Elevated leptin levels induce inflammation through IL-6 in skeletal muscle of aged female rats

Ryo Tazawa, Kentaro Uchida, Hisako Fujimaki, Masayuki Miyagi, Gen Inoue, Hiroyuki Sekiguchi, Kosuke Murata, Ken Takata, Ayumu Kawakubo, Masashi Takaso, Ryo Tazawa, Kentaro Uchida, Hisako Fujimaki, Masayuki Miyagi, Gen Inoue, Hiroyuki Sekiguchi, Kosuke Murata, Ken Takata, Ayumu Kawakubo, Masashi Takaso

Abstract

Background: Chronic inflammation with aging contributes to sarcopenia. Previous studies have suggested that the accumulation of adipose tissue in skeletal muscle, referred to as intermuscular adipose tissue (IMAT), increases with age and is associated with inflammation. However, the mechanism governing ectopic inflammation in skeletal muscle due to aging is not fully understood. Leptin, an adipocytokine derived from adipose tissue, is an important mediator of inflammatory processes. We examined changes in leptin levels with age and whether leptin contributes to ectopic inflammation.

Methods: To evaluate ectopic inflammation in skeletal muscle, we measured alterations to the expression of inflammatory cytokine genes (Il1b, Il6, and Tnfa) and muscle break down-related gene (MuRF1 and Atrogin1) in the quadricep muscles of young (10 weeks) and aged (48 weeks) female rats using quantitative reverse-transcription polymerase chain reaction (Q-RT-PCR). Histological examination was performed to identify the extent of IMAT. Leptin mRNA and leptin protein expression were examined using Q-RT-PCR and enzyme-linked immunosorbent assay, respectively. The effect of leptin on the mRNA expression of Il1b, Il6, and Tnfa in quadricep muscle-derived cells was also examined by stimulating the cells with 0 (control), 1, or 10 μg/mL rat recombinant leptin using Q-RT-PCR.

Results: Aged rats had significantly higher Il6, MuRF1, and Atrogin1 but not Il1b and Tnfa, expression and greater levels of IMAT in their quadricep muscles than young rats. Aged rats also had significantly higher leptin expression and leptin protein concentration in their quadricep muscles than young rats. The addition of exogenous leptin to quadricep muscle-derived cells significantly increased the gene expression of Il1b and Il6 but not Tnfa.

Conclusions: Our results suggest that elevated leptin levels due to aging cause ectopic inflammation through IL-6 in the skeletal muscle of aged rats.

Keywords: Inflammation; Interleukin-6; Intermuscular adipose tissue; Leptin.

Conflict of interest statement

Ethics approval and consent to participate

All experimental protocols were approved by the Kitasato University School of Medicine Animal Care Committee (Permission number: 2018–085).

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Quantitative reverse-transcription polymerase chain reaction analysis of inflammatory cytokines and muscle breakdown-related gene expression in quadriceps muscles. Relative gene expression of inflammatory cytokines, Il6 (a), Il1b (b), Tnfa (c), and muscle breakdown-related gene Atrogin1 (d) and MuRF1 (e) in quadriceps muscle extracted from young (10 weeks) and aged (48 weeks) rats. Data represent mean ± SE (n = 10). * p < 0.05, between young and aged groups
Fig. 2
Fig. 2
Accumulation of adipose tissue in quadricep muscles. Representative micrographs of muscle sections stained with hematoxylin-eosin from young (10 weeks) and aged (48 weeks) rats. a young (× 40), (b) young (× 200), (c) aged (× 40), (d) aged (× 200). Black arrows indicate adipocytes. Scale bar = 100 μm
Fig. 3
Fig. 3
Leptin gene expression by quantitative reverse-transcription polymerase chain reaction analysis and leptin protein concentration by enzyme-linked immunosorbent assay in quadricep muscles. a Relative leptin gene expression in quadricep muscles extracted from young (10 weeks) and aged (48 weeks) rats. b Leptin protein concentration in quadriceps muscles from young (10 weeks) and aged (48 weeks) rats. Data indicate mean ± SE (n = 10). * p < 0.05, between young and aged groups
Fig. 4
Fig. 4
Effect of leptin on Il1b, Il6, and Tnfa mRNA expression. Effect of leptin on Il6 (a), Il1b (b), Tnfa (c) gene expression in cultured quadricep muscle-derived cells. Quadricep muscle-derived cells were stimulated with 0 (control), 1, or 10 μg/mL rat recombinant leptin. Gene expression in the leptin-stimulated groups was compared with that in the control group. Data indicate mean ± SE (n = 10). * p < 0.05, compared to control

References

    1. von HS, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129–133. doi: 10.1007/s13539-010-0014-2.
    1. Filippin LI, Teixeira VN, da Silva MP, Miraglia F, da Silva FS. Sarcopenia: a predictor of mortality and the need for early diagnosis and intervention. Aging Clin Exp Res. 2015;27(3):249–254. doi: 10.1007/s40520-014-0281-4.
    1. Murphy RA, Ip EH, Zhang Q, Boudreau RM, Cawthon PM, Newman AB, Tylavsky FA, Visser M, Goodpaster BH, Harris TB. Transition to sarcopenia and determinants of transitions in older adults: a population-based study. J Gerontol A Biol Sci Med Sci. 2014;69(6):751–758. doi: 10.1093/gerona/glt131.
    1. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, Palla SL, Ambrosius WT, Tracy RP, Pahor M. Sarcopenia, obesity, and inflammation--results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study. Am J Clin Nutr. 2005;82(2):428–434. doi: 10.1093/ajcn/82.2.428.
    1. Schrager MA, Metter EJ, Simonsick E, Ble A, Bandinelli S, Lauretani F, Ferrucci L. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol (1985) 2007;102(3):919–925. doi: 10.1152/japplphysiol.00627.2006.
    1. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB, Nevitt M, Harris TB. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the health ABC study. J Gerontol A Biol Sci Med Sci. 2002;57(5):M326–M332. doi: 10.1093/gerona/57.5.M326.
    1. Bian AL, Hu HY, Rong YD, Wang J, Wang JX, Zhou XZ. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-alpha. Eur J Med Res. 2017;22(1):25. doi: 10.1186/s40001-017-0266-9.
    1. Cohen TV, Many GM, Fleming BD, Gnocchi VF, Ghimbovschi S, Mosser DM, Hoffman EP, Partridge TA. Upregulated IL-1beta in dysferlin-deficient muscle attenuates regeneration by blunting the response to pro-inflammatory macrophages. Skelet Muscle. 2015;5:24. doi: 10.1186/s13395-015-0048-4.
    1. de AP, Tomazoni SS, Frigo L, de Carvalho PT, Vanin AA, Santos LA, buquerque-Pontes GM, De MT, Tairova O, Marcos RL, Lopes-Martins RA, Leal-Junior EC. What is the best treatment to decrease pro-inflammatory cytokine release in acute skeletal muscle injury induced by trauma in rats: low-level laser therapy, diclofenac, or cryotherapy? Lasers Med Sci. 2014;29(2):653–658. doi: 10.1007/s10103-013-1377-3.
    1. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat.Rev.Immunol. 2006;6(10):772–783. doi: 10.1038/nri1937.
    1. La CA, Matarese G. The weight of leptin in immunity. Nat Rev Immunol. 2004;4(5):371–379. doi: 10.1038/nri1350.
    1. Yang WH, Liu SC, Tsai CH, Fong YC, Wang SJ, Chang YS, Tang CH. Leptin induces IL-6 expression through OBRl receptor signaling pathway in human synovial fibroblasts. PLoS One. 2013;8(9):e75551. doi: 10.1371/journal.pone.0075551.
    1. Tang CH, Lu DY, Yang RS, Tsai HY, Kao MC, Fu WM, Chen YF. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia. J Immunol. 2007;179(2):1292–1302. doi: 10.4049/jimmunol.179.2.1292.
    1. Simopoulou T, Malizos KN, Iliopoulos D, Stefanou N, Papatheodorou L, Ioannou M, Tsezou A. Differential expression of leptin and leptin's receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Osteoarthritis Cartilage. 2007;15(8):872–883. doi: 10.1016/j.joca.2007.01.018.
    1. Pinteaux E, Inoue W, Schmidt L, Molina-Holgado F, Rothwell NJ, Luheshi GN. Leptin induces interleukin-1beta release from rat microglial cells through a caspase 1 independent mechanism. J Neurochem. 2007;102(3):826–833. doi: 10.1111/j.1471-4159.2007.04559.x.
    1. RK D, GT S, KA B. Tumor incidence in normal Sprague-Dawley female rats. Cancer Res. 1956;16(3):194–197.
    1. Miao D, Zhang L. Leptin modulates the expression of catabolic genes in rat nucleus pulposus cells through the mitogen-activated protein kinase and Janus kinase 2/signal transducer and activator of transcription 3 pathways. Mol Med Rep. 2015;12(2):1761–1768. doi: 10.3892/mmr.2015.3646.
    1. Buford TW, Lott DJ, Marzetti E, Wohlgemuth SE, Vandenborne K, Pahor M, Leeuwenburgh C, Manini TM. Age-related differences in lower extremity tissue compartments and associations with physical function in older adults. Exp Gerontol. 2012;47(1):38–44. doi: 10.1016/j.exger.2011.10.001.
    1. Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging. 2010;14(5):362–366. doi: 10.1007/s12603-010-0081-2.
    1. Zoico E, Rossi A, Di FV, Sepe A, Olioso D, Pizzini F, Fantin F, Bosello O, Cominacini L, Harris TB, Zamboni M. Adipose tissue infiltration in skeletal muscle of healthy elderly men: relationships with body composition, insulin resistance, and inflammation at the systemic and tissue level. J Gerontol A Biol Sci Med Sci. 2010;65(3):295–299. doi: 10.1093/gerona/glp155.
    1. Goodman MN. Interleukin-6 induces skeletal muscle protein breakdown in rats. Proc Soc Exp Biol Med. 1994;205(2):182–185. doi: 10.3181/00379727-205-43695.
    1. Baltgalvis KA, Berger FG, Pena MM, Davis JM, White JP, Carson JA. Muscle wasting and interleukin-6-induced atrogin-I expression in the cachectic Apc ( min/+ ) mouse. Pflugers Arch. 2009;457(5):989–1001. doi: 10.1007/s00424-008-0574-6.
    1. Yakabe M, Ogawa S, Ota H, Iijima K, Eto M, Ouchi Y, Akishita M. Inhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy. PLoS One. 2018;13(1):e0191318. doi: 10.1371/journal.pone.0191318.
    1. Kohara K, Ochi M, Tabara Y, Nagai T, Igase M, Miki T. Leptin in sarcopenic visceral obesity: possible link between adipocytes and myocytes. PLoS One. 2011;6(9):e24633. doi: 10.1371/journal.pone.0024633.
    1. Broussard SR, McCusker RH, Novakofski JE, Strle K, Shen WH, Johnson RW, Dantzer R, Kelley KW. IL-1beta impairs insulin-like growth factor i-induced differentiation and downstream activation signals of the insulin-like growth factor i receptor in myoblasts. J Immunol. 2004;172(12):7713–7720. doi: 10.4049/jimmunol.172.12.7713.
    1. Greiwe JS, Cheng B, Rubin DC, Yarasheski KE, Semenkovich CF. Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. FASEB J. 2001;15(2):475–482. doi: 10.1096/fj.00-0274com.
    1. Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction. FASEB J. 2005;19(6):668–670. doi: 10.1096/fj.04-2870fje.
    1. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG, Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35–51. doi: 10.1016/j.cmet.2008.12.004.
    1. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73. doi: 10.1016/j.cell.2008.07.043.
    1. Fukuda M, Williams KW, Gautron L, Elmquist JK. Induction of leptin resistance by activation of cAMP-Epac signaling. Cell Metab. 2011;13(3):331–339. doi: 10.1016/j.cmet.2011.01.016.

Source: PubMed

3
Abonner