizin GmbH zHd Dr Fischer Nußloch

Source: PubMed

3
Abonner