Comparative genomics of Escherichia coli isolated from patients with inflammatory bowel disease

Rebecca Munk Vejborg, Viktoria Hancock, Andreas M Petersen, Karen A Krogfelt, Per Klemm, Rebecca Munk Vejborg, Viktoria Hancock, Andreas M Petersen, Karen A Krogfelt, Per Klemm

Abstract

Background: Inflammatory bowel disease (IBD) is used to describe a state of idiopathic, chronic inflammation of the gastrointestinal tract. The two main phenotypes of IBD are Crohn's disease (CD) and ulcerative colitis (UC). The major cause of IBD-associated mortality is colorectal cancer. Although both host-genetic and exogenous factors have been found to be involved, the aetiology of IBD is still not well understood. In this study we characterized thirteen Escherichia coli strains from patients with IBD by comparative genomic hybridization employing a microarray based on 31 sequenced E. coli genomes from a wide range of commensal and pathogenic isolates.

Results: The IBD isolates, obtained from patients with UC and CD, displayed remarkably heterogeneous genomic profiles with little or no evidence of group-specific determinants. No IBD-specific genes were evident when compared with the prototypic CD isolate, LF82, suggesting that the IBD-inducing effect of the strains is multifactorial. Several of the IBD isolates carried a number of extraintestinal pathogenic E. coli (ExPEC)-related virulence determinants such as the pap, sfa, cdt and hly genes. The isolates were also found to carry genes of ExPEC-associated genomic islands.

Conclusions: Combined, these data suggest that E. coli isolates obtained from UC and CD patients represents a heterogeneous population of strains, with genomic profiles that are indistinguishable to those of ExPEC isolates. Our findings indicate that IBD-induction from E. coli strains is multifactorial and that a range of gene products may be involved in triggering the disease.

Figures

Figure 1
Figure 1
Phylogenetic relationship between the isolates. Relationship based on their overall genomic profiles (left side). The Crohn's disease isolates are indicated in green and the ulcerative colitis isolates in pink. CGH data for the three phylogroup identifiers chuA, yjaA and TspE4.C (middle). Phylogenetic group association based on triplex PCR data for the same identifiers (right side).
Figure 2
Figure 2
Blast atlas comparison generated by blasting the inferred genomic sequences of the IBD isolates against the prototypic Crohn's disease isolate LF82 using the GeneWiz browser (http://www.cbs.dtu.dk/services/gwBrowser/). Blast lanes from the centre (eight CD isolates followed by five UC isolates): HM95, HM413, HM419, HM580, HM605, HM615, p29, p30, p7, p13, p19A, p19B and p22.
Figure 3
Figure 3
Comparison of the biofilm-forming capabilities of the IBD isolates and E. coli isolates obtained from IBD patients during inactive periods, and healthy control persons. Biofilm formation was monitored in LB medium using a crystal-violet, microtitre-based biofilm assay. Standard deviations are based on 3 independent experiments each comprising three replicates.
Figure 4
Figure 4
Phylogenetic relationship between the IBD isolates and a range of UTI and urosepsis isolates. The Crohn's disease isolates are indicated in green and the ulcerative colitis isolates in pink.
Figure 5
Figure 5
Blast atlas comparison generated by blasting the inferred genomic sequences of the IBD isolates against the prototypic pyelonephritis isolate CFT073 using the GeneWiz browser service. Blast lanes from the middle: HM95, HM413, HM419, HM580, HM605, HM615, p29, p30, p7, p13, p19A, p19B and p22.

References

    1. Loftus EVJ. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126:1504–1517. doi: 10.1053/j.gastro.2004.01.063.
    1. Martin HM, Rhodes JM. Bacteria and inflammatory bowel disease. Curr Opin Infect Dis. 2000;13:503–509. doi: 10.1097/00001432-200010000-00012.
    1. Bergman L, Krause U. The incidence of Crohn's disease in central Sweden. Scand J Gastroenterol. 1975;10:725–729.
    1. Loftus EVJ, Sandborn WJ. Epidemiology of inflammatory bowel disease. Gastroenterol Clin North Am. 2002;31:1–20. doi: 10.1016/S0889-8553(01)00002-4.
    1. Mayberry JF, Probert CSJ, Jayanthi V, Shivananda S. In: Inflammatory bowel disease. Anagnostides AA, Hodgson HJF, Kirsner JB, editor. London: Chapman and Hall; 1991. Epidemiology of inflammatory disease: a European perspective.
    1. Thornton JR, Emmett PM, Heaton KW. Diet and Crohn's disease: characteristics of the pre-illness diet. Br Med J. 1979;2:762–764. doi: 10.1136/bmj.2.6193.762.
    1. Onderdonk AB, Richardson JA, Hammer RE, Taurog JD. Correlation of cecal microflora of HLA-B27 transgenic rats with inflammatory bowel disease. Infect Immun. 1998;66:6022–6023.
    1. Rath HC, Ikeda JS, Linde HJ, Scholmerich J, Wilson KH, Sartor RB. Varying cecal bacterial loads influences colitis and gastritis in HLA-B27 transgenic rats. Gastroenterology. 1999;116:310–319. doi: 10.1016/S0016-5085(99)70127-7.
    1. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmis KN, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 2004;53:685–693. doi: 10.1136/gut.2003.025403.
    1. Sokol H, Lepage P, Seksik P, Dore J, Marteau P. Temperature gradient gel electrophoresis of fecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis. J Clin Microbiol. 2006;44:3172–3177. doi: 10.1128/JCM.02600-05.
    1. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N, Bringer MA, Swidsinski A, Beaugerie L, Colombel JF. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology. 2004;127:412–421. doi: 10.1053/j.gastro.2004.04.061.
    1. Darfeuille-Michaud A, Neut C, Barnich N, Lederman E, Di Martino P, Desreumaux P, Gambiez L, Joly B, Cortot A, Colombel JF. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology. 1998;115:1405–1413. doi: 10.1016/S0016-5085(98)70019-8.
    1. Matsuda H, Fujiyama Y, Andoh A, Ushijima T, Kajinami T, Bamba T. Characterization of antibody responses against rectal mucosa-associated bacterial flora in patients with ulcerative colitis. J Gastroenterol Hepatol. 2000;15:61–68. doi: 10.1046/j.1440-1746.2000.02045.x.
    1. Boudeau J, Glasser AL, Masseret E, Joly B, Darfeuille-Michaud A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect Immun. 1999;67:4499–4509.
    1. Nash JH, Villegas A, Kropinski AM, Aguilar-Valenzuela R, Konczy P, Mascarenhas M, Ziebell K, Torres AG, Karmali MA, Coombes BK. Genome sequence of adherent-invasive Escherichia coli and comparative genomic analysis with other E. coli pathotypes. BMC genomics. 2010;11:667. doi: 10.1186/1471-2164-11-667.
    1. Miquel S, Peyretaillade E, Claret L, de Vallee A, Dossat C, Vacherie B, Zineb EH, Segurens B, Barbe V, Sauvanet P. et al.Complete genome sequence of Crohn's disease-associated adherent-invasive E. coli strain LF82. PloS one. 2010;5:e12714. doi: 10.1371/journal.pone.0012714.
    1. Kruis W, Schutz E, Fric P, Fixa B, Judmaier G, Stolte M. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 1997;11:853–858. doi: 10.1046/j.1365-2036.1997.00225.x.
    1. Sonnenborn U, Schulze J. Actual clincal studies on the efficacy of a probiotic drug. Microecology and Therapy. 1997;26:211–220.
    1. Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet. 1999;354:635–639. doi: 10.1016/S0140-6736(98)06343-0.
    1. Hancock V, Dahl M, Klemm P. Probiotic Escherichia coli strain Nissle 1917 out-competes intestinal pathogens during biofilm formation. J Med Microbiol. 2010;59:392–399. doi: 10.1099/jmm.0.008672-0.
    1. Vejborg RM, Friis C, Hancock V, Schembri MA, Klemm P. A virulent parent with probiotic progeny: comparative genomics of Escherichia coli strains CFT073, Nissle 1917 and ABU 83972. Mol Genet Genomics. 2010;283:469–484. doi: 10.1007/s00438-010-0532-9.
    1. Vejborg RM, Hancock V, Schembri MA, Klemm P. Comparative genomics of urinary tract infectious Escherichia coli. Appl Environ Microbiol. 2011. Accepted, March 9, 2011.
    1. Petersen AM, Nielsen EM, Litrup E, Brynskov J, Mirsepasi H, Krogfelt KA. A phylogenetic group of Escherichia coli associated with active left-sided inflammatory bowel disease. BMC Microbiol. 2009;9:171. doi: 10.1186/1471-2180-9-171.
    1. Lloyd AL, Henderson TA, Vigil PD, Mobley HL. Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol. 2009;191:3469–3481. doi: 10.1128/JB.01717-08.
    1. Martinez-Medina M, Naves P, Blanco J, Aldeguer X, Blanco J, Blanco M, Ponte C, Soriano F, Darfeuille-Michaud A, Garcia-Gil LJ. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli (AIEC) BMC Microbiology. 2009;9:202. doi: 10.1186/1471-2180-9-202.
    1. Eaves-Pyles T, Allen CA, Taormina J, Swidsinski A, Tutt CB, Eric Jezek G, Islas-Islas M, Torres AG. Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol. 2008;298:397–409. doi: 10.1016/j.ijmm.2007.05.011.
    1. Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H. et al.Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nature medicine. 2008;14:399–406. doi: 10.1038/nm1734.
    1. Schubert S, Norenberg D, Clermont O, Magistro G, Wieser A, Romann E, Hoffmann C, Weinert K, Denamur E. Prevalence and phylogenetic history of the TcpC virulence determinant in Escherichia coli. Int J Med Microbiol. 2010;300:429–434. doi: 10.1016/j.ijmm.2010.02.006.
    1. Bronowski C, Smith SL, Yokota K, Corkill JE, Martin HM, Campbell BJ, Rhodes JM, Hart CA, Winstanley C. A subset of mucosa-associated Escherichia coli isolates from patients with colon cancer, but not Crohn's disease, share pathogenicity islands with urinary pathogenic E. coli. Microbiology. 2008;154:571–583. doi: 10.1099/mic.0.2007/013086-0.
    1. Boudeau J, Barnich N, Darfeuille-Michaud A. Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn's disease is involved in bacterial invasion of intestinal epithelial cells. Mol Microbiol. 2001;39:1272–1284. doi: 10.1111/j.1365-2958.2001.02315.x.
    1. Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P, Allez M, Peeters H, Bommelaer G, Desreumaux P, Colombel JF, Darfeuille-Michaud A. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest. 2007;117:1566–1574. doi: 10.1172/JCI30504.
    1. Adlerberth I, Hanson LA, Svanborg C, Svennerholm AM, Nordgren S, Wold AE. Adhesins of Escherichia coli associated with extra-intestinal pathogenicity confer binding to colonic epithelial cells. Microb Pathog. 1995;18:373–385. doi: 10.1006/mpat.1995.0034.
    1. Wold AE, Thorssen M, Hull S, Eden CS. Attachment of Escherichia coli via mannose- or Gal alpha 1-4Gal beta-containing receptors to human colonic epithelial cells. Infect Immun. 1988;56:2531–2537.
    1. Smith JL, Fratamico PM, Gunther NW. Extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis. 2007;4:134–163. doi: 10.1089/fpd.2007.0087.
    1. Johnson JR, Russo TA. Extraintestinal pathogenic Escherichia coli: "the other bad E coli". J Lab Clin Med. 2002;139:155–162. doi: 10.1067/mlc.2002.121550.
    1. Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM. Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology. 2004;127:80–93. doi: 10.1053/j.gastro.2004.03.054.
    1. Bachmann BJ. In: Escherichia coli and Salmonella: cellular and molecular biology. 2. Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE, editor. Washington, D.C.: American Society for Microbiology; 1996. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12; pp. 2460–2488.
    1. Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, Dobrindt U. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol. 2004;186:5432–5441. doi: 10.1128/JB.186.16.5432-5441.2004.
    1. Vejborg RM, Bernbom N, Gram L, Klemm P. Anti-adhesive properties of fish tropomyosins. J Appl Microbiol. 2008;105:141–150. doi: 10.1111/j.1365-2672.2007.03718.x.
    1. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J. et al.Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80.
    1. Pedersen AG, Jensen LJ, Brunak S, Stærfeldt H-H, Ussery DW. A DNA structural atlas for Escherichia coli. J Mol Biol. 2000;299:907–930. doi: 10.1006/jmbi.2000.3787.
    1. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66:4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000.

Source: PubMed

3
Abonner