Study protocol for a phase 2A trial of the safety and tolerability of increased dose rifampicin and adjunctive linezolid, with or without aspirin, for HIV-associated tuberculous meningitis [LASER-TBM]

Angharad G Davis, Sean Wasserman, Mpumi Maxebengula, Cari Stek, Marise Bremer, Remy Daroowala, Saalikha Aziz, Rene Goliath, Stephani Stegmann, Sonya Koekemoer, Amanda Jackson, Louise Lai Sai, Yakub Kadernani, Thandi Sihoyiya, C Jason Liang, Lori Dodd, Paolo Denti, Thomas Crede, Jonathan Naude, Patryk Szymanski, Yakoob Vallie, Ismail Banderker, Shiraz Moosa, Peter Raubenheimer, Rachel P J Lai, John Joska, Sam Nightingale, Anna Dreyer, Gerda Wahl, Curtis Offiah, Isak Vorster, Sally Candy, Frances Robertson, Ernesta Meintjes, Gary Maartens, John Black, Graeme Meintjes, Robert J Wilkinson, Angharad G Davis, Sean Wasserman, Mpumi Maxebengula, Cari Stek, Marise Bremer, Remy Daroowala, Saalikha Aziz, Rene Goliath, Stephani Stegmann, Sonya Koekemoer, Amanda Jackson, Louise Lai Sai, Yakub Kadernani, Thandi Sihoyiya, C Jason Liang, Lori Dodd, Paolo Denti, Thomas Crede, Jonathan Naude, Patryk Szymanski, Yakoob Vallie, Ismail Banderker, Shiraz Moosa, Peter Raubenheimer, Rachel P J Lai, John Joska, Sam Nightingale, Anna Dreyer, Gerda Wahl, Curtis Offiah, Isak Vorster, Sally Candy, Frances Robertson, Ernesta Meintjes, Gary Maartens, John Black, Graeme Meintjes, Robert J Wilkinson

Abstract

Background: Tuberculous meningitis (TBM) is the most lethal form of tuberculosis with a mortality of ~50% in those co-infected with HIV-1. Current antibiotic regimens are based on those known to be effective in pulmonary TB and do not account for the differing ability of the drugs to penetrate the central nervous system (CNS). The host immune response drives pathology in TBM, yet effective host-directed therapies are scarce. There is sufficient data to suggest that higher doses of rifampicin (RIF), additional linezolid (LZD) and adjunctive aspirin (ASA) will be beneficial in TBM yet rigorous investigation of the safety of these interventions in the context of HIV associated TBM is required. We hypothesise that increased dose RIF, LZD and ASA used in combination and in addition to standard of care for the first 56 days of treatment with be safe and tolerated in HIV-1 infected people with TBM. Methods: In an open-label randomised parallel study, up to 100 participants will receive either; i) standard of care (n=40, control arm), ii) standard of care plus increased dose RIF (35mg/kg) and LZD (1200mg OD for 28 days, 600mg OD for 28 days) (n=30, experimental arm 1), or iii) as per experimental arm 1 plus additional ASA 1000mg OD (n=30, experimental arm 2). After 56 days participants will continue standard treatment as per national guidelines. The primary endpoint is death and the occurrence of solicited treatment-related adverse events at 56 days. In a planned pharmacokinetic (PK) sub-study we aim to assess PK/pharmacodynamic (PD) of oral vs IV rifampicin, describe LZD and RIF PK and cerebrospinal fluid concentrations, explore PK/PD relationships, and investigate drug-drug interactions between LZD and RIF. Safety and pharmacokinetic data from this study will inform a planned phase III study of intensified therapy in TBM. Clinicaltrials.gov registration: NCT03927313 (25/04/2019).

Keywords: Aspirin; HIV; Linezolid; Rifampicin; Tuberculous meningitis.

Conflict of interest statement

No competing interests were disclosed.

Copyright: © 2021 Davis AG et al.

Figures

Figure 1.. Study design schematic describing randomisation…
Figure 1.. Study design schematic describing randomisation to study arms, treatment intervention per am, visit schedule, overview of clinical procedures and timepoints relating to primary and secondary endpoint data collection.
RHZE: Rifampicin, Isoniazid, Pyrazinamide, Ethambutol; R 10: Rifampicin 10mg/kg/day; R 35: Rifampicin 35mg/kg/day; LZD: Linezolid; ASA; Aspirin.
Figure 2.. Schematic to describe second randomisation…
Figure 2.. Schematic to describe second randomisation to intravenous rifampicin (IV RIF).
All consenting LASER-TBM participants in experimental arms (n = 60) will undergo a second randomisation to receive either oral (35mg/kg) or IV (20mg/kg) RIF, together with linezolid (LZD) (with or without aspirin), at the time of study entry. The second randomisation will take place at the time of study entry, prior to receipt of study drug. Randomisation will be done in a 1:1 ratio using an electronic randomization tool, and fully integrated with main trial procedures). Due to the nature of the intervention, and because the outcome measure is a pharmacokinetic (PK) endpoint, allocation of IV versus oral RIF will be unblinded. Study drug will be stored at site pharmacies and administered as an infusion, in accordance with instructions in the package insert and trial standard operating procedures (SOP), by nursing staff of the trial.
Figure 3.. Schematic to summarise intensive pharmacokinetic…
Figure 3.. Schematic to summarise intensive pharmacokinetic (PK) sampling schedule.
All participants (n=100) will be offered participation in the intensive sampling component of the PK sub-study at the time of randomization to the main study. Intensive plasma sampling will take place at the Day 3 study visit. Serial venous blood samples will be collected through a peripheral intravenous catheter pre-dose, and at 0.5, 1, 2, 3, 6, 8 - 10, and 24 hours after witnessed drug intake and an overnight fast. Sparse sampling will be performed at Day 3 for participants who decline intensive sampling or in whom this fails.

References

    1. Marais S, Pepper DJ, Schutz C, et al. : Presentation and outcome of tuberculous meningitis in a high HIV prevalence setting. PLoS One. 2011;6(5):e20077. 10.1371/journal.pone.0020077
    1. Blanc FX, Sok T, Laureillard D, et al. : Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med. 2011;365(16):1471–81. 10.1056/NEJMoa1013911
    1. Torok ME, Yen NTB, Chau TTH, et al. : Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)-associated tuberculous meningitis. Clin Infect Dis. 2011;52(11):1374–83. 10.1093/cid/cir230
    1. Marais S, Meintjes G, Pepper DJ, et al. : Frequency, severity, and prediction of tuberculous meningitis immune reconstitution inflammatory syndrome. Clin Infect Dis. 2013;56(3):450–60. 10.1093/cid/cis899
    1. Thwaites GE, Nguyen DB, Nguyen HD, et al. : Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med. 2004;351(17):1741–51. 10.1056/NEJMoa040573
    1. Sotgiu G, Centis R, D'Ambrosio L, et al. : Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–42. 10.1183/09031936.00022912
    1. Schecter GF, Scott C, True L, et al. : Linezolid in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis. 2010;50(1):49–55. 10.1086/648675
    1. Migliori GB, Eker B, Richardson MD, et al. : A retrospective TBNET assessment of linezolid safety, tolerability and efficacy in multidrug-resistant tuberculosis. Eur Respir J. 2009;34(2):387–93. 10.1183/09031936.00009509
    1. Anger HA, Dworkin F, Sharma S, et al. : Linezolid use for treatment of multidrug-resistant and extensively drug-resistant tuberculosis, New York City, 2000-06. J Antimicrob Chemother. 2010;65(4):775–83. 10.1093/jac/dkq017
    1. Lee M, Lee J, Carroll MW, et al. : Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med. 2012;367(16):1508–18. 10.1056/NEJMoa1201964
    1. Singla R, Caminero JA, Jaiswal A, et al. : Linezolid: an effective, safe and cheap drug for patients failing multidrug-resistant tuberculosis treatment in India. Eur Respir J. 2012;39(4):956–62. 10.1183/09031936.00076811
    1. Nau R, Sorgel F, Eiffert H: Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83. 10.1128/CMR.00007-10
    1. Li H, Lu J, Liu J, et al. : Linezolid is Associated with Improved Early Outcomes of Childhood Tuberculous Meningitis. Pediatr Infect Dis J. 2016;35(6):607–10. 10.1097/INF.0000000000001114
    1. Sun F, Ruan Q, Wang J, et al. : Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother. 2014;58(10):6297–301. 10.1128/AAC.02784-14
    1. Zhang X, Falagas ME, Vardakas KZ, et al. : Systematic review and meta-analysis of the efficacy and safety of therapy with linezolid containing regimens in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis. J Thorac Dis. 2015;7(4):603–15. 10.3978/j.issn.2072-1439.2015.03.10
    1. Ahuja SD, Ashkin D, Avendano M, et al. : Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012;9(8):e1001300. 10.1371/journal.pmed.1001300
    1. Conradie F, Diacon AH, Ngubane N, et al. : Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med. 2020;382(10):893–902. 10.1056/NEJMoa1901814
    1. Bousser MG: Antithrombotic agents in the prevention of ischemic stroke. Cerebrovasc Dis. 2009;27 Suppl 3:12–9. 10.1159/000209261
    1. Hovens MM, Snoep JD, Groeneveld Y, et al. : Effects of aspirin on serum C-reactive protein and interleukin-6 levels in patients with type 2 diabetes without cardiovascular disease: a randomized placebo-controlled crossover trial. Diabetes Obes Metab. 2008;10(8):668–74. 10.1111/j.1463-1326.2007.00794.x
    1. Misra UK, Kalita J, Nair PP: Role of aspirin in tuberculous meningitis: a randomized open label placebo controlled trial. J Neurol Sci. 2010;293(1–2):12–7. 10.1016/j.jns.2010.03.025
    1. Schoeman JF, van Rensburg AJ, Laubscher JA, et al. : The role of aspirin in childhood tuberculous meningitis. J Child Neurol. 2011;26(8): 956–62. 10.1177/0883073811398132
    1. Mai NT, Dobbs N, Phu NH, et al. : A randomised double blind placebo controlled phase 2 trial of adjunctive aspirin for tuberculous meningitis in HIV-uninfected adults. Elife. 2018;7:e33478. 10.7554/eLife.33478
    1. Donald PR: Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis (Edinb). 2010;90(5):279–92. 10.1016/j.tube.2010.07.002
    1. van Ingen J, Aarnoutse RE, Donald PR, et al. : Why Do We Use 600 mg of Rifampicin in Tuberculosis Treatment? Clin Infect Dis. 2011;52(9):e194–9. 10.1093/cid/cir184
    1. Heemskerk AD, Bang ND, Mai NTH, et al. : Intensified Antituberculosis Therapy in Adults with Tuberculous Meningitis. N Engl J Med. 2016;374(2):124–34. 10.1056/NEJMoa1507062
    1. van Toorn R, Schaaf HS, Laubscher JA, et al. : Short intensified treatment in children with drug-susceptible tuberculous meningitis. Pediatr Infect Dis J. 2014;33(3):248–52. 10.1097/INF.0000000000000065
    1. Ruslami R, Ganiem AR, Dian S, et al. : Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis. 2013;13(1):27–35. 10.1016/S1473-3099(12)70264-5
    1. Boeree MJ, Diacon AH, Dawson R, et al. : A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191(9):1058–65. 10.1164/rccm.201407-1264OC
    1. Boeree MJ, Heinrich N, Aarnoutse R, et al. : High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17(1):39–49. 10.1016/S1473-3099(16)30274-2
    1. Aarnoutse RE, Kibiki GS, Reither K, et al. : Pharmacokinetics, Tolerability, and Bacteriological Response of Rifampin Administered at 600, 900, and 1,200 Milligrams Daily in Patients with Pulmonary Tuberculosis. Antimicrob Agents Chemother. 2017;61(11):e01054–17. 10.1128/AAC.01054-17
    1. de Steenwinkel JEM, Aarnoutse RE, de Knegt GJ, et al. : Optimization of the rifampin dosage to improve the therapeutic efficacy in tuberculosis treatment using a murine model. Am J Respir Crit Care Med. 2013;187(10):1127–34. 10.1164/rccm.201207-1210OC
    1. Steingart KR, Jotblad S, Robsky K, et al. : Higher-dose rifampin for the treatment of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis. 2011;15(3):305–16.
    1. Ruslami R, Ganiem AR, Aarnoutse RE, et al. : Rifampicin and moxifloxacin for tuberculous meningitis--authors' reply. Lancet Infect Dis. 2013;13(7):570. 10.1016/S1473-3099(13)70156-7
    1. Davis A: SPIRIT Checklist and Statistical Analysis Plan. figshare. Online resource. 2021. 10.6084/m9.figshare.14508561.v1
    1. Meintjes G, Lawn SD, Scano F, et al. : Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings. Lancet Infect Dis. 2008;8(8):516–23. 10.1016/S1473-3099(08)70184-1
    1. Marais S, Thwaites G, Schoeman JF, et al. : Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis. 2010;10(11):803–12. 10.1016/S1473-3099(10)70138-9
    1. Services, D.o.A.N.I.o.A.a.I.D.N.I.o.H.U.D.o.H.a.H: Division of AIDS (DAIDS) Table for Grading the Severity of Adult and Pediatric Adverse Events. Corrected Version 2.1. 2017.
    1. Nahid P, Dorman SE, Alipanah N, et al. : Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis. 2016;63(7):e147–e195. 10.1093/cid/ciw376
    1. Wasserman S, Davis A, Stek C, et al. : Plasma pharmacokinetics of high dose oral versus intravenous rifampicin in patients with tuberculous meningitis: a randomized controlled trial. medRxiv. 2021; 2021.02.11.21250624. 10.1101/2021.02.11.21250624
    1. Török ME, Yen NTB, Chau TTH, et al. : Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)--associated tuberculous meningitis. Clin Infect Dis. 2011;52(11):1374–83. 10.1093/cid/cir230
    1. Günthard HF, Saag MS, Benson CA, et al. : Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2016 Recommendations of the International Antiviral Society-USA Panel. JAMA. 2016;316(2):191–210. 10.1001/jama.2016.8900
    1. Meintjes G, Moorhouse MA, Carmona S, et al. : Adult antiretroviral therapy guidelines 2017. South Afr J HIV Med. 2017;18(1):a776. 10.4102/sajhivmed.v18i1.776
    1. Mahase E: GSK recalls ranitidine products over potential carcinogen contamination. BMJ. 2019;367:l5933. 10.1136/bmj.l5933
    1. Health SADo: National Tuberculosis Management Guidelines 2014.
    1. McArthur JH: The reliability and validity of the subjective peripheral neuropathy screen. J Assoc Nurses AIDS Care. 1998;9(4):84–94. 10.1016/S1055-3290(98)80048-4
    1. Cornblath DR, Chaudhry V, Carter K, et al. : Total neuropathy score: validation and reliability study. Neurology. 1999;53(8):1660–4. 10.1212/wnl.53.8.1660
    1. Evans SR, Clifford DB, Kitch DW, et al. : Simplification of the research diagnosis of HIV-associated sensory neuropathy. HIV Clin Trials. 2008;9(6):434–9. 10.1310/hct0906-434
    1. Robinson-Papp J, Gonzalez-Duarte A, Simpson DM, et al. : The roles of ethnicity and antiretrovirals in HIV-associated polyneuropathy: a pilot study. J Acquir Immune Defic Syndr. 2009;51(5):569–73. 10.1097/QAI.0b013e3181adcefa
    1. Maritz J, Benatar M, Dave JA, et al. : HIV neuropathy in South Africans: frequency, characteristics, and risk factors. Muscle Nerve. 2010;41(5):599–606. 10.1002/mus.21535
    1. Bastien CH, Vallières A, Morin CM: Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297–307. 10.1016/s1389-9457(00)00065-4
    1. Hoffmann C, Welz T, Sabranski M, et al. : Higher rates of neuropsychiatric adverse events leading to dolutegravir discontinuation in women and older patients. HIV Med. 2017;18(1):56–63. 10.1111/hiv.12468
    1. Nasreddine ZS, Phillips NA, Bédirian V, et al. : The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. 10.1111/j.1532-5415.2005.53221.x
    1. Robbins RN, Joska JA, Thomas KGF, et al. : Exploring the utility of the Montreal Cognitive Assessment to detect HIV-associated neurocognitive disorder: the challenge and need for culturally valid screening tests in South Africa. Clin Neuropsychol. 2013;27(3):437–54. 10.1080/13854046.2012.759627
    1. Rankin J: Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott Med J. 1957;2(5):200–15. 10.1177/003693305700200504
    1. van Swieten JC, Koudstaal PJ, Visser MC, et al. : Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19(5):604–7. 10.1161/01.str.19.5.604
    1. Saver JL, Filip B, Hamilton S, et al. : Improving the reliability of stroke disability grading in clinical trials and clinical practice: the Rankin Focused Assessment (RFA). Stroke. 2010;41(5):992–5. 10.1161/STROKEAHA.109.571364
    1. Chelune GJ, Heaton RK, Lehman RA: Advances in clinical : Springer.1986;95–126. 10.1007/978-1-4613-2211-5
    1. Lawton MP, Brody EM: Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179–86.
    1. Joska JA, Gouse H, Paul RH, et al. : Does highly active antiretroviral therapy improve neurocognitive function? A systematic review. J Neurovirol. 2010;16(2):101–14. 10.3109/13550281003682513
    1. U.S. Department of Health and Human Services, N.I.o.H., National Institute of Allergy and Infectious Diseases, Division of AIDS: Division of AIDS (DAIDS) Table for Grading the Severity of Adult and Pediatric Adverse Events.Corrected Version 2.1. 2017.
    1. : Linezolid Therapy of Brain Abscess. Pediatric Infectious Disease Journal .2010;29(11) : 10.1097/INF.0b013e3181f20ed5 1063-1064 10.1097/INF.0b013e3181f20ed5

Source: PubMed

3
Abonner