A first-in-human study investigating biodistribution, safety and recommended dose of a new radiolabeled MAb targeting FZD10 in metastatic synovial sarcoma patients

Anne-Laure Giraudet, Philippe Alexandre Cassier, Chicaco Iwao-Fukukawa, Gwenaelle Garin, Jean-Noël Badel, David Kryza, Sylvie Chabaud, Laurence Gilles-Afchain, Gilles Clapisson, Claude Desuzinges, David Sarrut, Adrien Halty, Antoine Italiano, Masaharu Mori, Takuya Tsunoda, Toyomasa Katagiri, Yusuke Nakamura, Laurent Alberti, Claire Cropet, Simon Baconnier, Sandrine Berge-Montamat, David Pérol, Jean-Yves Blay, Anne-Laure Giraudet, Philippe Alexandre Cassier, Chicaco Iwao-Fukukawa, Gwenaelle Garin, Jean-Noël Badel, David Kryza, Sylvie Chabaud, Laurence Gilles-Afchain, Gilles Clapisson, Claude Desuzinges, David Sarrut, Adrien Halty, Antoine Italiano, Masaharu Mori, Takuya Tsunoda, Toyomasa Katagiri, Yusuke Nakamura, Laurent Alberti, Claire Cropet, Simon Baconnier, Sandrine Berge-Montamat, David Pérol, Jean-Yves Blay

Abstract

Background: Synovial Sarcomas (SS) are rare tumors occurring predominantly in adolescent and young adults with a dismal prognosis in advanced phases. We report a first-in-human phase I of monoclonal antibody (OTSA-101) targeting FZD10, overexpressed in most SS but not present in normal tissues, labelled with radioisotopes and used as a molecular vehicle to specifically deliver radiation to FZD10 expressing SS lesions.

Methods: Patients with progressive advanced SS were included. In the first step of this trial, OTSA-101 in vivo bio-distribution and lesions uptake were evaluated by repeated whole body planar and SPECT-CT scintigraphies from H1 till H144 after IV injection of 187 MBq of 111In-OTSA-101. A 2D dosimetry study also evaluated the liver absorbed dose when using 90Y-OTSA-101. In the second step, those patients with significant tumor uptake were randomized between 370 MBq (Arm A) and 1110 MBq (Arm B) of 90Y-OTSA-101 for radionuclide therapy.

Results: From January 2012 to June 2015, 20 pts. (median age 43 years [21-67]) with advanced SS were enrolled. Even though 111In-OTSA-101 liver uptake appeared to be intense, estimated absorbed liver dose was less than 20 Gy for each patient. Tracer intensity was greater than mediastinum in 10 patients consistent with sufficient tumor uptake to proceed to treatment with 90Y-OTSA-101: 8 were randomized (Arm A: 3 patients and Arm B: 5 patients) and 2 were not randomized due to worsening PS. The most common Grade ≥ 3 AEs were reversible hematological disorders, which were more frequent in Arm B. No objective response was observed. Best response was stable disease in 3/8 patients lasting up to 21 weeks for 1 patient.

Conclusions: Radioimmunotherapy targeting FZD10 is feasible in SS patients as all patients presented at least one lesion with 111In-OTSA-101 uptake. Tumor uptake was heterogeneous but sufficient to select 50% of pts. for 90Y-OTSA-101 treatment. The recommended activity for further clinical investigations is 1110 MBq of 90Y-OTSA-101. However, because of hematological toxicity, less energetic particle emitter radioisopotes such as Lutetium 177 may be a better option to wider the therapeutic index.

Trial registration: The study was registered on the NCT01469975 website with a registration code NCT01469975 on November the third, 2011.

Keywords: First-in-human trial; Radioimmunotherapy; Synovial sarcoma; Theranostic.

Conflict of interest statement

Ethics approval and consent to participate

This clinical trial protocol and amendments was approved by French competent Authority, ANSM on 12th October 2011 and by French Ethic committee (CPP Sud-Est IV, Lyon, France) on 13th September 2011 and conducted in accordance with International Conference on Harmonization for Good Clinical Practice, and local regulations (European Directive 2001/20/EC). All patients provided written informed consent. The study was registered on the clinicaltrial.gov website (NCT01469975).

Consent for publication

The manuscript does not contain data from any individual person and it is not applicable in this section.

Competing interests

Chicaco Iwao-Fukukawa; Masaharu Mori, Takuya Tsunoda, Toyomasa Katagiri, Yusuke Nakamura were/are employees of Oncotherapy Science (Japan).

Simon Baconnier was also an employee of OTS France.

The remaining authors declare no competing interest with the study data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Consort diagram
Fig. 2
Fig. 2
111In-OTSA-101 visual uptake grading. Examples of 111In-OTSA-101 tumors uptake visualized in 3 patients on planar imaging (a) and assessed using visual scale applied on SPECT-CT acquisitions (b)
Fig. 3
Fig. 3
111In-OTSA-101 whole body planar scintigraphy repeated over time for patient 8 showing increasing lesions uptake compare to mediastinal blood pool
Fig. 4
Fig. 4
111In-OTSA-101 SPECT-CT images performed at H72 in patient 3 showing a grade 2 lesion in the right lower lung lobe (a) and a grade 4 lesion in the left lower lung lobe (b)
Fig. 5
Fig. 5
Response to treatment assessed for each patient on time to disease progression in weeks after 90Y-OTSA-101 injection

References

    1. Ducimetière F, Lurkin A, Ranchère-Vince D, Decouvelaere AV, Péoc'h M, Istier L, Chalabreysse P, Muller C, Alberti L, Bringuier PP, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One. 2011;6(8):e20294. doi: 10.1371/journal.pone.0020294.
    1. Lagarde P, Przybyl J, Brulard C, Pérot G, Pierron G, Delattre O, Sciot R, Wozniak A, Schöffski P, Terrier P, et al. Chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas. J Clin Oncol. 2013;31(5):608–615. doi: 10.1200/JCO.2012.46.0147.
    1. Vlenterie M, Litière S, Rizzo E, Marréaud S, Judson I, Gelderblom H, Le Cesne A, Wardelmann E, Messiou C, Gronchi A, et al. Outcome of chemotherapy in advanced synovial sarcoma patients: review of 15 clinical trials from the European Organisation for Research and Treatment of Cancer soft tissue and bone sarcoma group; setting a new landmark for studies in this entity. Eur J Cancer. 2016;58:62–72. doi: 10.1016/j.ejca.2016.02.002.
    1. Sleijfer S, Ouali M, van Glabbeke M, Krarup-Hansen A, Rodenhuis S, Le Cesne A, Hogendoorn PC, Verweij J, Blay JY. Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas: an exploratory, retrospective analysis on large series from the European Organization for Research and Treatment of Cancer-soft tissue and bone sarcoma group (EORTC-STBSG) Eur J Cancer. 2010;46(1):72–83. doi: 10.1016/j.ejca.2009.09.022.
    1. Do K, Doroshow JH, Kummar S. Antiangiogenic approaches for the treatment of advanced synovial sarcomas. Curr Opin Oncol. 2012;24(4):425–430. doi: 10.1097/CCO.0b013e328354c141.
    1. Cranmer LD, Loggers ET, Pollack SM. Pazopanib in the management of advanced soft tissue sarcomas. Ther Clin Risk Manag. 2016;12:941–955. doi: 10.2147/TCRM.S84792.
    1. Mir O, Brodowicz T, Italiano A, Wallet J, Blay JY, Bertucci F, Chevreau C, Piperno-Neumann S, Bompas E, Salas S, et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016; 10.1016/S1470-2045(16)30507-1.
    1. Nagayama S, Katagiri T, Tsunoda T, Hosaka T, Nakashima Y, Araki N, Kusuzaki K, Nakayama T, Tsuboyama T, Nakamura T, et al. Genome-wide analysis of gene expression in synovial sarcomas using a cDNA microarray. Cancer Res. 2002;62(20):5859–5866.
    1. Nagayama S, Fukukawa C, Katagiri T, Okamoto T, Aoyama T, Oyaizu N, Imamura M, Toguchida J, Nakamura Y. Therapeutic potential of antibodies against FZD 10, a cell-surface protein, for synovial sarcomas. Oncogene. 2005;24(41):6201–6212. doi: 10.1038/sj.onc.1208780.
    1. Fukukawa C, Hanaoka H, Nagayama S, Tsunoda T, Toguchida J, Endo K, Nakamura Y, Katagiri T. Radioimmunotherapy of human synovial sarcoma using a monoclonal antibody against FZD10. Cancer Sci. 2008;99(2):432–440. doi: 10.1111/j.1349-7006.2007.00701.x.
    1. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–122. doi: 10.1016/0360-3016(91)90171-Y.
    1. Rizzieri D. Zevalin(®) (ibritumomab tiuxetan): after more than a decade of treatment experience, what have we learned? Crit Rev Oncol Hematol. 2016;105:5–17. doi: 10.1016/j.critrevonc.2016.07.008.
    1. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, Osborne J, Goldsmith SJ, Larson S, Taskar NP, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19(18):5182–5191. doi: 10.1158/1078-0432.CCR-13-0231.
    1. Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, van Eijck CH, Esser JP, Kam BL, Krenning EP. Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23(12):2754–2762. doi: 10.1200/JCO.2005.08.066.
    1. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O'Dorisio MS, O'Dorisio TM, O'Dorisiol TM, Howe JR, Cremonesi M, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(5):800–816. doi: 10.1007/s00259-012-2330-6.
    1. Hofman MS, Hicks RJ. Changing paradigms with molecular imaging of neuroendocrine tumors. Discov Med. 2012;14(74):71–81.
    1. Haberkorn U, Eder M, Kopka K, Babich JW, Eisenhut M. New strategies in prostate Cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin Cancer Res. 2016;22(1):9–15. doi: 10.1158/1078-0432.CCR-15-0820.
    1. Baum RP, Kulkarni HR. THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and PET/CT to personalized radionuclide therapy - the Bad Berka experience. Theranostics. 2012;2(5):437–447. doi: 10.7150/thno.3645.
    1. Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, Schottelius M, Mueller D, Klette I, Wester HJ. 177Lu-labeled prostate-specific membrane antigen Radioligand therapy of metastatic castration-resistant prostate Cancer: safety and efficacy. J Nucl Med. 2016;57(7):1006–1013. doi: 10.2967/jnumed.115.168443.
    1. Kulkarni HR, Singh A, Schuchardt C, Niepsch K, Sayeg M, Leshch Y, Wester HJ, Baum RP. PSMA-based Radioligand therapy for metastatic castration-resistant prostate Cancer: the Bad Berka experience since 2013. J Nucl Med. 2016;57(Suppl 3):97S–104S. doi: 10.2967/jnumed.115.170167.
    1. Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22(13):2522–2531. doi: 10.1200/JCO.2004.09.154.
    1. Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH. Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res. 2005;11(19 Pt 2):7195s–7200s. doi: 10.1158/1078-0432.CCR-1004-0023.
    1. Sarrut D, Badel JN, Halty A, Garin G, Perol D, Cassier P, Blay JY, Kryza D, Giraudet AL. 3D absorbed dose distribution estimated by Monte Carlo simulation in radionuclide therapy with a monoclonal antibody targeting synovial sarcoma. EJNMMI Phys. 2017;4(1):6. doi: 10.1186/s40658-016-0172-1.
    1. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23(21):4591–4601. doi: 10.1200/JCO.2005.05.160.
    1. Ahmadzadehfar H, Rahbar K, Kürpig S, Bögemann M, Claesener M, Eppard E, Gärtner F, Rogenhofer S, Schäfers M, Essler M. Early side effects and first results of radioligand therapy with (177) Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-Centre study. EJNMMI Res. 2015;5(1):114.
    1. Ahmadzadehfar H, Eppard E, Kürpig S, Fimmers R, Yordanova A, Schlenkhoff CD, Gärtner F, Rogenhofer S, Essler M. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget. 2016;7(11):12477–12488. doi: 10.18632/oncotarget.7245.

Source: PubMed

3
Abonner