Age-dependent remodeling of gut microbiome and host serum metabolome in mice

Chia-Shan Wu, Sai Deepak Venkata Muthyala, Cory Klemashevich, Arinzechukwu Uchenna Ufondu, Rani Menon, Zheng Chen, Sridevi Devaraj, Arul Jayaraman, Yuxiang Sun, Chia-Shan Wu, Sai Deepak Venkata Muthyala, Cory Klemashevich, Arinzechukwu Uchenna Ufondu, Rani Menon, Zheng Chen, Sridevi Devaraj, Arul Jayaraman, Yuxiang Sun

Abstract

The interplay between microbiota and host metabolism plays an important role in health. Here, we examined the relationship between age, gut microbiome and host serum metabolites in male C57BL/6J mice. Fecal microbiome analysis of 3, 6, 18, and 28 months (M) old mice showed that the Firmicutes/Bacteroidetes ratio was highest in the 6M group; the decrease of Firmicutes in the older age groups suggests a reduced capacity of gut microflora to harvest energy from food. We found age-dependent increase in Proteobacteria, which may lead to altered mucus structure more susceptible to bacteria penetration and ultimately increased intestinal inflammation. Metabolomic profiling of polar serum metabolites at fed state in 3, 12, 18 and 28M mice revealed age-associated changes in metabolic cascades involved in tryptophan, purine, amino acids, and nicotinamide metabolism. Correlation analyses showed that nicotinamide decreased with age, while allantoin and guanosine, metabolites in purine metabolism, increased with age. Notably, tryptophan and its microbially derived compounds indole and indole-3-lactic acid significantly decreased with age, while kynurenine increased with age. Together, these results suggest a significant interplay between bacterial and host metabolism, and gut dysbiosis and altered microbial metabolism contribute to aging.

Keywords: aging; gut microbiome; metabolism; serum metabolome.

Conflict of interest statement

CONFLICTS OF INTEREST: The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Alteration in gut microbiota diversity and composition at different ages. Mice at 3-, 6-, 18- and 28 months of age (3M, 6M, 18M, 28M) were used (n=8, 9, 10 and 6, respectively). (A) Box-and-whisker plot showing the bacterial α-diversity measurements, including richness (observed species and chao1), and overall sample diversity measured according to Shannon metrics. One-way ANOVA with age as an independent factor. (B) PCoA analysis plot representing microbial β-diversity. (C) Microbiome composition at the level of major phyla. (D) Correlation analysis of the abundance of the major phyla with age. Heatmap shows the abundance-fold-change of bacteria with age. In red: bacteria which are more abundant, in blue: bacteria which are less abundant. Scale: Log2 (Fold change) = -1 (blue) < 0 (white) < 1 (red).
Figure 2
Figure 2
Taxonomic distribution of fecal microbiome by genera. (A) Microbiome composition at the level of genera. (B) The left histogram shows the Linear discriminant analysis (LDA) effect size (Lefse) scores computed for features (on the OTU level) differentially abundant between the different age groups. The right heatmap shows the relative abundance (log10 transformation) of OTUs. “unc”: unclassified.
Figure 3
Figure 3
Fed-state serum metabolome and enriched pathways impacted by aging. Serum samples from 3-, 12-, 18- and 28 months old (3M, 12M, 18M and 28M) mice at the fed state were analyzed (n=4, 5, 4 and 4, respectively). (A) PCA analysis shows the grouped discriminations of the different age groups. 12M and 18M groups clustered together on the PC1 axis. (B) Mummichog pathway analysis plot, using peaks-to-pathway analysis module in MetaboAnalyst 4.0. The color and size of each circle corresponds to its p-value and enrichment factor, respectively. The enrichment factor of a pathway is calculated as the ratio between the number of significant pathway hits and the expected number of compound hits within the pathway [69]. The corresponding pathways are listed in Table 1.
Figure 4
Figure 4
Top metabolic alterations in aging. (A, B) Guanosine and allantoin, metabolites in the purine metabolism pathway. (C, D) Hydroxyproline and N-acetylornithine, metabolites in the arginine and proline metabolism pathway. (E, F) Erythrose phosphate and nicotinamide, metabolites in the pentose phosphate and nicotinamide pathways, respectively. n=4, 5, 4 and 4 for the 3-, 12-, 18- and 28 months old (3M, 12M, 18M, 28M) groups, respectively.
Figure 5
Figure 5
Tryptophan metabolism was altered in aging. (A) Tryptophan and (B) L-kynurenine, metabolite from tryptophan catabolism by host. (C, D) indole and indole-3-lactic acid, metabolites from tryptophan catabolism by gut bacteria. n=4, 5, 4 and 4 for the 3-, 12-, 18- and 28 months old (3M, 12M, 18M, 28M) groups, respectively.

References

    1. Ahima RS. Connecting obesity, aging and diabetes. Nat Med. 2009; 15:996–97. 10.1038/nm0909-996
    1. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL. Fat tissue, aging, and cellular senescence. Aging Cell. 2010; 9:667–84. 10.1111/j.1474-9726.2010.00608.x
    1. Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012; 111:245–59. 10.1161/CIRCRESAHA.111.261388
    1. Drew L. An age-old story of dementia. Nature. 2018; 559:S2–S3. 10.1038/d41586-018-05718-5
    1. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014. (Suppl 1); 69:S4–9. 10.1093/gerona/glu057
    1. Devaraj S, Hemarajata P, Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem. 2013; 59:617–28. 10.1373/clinchem.2012.187617
    1. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012; 489:242–49. 10.1038/nature11552
    1. Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP, Jury J, Foley KP, Schertzer JD, Larché MJ, Davidson DJ, et al.. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host Microbe. 2017; 21:455–66.e4. 10.1016/j.chom.2017.03.002
    1. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010; 5:e10667. 10.1371/journal.pone.0010667
    1. Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2016; 10:170–82. 10.1038/ismej.2015.88
    1. O’Toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015; 350:1214–15. 10.1126/science.aac8469
    1. Kell DB, Oliver SG. The metabolome 18 years on: a concept comes of age. Metabolomics. 2016; 12:148. 10.1007/s11306-016-1108-4
    1. Collino S, Montoliu I, Martin FP, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, Franceschi C, Rezzi S. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One. 2013; 8:e56564. 10.1371/journal.pone.0056564
    1. Tomás-Loba A, Bernardes de Jesus B, Mato JM, Blasco MA. A metabolic signature predicts biological age in mice. Aging Cell. 2013; 12:93–101. 10.1111/acel.12025
    1. Houtkooper RH, Argmann C, Houten SM, Cantó C, Jeninga EH, Andreux PA, Thomas C, Doenlen R, Schoonjans K, Auwerx J. The metabolic footprint of aging in mice. Sci Rep. 2011; 1:134. 10.1038/srep00134
    1. Viltard M, Durand S, Pérez-Lanzón M, Aprahamian F, Lefevre D, Leroy C, Madeo F, Kroemer G, Friedlander G. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY). 2019; 11:4783–800. 10.18632/aging.102116
    1. Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee EP, Ho JE, Jacques PF, Ghorbani A, Magnusson M, Souza AL, Deik AA, Pierce KA, Bullock K, et al.. Distinct metabolomic signatures are associated with longevity in humans. Nat Commun. 2015; 6:6791. 10.1038/ncomms7791
    1. Srivastava S. Emerging insights into the metabolic alterations in aging using metabolomics. Metabolites. 2019; 9:301. 10.3390/metabo9120301
    1. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009; 106:3698–703. 10.1073/pnas.0812874106
    1. Kim BR, Shin J, Guevarra R, Lee JH, Kim DW, Seol KH, Lee JH, Kim HB, Isaacson R. Deciphering diversity indices for a better understanding of microbial communities. J Microbiol Biotechnol. 2017; 27:2089–93. 10.4014/jmb.1709.09027
    1. Brunt VE, Gioscia-Ryan RA, Richey JJ, Zigler MC, Cuevas LM, Gonzalez A, Vázquez-Baeza Y, Battson ML, Smithson AT, Gilley AD, Ackermann G, Neilson AP, Weir T, et al.. Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice. J Physiol. 2019; 597:2361–78. 10.1113/JP277336
    1. Scott KA, Ida M, Peterson VL, Prenderville JA, Moloney GM, Izumo T, Murphy K, Murphy A, Ross RP, Stanton C, Dinan TG, Cryan JF. Revisiting metchnikoff: age-related alterations in microbiota-gut-brain axis in the mouse. Brain Behav Immun. 2017; 65:20–32. 10.1016/j.bbi.2017.02.004
    1. Sovran B, Hugenholtz F, Elderman M, Van Beek AA, Graversen K, Huijskes M, Boekschoten MV, Savelkoul HF, De Vos P, Dekker J, Wells JM. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity. Sci Rep. 2019; 9:1437. 10.1038/s41598-018-35228-3
    1. Hoffman JD, Parikh I, Green SJ, Chlipala G, Mohney RP, Keaton M, Bauer B, Hartz AM, Lin AL. Age drives distortion of brain metabolic, vascular and cognitive functions, and the gut microbiome. Front Aging Neurosci. 2017; 9:298. 10.3389/fnagi.2017.00298
    1. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, et al.. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA. 2011. (Suppl 1); 108:4586–91. 10.1073/pnas.1000097107
    1. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, et al.. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012; 488:178–84. 10.1038/nature11319
    1. Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF, Correa A, He J. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circ Res. 2016; 119:956–64. 10.1161/CIRCRESAHA.116.309219
    1. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009; 9:123. 10.1186/1471-2180-9-123
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444:1022–23. 10.1038/4441022a
    1. Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, Buurman WA, de Vos WM, Rensen SS. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring). 2013; 21:E607–15. 10.1002/oby.20466
    1. Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A, Ermund A, Boysen P, Bemark M, Sommer F, Bäckhed F, Hansson GC, Johansson ME. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2015; 16:164–77. 10.15252/embr.201439263
    1. Fransen F, van Beek AA, Borghuis T, Aidy SE, Hugenholtz F, van der Gaast-de Jongh C, Savelkoul HF, De Jonge MI, Boekschoten MV, Smidt H, Faas MM, de Vos P. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol. 2017; 8:1385. 10.3389/fimmu.2017.01385
    1. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017; 106:171–81. 10.1016/j.micpath.2016.02.005
    1. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, Bae JW. An increase in the akkermansia spp. Population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014; 63:727–35. 10.1136/gutjnl-2012-303839
    1. Kang CS, Ban M, Choi EJ, Moon HG, Jeon JS, Kim DK, Park SK, Jeon SG, Roh TY, Myung SJ, Gho YS, Kim JG, Kim YK. Extracellular vesicles derived from gut microbiota, especially akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS One. 2013; 8:e76520. 10.1371/journal.pone.0076520
    1. Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal akkermansia muciniphila exacerbates gut inflammation in salmonella typhimurium-infected gnotobiotic mice. PLoS One. 2013; 8:e74963. 10.1371/journal.pone.0074963
    1. McReynolds MR, Chellappa K, Baur JA. Age-related NAD+ decline. Exp Gerontol. 2020; 134:110888. 10.1016/j.exger.2020.110888
    1. Mouchiroud L, Houtkooper RH, Auwerx J. NAD⁺ metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol. 2013; 48:397–408. 10.3109/10409238.2013.789479
    1. Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011; 14:528–36. 10.1016/j.cmet.2011.08.014
    1. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, et al.. Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013; 155:1624–38. 10.1016/j.cell.2013.11.037
    1. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012; 7:e42357. 10.1371/journal.pone.0042357
    1. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008; 28:115–30. 10.1146/annurev.nutr.28.061807.155443
    1. Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, Chonchol M, Seals DR. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun. 2018; 9:1286. 10.1038/s41467-018-03421-7
    1. de Picciotto NE, Gano LB, Johnson LC, Martens CR, Sindler AL, Mills KF, Imai S, Seals DR. Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice. Aging Cell. 2016; 15:522–30. 10.1111/acel.12461
    1. Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, Cartwright DM, Oakey L, Burley CV, Jenkinson N, Wilson M, Lucas SJ, Akerman I, et al.. Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019; 28:1717–28.e6. 10.1016/j.celrep.2019.07.043
    1. Tasca CI, Lanznaster D, Oliveira KA, Fernández-Dueñas V, Ciruela F. Neuromodulatory effects of guanine-based purines in health and disease. Front Cell Neurosci. 2018; 12:376. 10.3389/fncel.2018.00376
    1. Ivanisevic J, Stauch KL, Petrascheck M, Benton HP, Epstein AA, Fang M, Gorantla S, Tran M, Hoang L, Kurczy ME, Boska MD, Gendelman HE, Fox HS, Siuzdak G. Metabolic drift in the aging brain. Aging (Albany NY). 2016; 8:1000–20. 10.18632/aging.100961
    1. Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011; 41:1195–205. 10.1007/s00726-010-0752-7
    1. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018; 9:3294. 10.1038/s41467-018-05470-4
    1. Yao K, Fang J, Yin YL, Feng ZM, Tang ZR, Wu G. Tryptophan metabolism in animals: important roles in nutrition and health. Front Biosci (Schol Ed). 2011; 3:286–97. 10.2741/s152
    1. Keszthelyi D, Troost FJ, Masclee AA. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil. 2009; 21:1239–49. 10.1111/j.1365-2982.2009.01370.x
    1. Gostner JM, Geisler S, Stonig M, Mair L, Sperner-Unterweger B, Fuchs D. Tryptophan metabolism and related pathways in psychoneuroimmunology: the impact of nutrition and lifestyle. Neuropsychobiology. 2020; 79:89–99. 10.1159/000496293
    1. Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun. 2007; 75:4597–607. 10.1128/IAI.00630-07
    1. Kohli N, Crisp Z, Riordan R, Li M, Alaniz RC, Jayaraman A. The microbiota metabolite indole inhibits salmonella virulence: involvement of the PhoPQ two-component system. PLoS One. 2018; 13:e0190613. 10.1371/journal.pone.0190613
    1. Bommarius B, Anyanful A, Izrayelit Y, Bhatt S, Cartwright E, Wang W, Swimm AI, Benian GM, Schroeder FC, Kalman D. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. Coli. PLoS One. 2013; 8:e54456. 10.1371/journal.pone.0054456
    1. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, Zecchi R, D’Angelo C, Massi-Benedetti C, Fallarino F, Carvalho A, Puccetti P, Romani L. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013; 39:372–85. 10.1016/j.immuni.2013.08.003
    1. Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H, Takeda K. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One. 2013; 8:e80604. 10.1371/journal.pone.0080604
    1. Safe S, Jayaraman A, Chapkin RS. Ah receptor ligands and their impacts on gut resilience: structure-activity effects. Crit Rev Toxicol. 2020; 50:463–73. 10.1080/10408444.2020.1773759
    1. Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018; 8:13. 10.3389/fcimb.2018.00013
    1. Sonowal R, Swimm A, Sahoo A, Luo L, Matsunaga Y, Wu Z, Bhingarde JA, Ejzak EA, Ranawade A, Qadota H, Powell DN, Capaldo CT, Flacker JM, et al.. Indoles from commensal bacteria extend healthspan. Proc Natl Acad Sci USA. 2017; 114:E7506–15. 10.1073/pnas.1706464114
    1. Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA. 2010; 107:228–33. 10.1073/pnas.0906112107
    1. Gagliano N, Arosio B, Santambrogio D, Balestrieri MR, Padoani G, Tagliabue J, Masson S, Vergani C, Annoni G. Age-dependent expression of fibrosis-related genes and collagen deposition in rat kidney cortex. J Gerontol A Biol Sci Med Sci. 2000; 55:B365–72. 10.1093/gerona/55.8.b365
    1. Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA, Li P, Li X, McKnight JR, Satterfield MC, Spencer TE. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids. 2011; 40:1053–63. 10.1007/s00726-010-0715-z
    1. He B, Nohara K, Ajami NJ, Michalek RD, Tian X, Wong M, Losee-Olson SH, Petrosino JF, Yoo SH, Shimomura K, Chen Z. Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Sci Rep. 2015; 5:10604. 10.1038/srep10604
    1. Wu CS, Wei Q, Wang H, Kim DM, Balderas M, Wu G, Lawler J, Safe S, Guo S, Devaraj S, Chen Z, Sun Y. Protective effects of ghrelin on fasting-induced muscle atrophy in aging mice. J Gerontol A Biol Sci Med Sci. 2020; 75:621–30. 10.1093/gerona/gly256
    1. Pahwa R, Balderas M, Jialal I, Chen X, Luna RA, Devaraj S. Gut microbiome and inflammation: a study of diabetic inflammasome-knockout mice. J Diabetes Res. 2017; 2017:6519785. 10.1155/2017/6519785
    1. Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020; 15:799–821. 10.1038/s41596-019-0264-1
    1. Weindel CG, Bell SL, Vail KJ, West KO, Patrick KL, Watson RO. LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis. Elife. 2020; 9:e51071. 10.7554/eLife.51071
    1. Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics. 2019; 68:e86. 10.1002/cpbi.86

Source: PubMed

3
Abonner