A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes

Nicola D Guess, Anne Dornhorst, Nick Oliver, Jimmy D Bell, E Louise Thomas, Gary S Frost, Nicola D Guess, Anne Dornhorst, Nick Oliver, Jimmy D Bell, E Louise Thomas, Gary S Frost

Abstract

Background: Fat infiltration of the liver, muscle and pancreas is associated with insulin resistance and risk of diabetes. Weight loss reduces ectopic fat deposition and risk of diabetes, but is difficult to sustain to due to compensatory increases in appetite. Fermentable carbohydrates have been shown to decrease appetite and food intake, and promote weight loss in overweight subjects. In animal studies, fermentable carbohydrate reduces ectopic fat independent of weight loss. We aimed to investigate the effect of the fermentable carbohydrate inulin on weight maintenance, appetite and ectopic fat in subjects with prediabetes.

Methods: Forty-four subjects with prediabetes were randomized to 18 weeks' inulin or cellulose supplementation. During weeks 1-9 (weight loss phase) all subjects had four visits with a dietitian to guide them towards a 5 % weight loss. During weeks 10-18 (weight maintenance phase) subjects continued taking their assigned supplementation and were asked to maintain the weight they had lost but were offered no further support. All subjects attended study sessions at baseline, 9 and 18 weeks for measurement of weight; assessment of adipose tissue and ectopic fat content by magnetic resonance imaging and magnetic resonance spectroscopy; glucose, insulin and GLP-1 levels following a meal tolerance test; and appetite by ad libitum meal test and visual analogue scales.

Results: Both groups lost approximately 5 % of their body weight by week nine (-5.3 ± 0.1 % vs -4.3 ± 0.4 %, p = 0.13, but the inulin group lost significantly more weight between 9 and 18 weeks (-2.3 ± 0.5 % vs -0.6 ± 0.4 %, p = 0.012). Subjects taking inulin had lower hepatic (p = 0.02) and soleus muscle (p < 0.05) fat content at 18 weeks compared to control even after controlling for weight loss and consumed less at the ad libitum meal test (p = 0.027). Fasting glucose significantly decreased at week nine only (p = 0.005), insulin concentrations did not change, and there was a significant increase in GLP-1 in the cellulose group at 9 and 18 weeks (p < 0.03, p < 0.00001).

Conclusion: Inulin may have a two-pronged effect on the risk of diabetes by 1) promoting weight loss 2) reducing intrahepatocellular and intramyocellular lipid in people with prediabetes independent of weight loss.

Clinical trial number: NCT01841073.

Keywords: Appetite; Carbohydrate; Diabetes prevention; Diabetes risk; Fibre; Intrahepatocellular lipid; Intramyocellular lipid; Weight management.

Figures

Fig. 1
Fig. 1
Schematic showing study outline, including the timings of blood samples, VAS and breath hydrogen measure during the MTT. H2: breath hydrogen measure; MTT: meal tolerance test; MRS: magnetic resonance imaging; MRS: magnetic resonance spectroscopy; VAS: visual analogue scales
Fig. 2
Fig. 2
Percentage weight loss and body fat loss measured by BIA at week nine and week 18 in inulin and cellulose groups. Analysis was done by ANCOVA with baseline weight as a covariate. Weight loss at week nine was not significantly different between inulin and cellulose groups (−5.3 ± 0.1 %, n = 20 vs −4.3 ± 0.4 %, n = 19, p = 0.13). Between weeks 9–18 the inulin group lost significantly more than the cellulose group (−2.3 ± 0.5 %, n = 20 vs −0.6 ± 0.4 %, n = 18, p = 0.012). Analysis for body loss was done by ANCOVA with baseline weight as a covariate. The inulin group lost a greater percentage of body fat as measured by BIA at 9 (−2.8 ± 0.4 %, n = 20 vs −1.2 ± 0.4 %, n = 19, p < 0.01) and 18 weeks (−3.7 ± 0.6 %, n = 20 vs −1.1 ± 0.6 %, n = 18, p = 0.01). ANCOVA: analysis of covariance; BIA: bioelectrical impedance
Fig. 3
Fig. 3
Change in intrahepatocellular lipid (IHCL) at weeks 9 and 18 in inulin and cellulose groups. Analysis was done by ANCOVA with change in body weight as a covariate. IHCL was significantly reduced in subjects randomised to the inulin supplement compared to the cellulose at 9 (−9.6 ± 2.8 %, n = 10 vs −0.5 ± 2.7 %, n = 9, p < 0.04) and 18 weeks (−10.0 ± 2.6 %, n = 9 vs −2.3 ± 2.5 %, n = 5, p = 0.02). ANCOVA: analysis of covariance; IHCL: intrahepatocellular lipid
Fig. 4
Fig. 4
Change in intramyocellular lipid in the soleus muscle (IMCL-S) at weeks 9 and 18 in inulin and cellulose groups. Analysis was done by ANCOVA with change in body weight as a covariate. IMCL-S was significantly reduced at 9 and 18 weeks in the inulin group compared to cellulose: (9 weeks: −0.7 ± 0.3 %, n = 10 vs 0.8 ± 0.3 %, n = 9, p < 0.005); (18 weeks: −1.3 ± 1.4 %, n = 9 vs 4.8 ± 3.0 %, n = 5, p < 0.05). ANCOVA: analysis of covariance; IHCL: intrahepatocellular lipid
Fig. 5
Fig. 5
Time course data for plasma glucose at baseline, 9-weeks and 18 weeks for inulin (i) and cellulose supplementation (ii). Black line = baseline; dark grey line = 9-week visit; light grey line = 18-week visit. tAUC was calculated using the trapezoid method. ANCOVA using weight change as a covariate was used to analyse delta change between the inulin and cellulose groups. Glucose tAUC delta change at week nine(135 ± 134, n = 17 vs 87 ± 42, n = 17, p = 0.37) or at week 18 (−267 ± 104, n = 17 vs −38 ± 21, n = 17, p = 0.37) did not differ between groups once controlled for weight loss. There was a significant difference in the FPG delta change between groups at week nine once controlled for weight loss (−0.23 ± 0.17 mmol/L, n = 20 vs 0.44 ± 0.24 mmol/L, n = 19, p = 0.005) while the change at week 18 was no longer significant (−0.40 ± 0.19 mmol/L, n = 20 vs 0.16 ± 0.23 mmol/L, n = 18, p = 0.08) (iii). ANCOVA: analysis of covariance; FPG; fasting plasma glucose; tAUC: total area under the curve
Fig. 6
Fig. 6
Time course data for plasma insulin at baseline, 9 weeks and 18 weeks for inulin (i) and cellulose supplementation (ii). Black line = baseline; dark grey line = 9-week visit; light grey line. tAUC was calculated using the trapezoid method. ANCOVA using weight change as a covariate was used to analyse delta change between the inulin and cellulose groups. After controlling for weight lost the delta change in insulin tAUC following inulin supplementation was similar to the cellulose group at week nine (−2366 ± 575, n = 17 vs −1566 ± 1724, n = 17, p = 0.66) and week 18 (−2643 ± 671, n = 17 vs −1264 ± 1045, n = 17, p = 0.27). The delta change in fasting insulin was also similar between inulin and cellulose at week nine (−23.3 ± 15.4 pmol/L, n = 18 vs −30.5 ± 17.6 pmol/L, n = 17, p = 0.82) and week 18 (−35.5 ± 17.8 pmol/L, n = 18 vs −14.7 ± 18.7 pmol/L, n = 17, p = 0.53). ANCOVA: analysis of covariance; tAUC: total area under the curve

References

    1. Orchard TJ, Temprosa M, Goldberg R, Haffner S, Ratner R, Marcovina S, et al. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial. Ann Intern Med. 2005;142:611–9. doi: 10.7326/0003-4819-142-8-200504190-00009.
    1. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29(9):2102–7. doi: 10.2337/dc06-0560.
    1. Whittemore R, Melkus G, Wagner J, Northrup V, Dziura J, Grey M. Translating the diabetes prevention program to primary care: a pilot study. Nurs Res. 2009;58:2. doi: 10.1097/NNR.0b013e31818fcef3.
    1. Diabetes Prevention Program (DPP) Research Group The Diabetes Prevention Program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71. doi: 10.2337/diacare.25.12.2165.
    1. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, et al. Long-term persistence of hormonal adaptations to weight loss. N Eng J Med. 2011;365:1597–604. doi: 10.1056/NEJMoa1105816.
    1. Doucet E, Imbeault P, St-Pierre S, Alméras N, Mauriège P, Richard D, et al. Appetite after weight loss by energy restriction and a low-fat diet-exercise follow-up. Int J Obes Relat Metab Disord. 2000;24(7):906–14. doi: 10.1038/sj.ijo.0801251.
    1. De Silva A, Bloom SR. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver. 2012;6(1):10–20. doi: 10.5009/gnl.2012.6.1.10.
    1. Wanders AJ, van den Borne JJ, de Graaf C, Hulshof T, Jonathan MC, Kristensen M, et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev. 2011;12(9):724–39.
    1. Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev. 2010;23(1):135–45. doi: 10.1017/S0954422410000089.
    1. Abrams SA, Griffin IJ, Hawthorne KM, Ellis KJ. Effect of prebiotic supplementation and calcium intake on body mass index. J Pediatr. 2007;151(3):293–8. doi: 10.1016/j.jpeds.2007.03.043.
    1. Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54(10):2506–14. doi: 10.1007/s00125-011-2204-7.
    1. Perseghin G, Scifo P, De Cobelli F, Pagliato E, Battezzati A, Arcelloni C, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48:1600–6. doi: 10.2337/diabetes.48.8.1600.
    1. Kelley DE, McKolanis TM, Hegazi RA, Kuller LH, Kalhan SC. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab. 2003;285:E906–16. doi: 10.1152/ajpendo.00117.2003.
    1. So PW, Yu WS, Kuo YT, Wasserfall C, Goldstone AP, Bell JD, et al. Impact of resistant starch on body fat patterning and central appetite regulation. PLoS ONE. 2007;2(12):e1309. doi: 10.1371/journal.pone.0001309.
    1. Robertson MD, Currie JM, Morgan LM, Jewell DP, Frayn KN. Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia. 2003;46:659–65.
    1. Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr. 2005;82:559–67.
    1. Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, et al. Impaired fasting glucose and impaired glucose tolerance implications for care. Diabetes Care. 2007;30:753–9. doi: 10.2337/dc07-9920.
    1. Pedersen C, Lefevre S, Peters V, Patterson M, Ghatei MA, Morgan LM, et al. Gut hormone release and appetite regulation in healthy non-obese participants following oligofructose intake: a dose-escalation study. Appetite. 2013;66:44–53. doi: 10.1016/j.appet.2013.02.017.
    1. Daud NM, Ismail NA, Thomas EL, Fitzpatrick JA, Bell JD, Swann JR, et al. The impact of oligofructose on stimulation of gut hormones, appetite regulation and adiposity. Obesity. 2014;22(6):1430–8. doi: 10.1002/oby.20754.
    1. Blundell J, de Graaf C, Hulshof T, Jebb S, Livingstone B, Lluch A, et al. Appetite control: methodological aspects of the evaluation of foods. Obes Rev. 2010;11:251–70. doi: 10.1111/j.1467-789X.2010.00714.x.
    1. Thomas EL, Saeed N, Hajnal JV, Brynes A, Goldstone AP, Frost G, et al. Magnetic resonance imaging of total body fat. J Appl Physiol. 1998;85:1778–85.
    1. Thomas EL, Hamilton G, Patel N, O’Dwyer R, Doré CJ, Goldin RD, et al. Hepatic triglyceride content and its relation to body adiposity: a magnetic resonance imaging and proton magnetic resonance spectroscopy study. Gut. 2005;54:122–7. doi: 10.1136/gut.2003.036566.
    1. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet. 1987;2:1300–4. doi: 10.1016/S0140-6736(87)91194-9.
    1. Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr. 2009;89:1751–9. doi: 10.3945/ajcn.2009.27465.
    1. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21:2191–2. doi: 10.2337/diacare.21.12.2191.
    1. Maki KC, McKenney JM, Farmer MV, Reeves MS, Dicklin MR. Indices of insulin sensitivity and secretion from a standard liquid meal test in subjects with type 2 diabetes, impaired or normal fasting glucose. Nutr J. 2009;8:22. doi: 10.1186/1475-2891-8-22.
    1. Carvajal R, Wadden TA, Tsai AG, Peck K, Moran CH. Managing obesity in primary care practice: a narrative review. Ann N Y Acad Sci. 2013;1281:191–206. doi: 10.1111/nyas.12004.
    1. Franz MJ, Van Wormer JJ, Crain AL, Boucher JL, Histon T, Caplan W, et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007;107(10):1755–67. doi: 10.1016/j.jada.2007.07.017.
    1. Siri-Tarino PW, Williams PT, Fernstrom HS, Rawlings RS, Krauss RM. Reversal of small, dense LDL subclass phenotype by normalization of adiposity. Obesity. 2009;17(9):1768–75. doi: 10.1038/oby.2009.146.
    1. Kerksick CM, Wismann-Bunn J, Fogt D, Thomas AR, Taylor L, Campbell B, et al. Changes in weight loss, body composition and cardiovascular disease risk after altering macronutrient distributions during a regular exercise program in obese women. Nutr J. 2010;9:59. doi: 10.1186/1475-2891-9-59.
    1. Wijnands MV, Appel MJ, Hollanders VM, Woutersen RA. A comparison of the effects of dietary cellulose and fermentable galacto-oligosaccharide, in a rat model of colorectal carcinogenesis: fermentable fibre confers greater protection than non-fermentable fibre in both high and low fat backgrounds. Carcinogenesis. 1999;20(4):651–6. doi: 10.1093/carcin/20.4.651.
    1. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9. doi: 10.1038/nature11552.
    1. Freeland KR, Wilson C, Wolever T. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr. 2010;103:82–90. doi: 10.1017/S0007114509991462.
    1. Williams PG, Grafenauer SJ, O’Shea JE. Cereal grains, legumes, and weight management: a comprehensive review of the scientific evidence. Nutr Rev. 2008;66(4):171–82. doi: 10.1111/j.1753-4887.2008.00022.x.
    1. Lê KA, Faeh D, Stettler R, Ith M, Kreis R, Vermathen P, et al. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr. 2006;84(6):1374–9.
    1. Thomas EL, Brynes AE, Hamilton G, Patel N, Spong A, Goldin RD, et al. Effect of nutritional counselling on hepatic, muscle and adipose tissue fat content and distribution in non-alcoholic fatty liver disease. World J Gastroenterol. 2006;28;12(36):5813–9.
    1. Chambers ES, Viardot a, Psichas A, Morrison D, Murphy K, Zac-Varghese S et al. Effects of Elevating Colonic Propionate on Liver Fat Content in Adults with Non-Alcoholic Fatty Liver Disease. FASEB J. 2015;29(1):no.385.2.
    1. Misra A, Sinha S, Kumar M, Jagannathan NR, Pandey RM. Proton magnetic resonance spectroscopy study of soleus muscle in non-obese healthy and Type 2 diabetic Asian Northern Indian males: high intramyocellular lipid content correlates with excess body fat and abdominal obesity. Diabet Med. 2003;20:361–7. doi: 10.1046/j.1464-5491.2003.00932.x.
    1. Ng JM, Bertoldo A, Minhas DS, Helbling NL, Coen PM, Price JC, et al. Dynamic PET imaging reveals heterogeneity of skeletal muscle insulin resistance. J Clin Endocrinol Metab. 2014;99(1):E102–6. doi: 10.1210/jc.2013-2095.
    1. Islam A, Civitarese AE, Hesslink RL, Gallaher DD. Viscous dietary fiber reduces adiposity and plasma leptin and increases muscle expression of fat oxidation genes in rats. Obesity. 2012;20:349–55. doi: 10.1038/oby.2011.341.
    1. Stevenson EJ, Astbury NM, Simpson EJ, Taylor MA, Macdonald IA. Fat oxidation during exercise and satiety during recovery are increased following a low-glycemic index breakfast in sedentary women. J Nutr. 2009;139:890–7. doi: 10.3945/jn.108.101956.
    1. Weitkunat K, Schumann S, Petzke KJ, Blaut M, Loh G, Klaus S. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. Nutr Biochem. 2015;26(9):929–37. doi: 10.1016/j.jnutbio.2015.03.010.
    1. Thorburn A, Muir J, Proietto J. Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism. 1993;42:780–5. doi: 10.1016/0026-0495(93)90249-N.
    1. Unwin N, Shaw J, Zimmet P, Alberti KGMM. Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med. 2002;19:708–23. doi: 10.1046/j.1464-5491.2002.00835.x.
    1. Whincup PH, Donin AS. Cereal fibre and type 2 diabetes: time now for randomised controlled trials? Diabetologia. 2015;58(7):1383–5. doi: 10.1007/s00125-015-3644-2.
    1. Delzenne NM, Cani PD. A place for dietary fibre in the management of the metabolic syndrome. Curr Opin Clin Nutr Metab Care. 2005;8(6):636–40. doi: 10.1097/01.mco.0000171124.06408.71.
    1. Machann J, Thamer C, Schnoedt B, Stefan N, Stumvoll M, Haring HU, et al. Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: a whole body. MRI/MRS study. MAGMA. 2005;18(3):128–37. doi: 10.1007/s10334-005-0104-x.

Source: PubMed

3
Abonner