The effect of intravitreal injections on dry eye, and proposed management strategies

Augustinus Laude, Jimmy Wk Lim, Vishwanath Srinagesh, Louis Tong, Augustinus Laude, Jimmy Wk Lim, Vishwanath Srinagesh, Louis Tong

Abstract

Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) agents has become a commonly used treatment method for a number of ophthalmic conditions, including age-related macular degeneration. Although anti-VEGF therapy has shown promising results for many patients, there are several aspects of its application that have not been thoroughly investigated. One of these is the development and/or escalation of concurrent dry eye syndrome. Many patients undergoing treatment are already predisposed to dry eye disease due to their age and overall ocular health. As dry eye can have a substantial impact on quality of life, it has become increasingly apparent that the clinical signs and symptoms should be closely monitored and aggressively managed. This will allow for the optimization of patient comfort and visual potential. Here, we discuss the reasons why dry eye may develop during the course of repeated ocular anti-VEGF therapy, highlighting the key concerns about current practices and proposing possible solutions to improve the outcome for the patients.

Keywords: age-related macular degeneration; chronic ophthalmic treatment; ocular health; povidone–iodine; toxicity.

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

References

    1. Miljanovic B, Dana R, Sullivan DA, Schaumberg DA. Impact of dry eye syndrome on vision-related quality of life. Am J Ophthalmol. 2007;143(3):409–415.
    1. Calonge M, Enriquez-de-Salamanca A, Diebold Y, et al. Dry eye disease as an inflammatory disorder. Ocul Immunol Inflamm. 2010;18(4):244–253.
    1. Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC. Apoptosis of ocular surface cells in experimentally induced dry eye. Invest Ophthalmol Vis Sci. 2003;44(1):124–129.
    1. Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today. JAMA. 2003;290(15):2057–2060.
    1. Mukamal R. Avastin, Eylea and Lucentis – What’s the Difference? 2015. [Accessed November 14, 2016]. webpage on the Internet. Available from: .
    1. Yancopoulos GD. Clinical application of therapies targeting VEGF. Cell. 2010;143(1):13–16.
    1. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 2004;3(5):391–400.
    1. Ferrara N, Damico L, Shams N, Lowman H, Kim R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26(8):859–870.
    1. Rosenfeld PJ, Brown DM, Heier JS, et al. MARINA Study Group Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–1431.
    1. Brown DM, Kaiser PK, Michels M, et al. ANCHOR Study Group Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432–1444.
    1. Srinagesh V, Ellenberg D, Scharper PH, Etter J. Intravitreal Dry Eye Study. Invest Ophthalmol Vis Sci. 2014;55(13):3696–3696.
    1. Garg P, Roy A, Sharma S. Endophthalmitis after cataract surgery: epidemiology, risk factors, and evidence on protection. Curr Opin Ophthalmol. 2017;28(1):67–72.
    1. Mantelli F, Tranchina L, Lambiase A, Bonini S. Ocular surface damage by ophthalmic compounds. Curr Opin Allergy Clin Immunol. 2011;11(5):464–470.
    1. Ayaki M, Iwasawa A, Niwano Y. In vitro assessment of the cytotoxicity of six topical antibiotics to four cultured ocular surface cell lines. Biocontrol Sci. 2012;17(2):93–99.
    1. Mencucci R, Paladini I, Pellegrini-Giampietro DE, Menchini U, Scartabelli T. In vitro comparison of the cytotoxic effects of clinically available ophthalmic solutions of fluoroquinolones on human kerato-cytes. Can J Ophthalmol. 2011;46(6):513–520.
    1. Abelson MB. Iodine: An Elemental Force against Infection. 2009. [Accessed July 3, 2017]. webpage on the Internet. Available from: .
    1. Speaker MG, Menikoff JA. Prophylaxis of endophthalmitis with topical povidone-iodine. Ophthalmology. 1991;98(12):1769–1775.
    1. Mino de Kaspar H, Chang RT, Singh K, Egbert PR, Blumenkranz MS, Ta CN. Prospective randomized comparison of 2 different methods of 5% povidone-iodine applications for anterior segment intraocular surgery. Arch Ophthalmol. 2005;123(2):161–165.
    1. Jiang J, Wu M, Shen T. The toxic effect of different concentrations of povidone iodine on the rabbit’s cornea. Cutan Ocul Toxicol. 2009;28(3):119–124.
    1. Naor J, Savion N, Blumenthal M, Assia EI. Corneal endothelial cytotoxicity of diluted povidone – iodine. J Cataract Refract Surg. 2001;27(6):941–947.
    1. Pels E, Vrensen GF. Microbial decontamination of human donor eyes with povidone-iodine: penetration, toxicity, and effectiveness. Br J Ophthalmol. 1999;83(9):1019–1026.
    1. Shibata Y, Tanaka Y, Tomita T, et al. Evaluation of corneal damage caused by iodine preparations using human corneal epithelial cells. Jpn J Ophthalmol. 2014;58(6):522–527.
    1. Werdich X, Ruez T, Singh R. Prevalence and severity of blepharitis symptoms and signs amongst patients with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51(13):5122–5122.
    1. Li XM, Zhao X, Hu LZ, Wang W. Clinical observation of dry eye in patients before and after cataract surgery. Zhonghua yan ke za zhi [Chin J Ophthalmol] 2007;43(1):10–13. Chinese.
    1. Baudouin C, Aragona P, Messmer EM, et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013;11(4):246–258.
    1. Versura P, Profazio V, Campos EC. Performance of tear osmolarity compared to previous diagnostic tests for dry eye diseases. Curr Eye Res. 2010;35(7):553–564.
    1. Jacobi C, Jacobi A, Kruse FE, Cursiefen C. Tear film osmolarity measurements in dry eye disease using electrical impedance technology. Cornea. 2011;30(12):1289–1292.
    1. Alfieri RR, Cavazzoni A, Petronini PG, et al. Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis. J Physiol. 2002;540(pt 2):499–508.
    1. Cammarata PR, Schafer G, Chen SW, Guo Z, Reeves RE. Osmoregulatory alterations in taurine uptake by cultured human and bovine lens epithelial cells. Invest Ophthalmol Vis Sci. 2002;43(2):425–433.
    1. Kaercher T, Buchholz P, Kimmich F. Treatment of patients with keratoconjunctivitis sicca with Optive™: results of a multicenter, open-label observational study in Germany. Clin Ophthalmol. 2009;3:33–39.
    1. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007) Ocul Surf. 2007;5(2):75–92.
    1. Hessen M, Akpek EK. Dry eye: an inflammatory ocular disease. J Ophthalmic Vis Res. 2014;9(2):240–250.
    1. Nelson JD, Wright JC. Conjunctival goblet cell densities in ocular surface disease. Arch Ophthalmol. 1984;102(7):1049–1051.
    1. Xu M, Sivak JG, McCanna DJ. Comparison of the effects of ophthalmic solutions on human corneal epithelial cells using fluorescent dyes. J Ocul Pharmacol Ther. 2013;29(9):794–802.
    1. Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol. 2000;44(5):415–425.

Source: PubMed

3
Abonner