Freezing of gait in Parkinson's disease: pathophysiology, risk factors and treatments

Chao Gao, Jun Liu, Yuyan Tan, Shengdi Chen, Chao Gao, Jun Liu, Yuyan Tan, Shengdi Chen

Abstract

Background: Freezing of gait (FOG) is a common, disabling symptom of Parkinson's disease (PD), but the mechanisms and treatments of FOG remain great challenges for clinicians and researchers. The main focus of this review is to summarize the possible mechanisms underlying FOG, the risk factors for screening and predicting the onset of FOG, and the clinical trials involving various therapeutic strategies. In addition, the limitations and recommendations for future research design are also discussed.

Main body: In the mechanism section, we briefly introduced the physiological process of gait control and hypotheses about the mechanism of FOG. In the risk factor section, gait disorders, PIGD phenotype, lower striatal DAT uptake were found to be independent risk factors of FOG with consistent evidence. In the treatment section, we summarized the clinical trials of pharmacological and non-pharmacological treatments. Despite the limited effectiveness of current medications for FOG, especially levodopa resistant FOG, there were some drugs that showed promise such as istradefylline and rasagiline. Non-pharmacological treatments encompass invasive brain and spinal cord stimulation, noninvasive repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) and vagus nerve stimulation (VNS), and physiotherapeutic approaches including cues and other training strategies. Several novel therapeutic strategies seem to be effective, such as rTMS over supplementary motor area (SMA), dual-site DBS, spinal cord stimulation (SCS) and VNS. Of physiotherapy, wearable cueing devices seem to be generally effective and promising.

Conclusion: FOG model hypotheses are helpful for better understanding and characterizing FOG and they provide clues for further research exploration. Several risk factors of FOG have been identified, but need combinatorial optimization for predicting FOG more precisely. Although firm conclusions cannot be drawn on therapeutic efficacy, the literature suggested that some therapeutic strategies showed promise.

Keywords: Freezing of gait; Non-pharmacological treatment; Parkinson’s disease; Pathophysiology; Pharmacological treatment; Risk factor.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

© The Author(s) 2020.

References

    1. Giladi N, Nieuwboer A. Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov Disord. 2008;23(Suppl 2):S423–S425. doi: 10.1002/mds.21927.
    1. Bloem BR, Hausdorff JM, Visser JE, Giladi N. Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord. 2004;19(8):871–884. doi: 10.1002/mds.20115.
    1. Schaafsma JD, Balash Y, Gurevich T, Bartels AL, Hausdorff JM, Giladi N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J Neurol. 2003;10(4):391–398. doi: 10.1046/j.1468-1331.2003.00611.x.
    1. Okuma Y, Silva de Lima AL, Fukae J, Bloem BR, Snijders AH. A prospective study of falls in relation to freezing of gait and response fluctuations in Parkinson’s disease. Parkinsonism Relat Disord. 2018;46:30–35. doi: 10.1016/j.parkreldis.2017.10.013.
    1. Walton CC, Shine JM, Hall JM, O'Callaghan C, Mowszowski L, Gilat M, Szeto JY, Naismith SL, Lewis SJ. The major impact of freezing of gait on quality of life in Parkinson’s disease. J Neurol. 2015;262(1):108–115. doi: 10.1007/s00415-014-7524-3.
    1. Nutt JG, Bloem BR, Giladi N, Hallett M, Horak FB, Nieuwboer A. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10(8):734–744. doi: 10.1016/S1474-4422(11)70143-0.
    1. Mori S. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol. 1987;28(2):161–195. doi: 10.1016/0301-0082(87)90010-4.
    1. Snijders AH, Takakusaki K, Debu B, Lozano AM, Krishna V, Fasano A, Aziz TZ, Papa SM, Factor SA, Hallett M. Physiology of freezing of gait. Ann Neurol. 2016;80(5):644–659. doi: 10.1002/ana.24778.
    1. Brooks VB, Stoney SD., Jr Motor mechanisms: the role of the pyramidal system in motor control. Annu Rev Physiol. 1971;33:337–392. doi: 10.1146/annurev.ph.33.030171.002005.
    1. Takakusaki K. Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord. 2013;28(11):1483–1491. doi: 10.1002/mds.25669.
    1. Nieuwboer A, Giladi N. Characterizing freezing of gait in Parkinson’s disease: models of an episodic phenomenon. Mov Disord. 2013;28(11):1509–1519. doi: 10.1002/mds.25683.
    1. Plotnik M, Giladi N, Hausdorff JM. Is freezing of gait in Parkinson’s disease a result of multiple gait impairments? Implications for treatment. Parkinsons Dis. 2012;2012:459321.
    1. Lewis SJ, Barker RA. A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(5):333–338. doi: 10.1016/j.parkreldis.2008.08.006.
    1. Vandenbossche J, Deroost N, Soetens E, Coomans D, Spildooren J, Vercruysse S, Nieuwboer A, Kerckhofs E. Freezing of gait in Parkinson’s disease: disturbances in automaticity and control. Front Hum Neurosci. 2012;6:356.
    1. Jacobs JV, Nutt JG, Carlson-Kuhta P, Stephens M, Horak FB. Knee trembling during freezing of gait represents multiple anticipatory postural adjustments. Exp Neurol. 2009;215(2):334–341. doi: 10.1016/j.expneurol.2008.10.019.
    1. Kim R, Lee J, Kim HJ, Kim A, Jang M, Jeon B, Kang UJ. CSF beta-amyloid42 and risk of freezing of gait in early Parkinson disease. Neurology. 2019;92(1):e40–e47. doi: 10.1212/WNL.0000000000006692.
    1. Kim R, Lee J, Kim Y, Kim A, Jang M, Kim HJ, Jeon B, Kang UJ, Fahn S. Presynaptic striatal dopaminergic depletion predicts the later development of freezing of gait in de novo Parkinson’s disease: an analysis of the PPMI cohort. Parkinsonism Relat Disord. 2018;51:49–54. doi: 10.1016/j.parkreldis.2018.02.047.
    1. Ehgoetz Martens KA, Lukasik EL, Georgiades MJ, Gilat M, Hall JM, Walton CC, Lewis SJG. Predicting the onset of freezing of gait: a longitudinal study. Mov Disord. 2018;33(1):128–135. doi: 10.1002/mds.27208.
    1. Herman T, Shema-Shiratzky S, Arie L, Giladi N, Hausdorff JM. Depressive symptoms may increase the risk of the future development of freezing of gait in patients with Parkinson’s disease: findings from a 5-year prospective study. Parkinsonism Relat Disord. 2018;60:98–104.
    1. Giladi N, McDermott MP, Fahn S, Przedborski S, Jankovic J, Stern M, Tanner C, Parkinson Study G. Freezing of gait in PD: prospective assessment in the DATATOP cohort. Neurology. 2001;56(12):1712–1721. doi: 10.1212/WNL.56.12.1712.
    1. Forsaa EB, Larsen JP, Wentzel-Larsen T, Alves G. A 12-year population-based study of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(3):254–258. doi: 10.1016/j.parkreldis.2014.12.020.
    1. Zhang H, Yin X, Ouyang Z, Chen J, Zhou S, Zhang C, Pan X, Wang S, Yang J, Feng Y, et al. A prospective study of freezing of gait with early Parkinson disease in Chinese patients. Medicine. 2016;95(26):e4056. doi: 10.1097/MD.0000000000004056.
    1. Ou R, Wei Q, Cao B, Song W, Hou Y, Liu H, Yuan X, Zhao B, Wu Y, Shang H. Predictors of freezing of gait in Chinese patients with Parkinson’s disease. Brain Behav. 2018;8(3):e00931. doi: 10.1002/brb3.931.
    1. Banks SJ, Bayram E, Shan G, LaBelle DR, Bluett B. Non-motor predictors of freezing of gait in Parkinson’s disease. Gait Posture. 2019;68:311–316. doi: 10.1016/j.gaitpost.2018.12.009.
    1. Djaldetti R, Rigbi A, Greenbaum L, Reiner J, Lorberboym M. Can early dopamine transporter imaging serve as a predictor of Parkinson’s disease progression and late motor complications? J Neurol Sci. 2018;390:255–260. doi: 10.1016/j.jns.2018.05.006.
    1. Chung SJ, Lee YH, Yoo HS, Oh JS, Kim JS, Ye BS, Sohn YH, Lee PH. White matter hyperintensities as a predictor of freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2019;66:105–109. doi: 10.1016/j.parkreldis.2019.07.019.
    1. Macht M, Kaussner Y, Moller JC, Stiasny-Kolster K, Eggert KM, Kruger HP, Ellgring H. Predictors of freezing in Parkinson’s disease: a survey of 6,620 patients. Mov Disord. 2007;22(7):953–956. doi: 10.1002/mds.21458.
    1. Shulman LM. Is there a connection between estrogen and Parkinson’s disease? Parkinsonism Relat Disord. 2002;8(5):289–295. doi: 10.1016/S1353-8020(02)00014-7.
    1. Wilson RS, Yu L, Lamar M, Schneider JA, Boyle PA, Bennett DA. Education and cognitive reserve in old age. Neurology. 2019;92(10):e1041–e1050. doi: 10.1212/WNL.0000000000007036.
    1. Perez-Lloret S, Negre-Pages L, Damier P, Delval A, Derkinderen P, Destee A, Meissner WG, Schelosky L, Tison F, Rascol O. Prevalence, determinants, and effect on quality of life of freezing of gait in Parkinson disease. JAMA Neurol. 2014;71(7):884–890. doi: 10.1001/jamaneurol.2014.753.
    1. Osaki Y, Morita Y, Miyamoto Y, Furuta K, Furuya H. Freezing of gait is an early clinical feature of progressive supranuclear palsy. Neurol Clin Neurosci. 2017;5(3):86–90. doi: 10.1111/ncn3.12122.
    1. Giladi N, Treves TA, Simon ES, Shabtai H, Orlov Y, Kandinov B, Paleacu D, Korczyn AD. Freezing of gait in patients with advanced Parkinson’s disease. J Neural Transm (Vienna) 2001;108(1):53–61. doi: 10.1007/s007020170096.
    1. Giladi N, McMahon D, Przedborski S, Flaster E, Guillory S, Kostic V, Fahn S. Motor blocks in Parkinson’s disease. Neurology. 1992;42(2):333–339. doi: 10.1212/WNL.42.2.333.
    1. Garcia-Ruiz PJ, Del Val J, Fernandez IM, Herranz A. What factors influence motor complications in Parkinson disease?: a 10-year prospective study. Clin Neuropharmacol. 2012;35(1):1–5. doi: 10.1097/WNF.0b013e31823dec73.
    1. Lewis SJ, Shine JM. The next step: a common neural mechanism for freezing of gait. Neuroscientist. 2016;22(1):72–82. doi: 10.1177/1073858414559101.
    1. Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, Tamburin S. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis. 2016;2016:9832839.
    1. Rosenberg-Katz K, Herman T, Jacob Y, Giladi N, Hendler T, Hausdorff JM. Gray matter atrophy distinguishes between Parkinson disease motor subtypes. Neurology. 2013;80(16):1476–1484. doi: 10.1212/WNL.0b013e31828cfaa4.
    1. Zuo LJ, Piao YS, Li LX, Yu SY, Guo P, Hu Y, Lian TH, Wang RD, Yu QJ, Jin Z, et al. Phenotype of postural instability/gait difficulty in Parkinson disease: relevance to cognitive impairment and mechanism relating pathological proteins and neurotransmitters. Sci Rep. 2017;7:44872. doi: 10.1038/srep44872.
    1. Obeso JA, Rodriguez-Oroz M, Marin C, Alonso F, Zamarbide I, Lanciego JL, Rodriguez-Diaz M. The origin of motor fluctuations in Parkinson’s disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology. 2004;62(1 Suppl 1):S17–S30. doi: 10.1212/WNL.62.1_suppl_1.S17.
    1. Schlenstedt C, Muthuraman M, Witt K, Weisser B, Fasano A, Deuschl G. Postural control and freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2016;24:107–112. doi: 10.1016/j.parkreldis.2015.12.011.
    1. Duncan RP, Leddy AL, Cavanaugh JT, Dibble LE, Ellis TD, Ford MP, Foreman KB, Earhart GM. Balance differences in people with Parkinson disease with and without freezing of gait. Gait Posture. 2015;42(3):306–309. doi: 10.1016/j.gaitpost.2015.06.007.
    1. Morris ME, Iansek R, Galna B. Gait festination and freezing in Parkinson’s disease: pathogenesis and rehabilitation. Mov Disord. 2008;23(Suppl 2):S451–S460. doi: 10.1002/mds.21974.
    1. Bekkers EMJ, Dijkstra BW, Heremans E, Verschueren SMP, Bloem BR, Nieuwboer A. Balancing between the two: are freezing of gait and postural instability in Parkinson’s disease connected? Neurosci Biobehav Rev. 2018;94:113–125. doi: 10.1016/j.neubiorev.2018.08.008.
    1. Walton CC, Mowszowski L, Gilat M, Hall JM, O'Callaghan C, Muller AJ, Georgiades M, Szeto JYY, Ehgoetz Martens KA, Shine JM, et al. Cognitive training for freezing of gait in Parkinson’s disease: a randomized controlled trial. NPJ Parkinsons Dis. 2018;4:15. doi: 10.1038/s41531-018-0052-6.
    1. Ehgoetz Martens KA, Hall JM, Georgiades MJ, Gilat M, Walton CC, Matar E, Lewis SJG, Shine JM. The functional network signature of heterogeneity in freezing of gait. Brain. 2018;141(4):1145–1160. doi: 10.1093/brain/awy019.
    1. Alibiglou L, Videnovic A, Planetta PJ, Vaillancourt DE, MacKinnon CD. Subliminal gait initiation deficits in rapid eye movement sleep behavior disorder: a harbinger of freezing of gait? Mov Disord. 2016;31(11):1711–1719. doi: 10.1002/mds.26665.
    1. Ehgoetz Martens KA, Matar E, Hall JM, Phillips J, Szeto JYY, Gouelle A, Grunstein RR, Halliday GM, Lewis SJG. Subtle gait and balance impairments occur in idiopathic rapid eye movement sleep behavior disorder. Mov Disord. 2019;34(9):1374–1380. doi: 10.1002/mds.27780.
    1. Hershey LA, Lichter DG. Freezing of gait in PD has a REM correlate: twice cursed with a shared pathophysiology? Neurology. 2013;81(12):1026–1027. doi: 10.1212/WNL.0b013e3182a4a541.
    1. Liu Y, Zhu XY, Zhang XJ, Kuo SH, Ondo WG, Wu YC. Clinical features of Parkinson’s disease with and without rapid eye movement sleep behavior disorder. Transl Neurodegener. 2017;6:35. doi: 10.1186/s40035-017-0105-5.
    1. Ricciardi L, Ebreo M, Graziosi A, Barbuto M, Sorbera C, Morgante L, Morgante F. Speech and gait in Parkinson’s disease: when rhythm matters. Parkinsonism Relat Disord. 2016;32:42–47. doi: 10.1016/j.parkreldis.2016.08.013.
    1. Arena JE, Cerquetti D, Rossi M, Chaves H, Rollan C, Dossi DE, Merello M. Influence of white matter MRI hyper-intensities on acute l-dopa response in patients with Parkinson’s disease. Parkinsonism Relat Disord. 2016;24:126–128. doi: 10.1016/j.parkreldis.2016.01.017.
    1. Kotagal V, Albin RL, Muller ML, Koeppe RA, Frey KA, Bohnen NI. Modifiable cardiovascular risk factors and axial motor impairments in Parkinson disease. Neurology. 2014;82(17):1514–1520. doi: 10.1212/WNL.0000000000000356.
    1. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol. 2006;59(3):512–519. doi: 10.1002/ana.20730.
    1. Koehler PJ, Nonnekes J, Bloem BR. Freezing of gait before the introduction of levodopa. Lancet Neurol. 2019. 10.1016/S1474-4422(19)30091-2.
    1. Nonnekes J, Snijders AH, Nutt JG, Deuschl G, Giladi N, Bloem BR. Freezing of gait: a practical approach to management. Lancet Neurol. 2015;14(7):768–778. doi: 10.1016/S1474-4422(15)00041-1.
    1. Cossu G, Ricchi V, Pilleri M, Mancini F, Murgia D, Ricchieri G, Mereu A, Melis M, Antonini A. Levodopa-carbidopa intrajejunal gel in advanced Parkinson disease with “on” freezing of gait. Neurol Sci. 2015;36(9):1683–1686. doi: 10.1007/s10072-015-2234-x.
    1. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med. 2000;342(20):1484–1491. doi: 10.1056/NEJM200005183422004.
    1. Nieuwboer A, Rochester L, Herman T, Vandenberghe W, Emil GE, Thomaes T, Giladi N. Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson’s disease and their carers. Gait Posture. 2009;30(4):459–463. doi: 10.1016/j.gaitpost.2009.07.108.
    1. Fietzek UM, Zwosta J, Schroeteler FE, Ziegler K, Ceballos-Baumann AO. Levodopa changes the severity of freezing in Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(10):894–896. doi: 10.1016/j.parkreldis.2013.04.004.
    1. Nyholm D, Lewander T, Johansson A, Lewitt PA, Lundqvist C, Aquilonius SM. Enteral levodopa/carbidopa infusion in advanced Parkinson disease: long-term exposure. Clin Neuropharmacol. 2008;31(2):63–73. doi: 10.1097/WNF.0b013e3180ed449f.
    1. Devos D, French DSG. Patient profile, indications, efficacy and safety of duodenal levodopa infusion in advanced Parkinson’s disease. Mov Disord. 2009;24(7):993–1000. doi: 10.1002/mds.22450.
    1. Zibetti M, Angrisano S, Dematteis F, Artusi CA, Romagnolo A, Merola A, Lopiano L. Effects of intestinal levodopa infusion on freezing of gait in Parkinson disease. J Neurol Sci. 2018;385:105–108. doi: 10.1016/j.jns.2017.12.012.
    1. Valldeoriola F, Grandas F, Santos-Garcia D, Regidor I, Catalan MJ, Arbelo JM, Puente V, Mir P, Parra JC. Long-term effectiveness of levodopa-carbidopa intestinal gel in 177 Spanish patients with advanced Parkinson’s disease. Neurodegener Dis Manag. 2016;6(4):289–298. doi: 10.2217/nmt-2016-0021.
    1. Sensi M, Preda F, Trevisani L, Contini E, Gragnaniello D, Capone JG, Sette E, Golfre-Andreasi N, Tugnoli V, Tola MR, et al. Emerging issues on selection criteria of levodopa carbidopa infusion therapy: considerations on outcome of 28 consecutive patients. J Neural Transm (Vienna) 2014;121(6):633–642. doi: 10.1007/s00702-013-1153-3.
    1. Vijiaratnam N, Hewer S, Varley S, Paul E, Bertram KL, Lee W, Ligtermoet M, Williams DR. Levodopa-carbidopa intestinal gel: is the naso-jejunal phase a redundant convention? Intern Med J. 2018;48(4):469–471. doi: 10.1111/imj.13754.
    1. Chang FC, Tsui DS, Mahant N, Wolfe N, Kim SD, Ha AD, Drury M, Griffith JM, Fung VS. 24 h Levodopa-carbidopa intestinal gel may reduce falls and “unresponsive” freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(3):317–320. doi: 10.1016/j.parkreldis.2014.12.019.
    1. Kano O, Ikeda K, Kiyozuka T, Iwamoto K, Ito H, Kawase Y, Sato R, Fujioka T, Araki Y, Baba S, et al. Beneficial effect of pramipexole for motor function and depression in Parkinson’s disease. Neuropsychiatr Dis Treat. 2008;4(4):707–710.
    1. Ikeda K, Hirayama T, Takazawa T, Kawabe K, Iwasaki Y. Transdermal patch of rotigotine attenuates freezing of gait in patients with Parkinson’s disease: an open-label comparative study of three non-ergot dopamine receptor agonists. Intern Med (Tokyo, Japan) 2016;55(19):2765–2769. doi: 10.2169/internalmedicine.55.6808.
    1. Vaamonde Gamo J, Cabello JP, Gallardo Alcaniz MJ, Flores Barragan JM, Carrasco Garcia de Leon S, Ibanez Alonso RE. Freezing of gait unresponsive to dopaminergic stimulation in patients with severe Parkinsonism. Neurologia (Barcelona, Spain) 2010;25(1):27–31. doi: 10.1016/S0213-4853(10)70019-0.
    1. Iijima M, Mitoma H, Uchiyama S, Kitagawa K. Long-term monitoring gait analysis using a wearable device in daily lives of patients with Parkinson’s disease: the efficacy of Selegiline hydrochloride for gait disturbance. Front Neurol. 2017;8:542. doi: 10.3389/fneur.2017.00542.
    1. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, Tolosa E, group Ls Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet. 2005;365(9463):947–954. doi: 10.1016/S0140-6736(05)71083-7.
    1. Cibulcik F, Benetin J, Kurca E, Grofik M, Dvorak M, Richter D, Donath V, Kothaj J, Minar M, Valkovic P. Effects of rasagiline on freezing of gait in Parkinson’s disease - an open-label, multicenter study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160(4):549–552. doi: 10.5507/bp.2016.023.
    1. Rahimi F, Roberts AC, Jog M. Patterns and predictors of freezing of gait improvement following rasagiline therapy: a pilot study. Clin Neurol Neurosurg. 2016;150:117–124. doi: 10.1016/j.clineuro.2016.08.025.
    1. Moreau C, Delval A, Defebvre L, Dujardin K, Duhamel A, Petyt G, Vuillaume I, Corvol JC, Brefel-Courbon C, Ory-Magne F, et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol. 2012;11(7):589–596. doi: 10.1016/S1474-4422(12)70106-0.
    1. Devos D, Krystkowiak P, Clement F, Dujardin K, Cottencin O, Waucquier N, Ajebbar K, Thielemans B, Kroumova M, Duhamel A, et al. Improvement of gait by chronic, high doses of methylphenidate in patients with advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(5):470–475. doi: 10.1136/jnnp.2006.100016.
    1. Pollak L, Dobronevsky Y, Prohorov T, Bahunker S, Rabey JM. Low dose methylphenidate improves freezing in advanced Parkinson’s disease during off-state. J Neural Transm Suppl. 2007;72:145–148. doi: 10.1007/978-3-211-73574-9_17.
    1. Espay AJ, Dwivedi AK, Payne M, Gaines L, Vaughan JE, Maddux BN, Slevin JT, Gartner M, Sahay A, Revilla FJ, et al. Methylphenidate for gait impairment in Parkinson disease: a randomized clinical trial. Neurology. 2011;76(14):1256–1262. doi: 10.1212/WNL.0b013e3182143537.
    1. Matsuura K, Kajikawa H, Tabei KI, Satoh M, Kida H, Nakamura N, Tomimoto H. The effectiveness of istradefylline for the treatment of gait deficits and sleepiness in patients with Parkinson’s disease. Neurosci Lett. 2018;662:158–161. doi: 10.1016/j.neulet.2017.10.018.
    1. Iijima M, Orimo S, Terashi H, Suzuki M, Hayashi A, Shimura H, Mitoma H, Kitagawa K, Okuma Y. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson’s disease: a single-arm, open-label, prospective, multicenter study. Expert Opin Pharmacother. 2019;20(11):1405–1411. doi: 10.1080/14656566.2019.1614167.
    1. Takahashi M, Tabu H, Ozaki A, Hamano T, Takeshima T, group Rs. Antidepressants for depression, apathy, and gait instability in Parkinson’s disease: a multicenter randomized study. Intern Med (Tokyo, Japan). 2018;58(3):361–8.
    1. Fukada K, Endo T, Yokoe M, Hamasaki T, Hazama T, Sakoda S. L-threo-3,4-dihydroxyphenylserine (L-DOPS) co-administered with entacapone improves freezing of gait in Parkinson’s disease. Med Hypotheses. 2013;80(2):209–212. doi: 10.1016/j.mehy.2012.11.031.
    1. Tohgi H, Abe T, Takahashi S. The effects of L-threo-3,4-dihydroxyphenylserine on the total norepinephrine and dopamine concentrations in the cerebrospinal fluid and freezing gait in parkinsonian patients. J Neural Transm Park Dis Dement Sect. 1993;5(1):27–34. doi: 10.1007/BF02260912.
    1. Malkani R, Zadikoff C, Melen O, Videnovic A, Borushko E, Simuni T. Amantadine for freezing of gait in patients with Parkinson disease. Clin Neuropharmacol. 2012;35(6):266–268. doi: 10.1097/WNF.0b013e31826e3406.
    1. Lee JY, Oh S, Kim JM, Kim JS, Oh E, Kim HT, Jeon BS, Cho JW. Intravenous amantadine on freezing of gait in Parkinson’s disease: a randomized controlled trial. J Neurol. 2013;260(12):3030–3038. doi: 10.1007/s00415-013-7108-7.
    1. Kim YE, Yun JY, Jeon BS. Effect of intravenous amantadine on dopaminergic-drug-resistant freezing of gait. Parkinsonism Relat Disord. 2011;17(6):491–492. doi: 10.1016/j.parkreldis.2011.03.010.
    1. Kim YE, Yun JY, Yang HJ, Kim HJ, Gu N, Yoon SH, Cho JY, Jeon BS. Intravenous amantadine for freezing of gait resistant to dopaminergic therapy: a randomized, double-blind, placebo-controlled, cross-over clinical trial. PLoS One. 2012;7(11):e48890. doi: 10.1371/journal.pone.0048890.
    1. Jankovic J. Atomoxetine for freezing of gait in Parkinson disease. J Neurol Sci. 2009;284(1-2):177–178. doi: 10.1016/j.jns.2009.03.022.
    1. Revuelta GJ, Embry A, Elm JJ, Gregory C, Delambo A, Kautz S, Hinson VK. Pilot study of atomoxetine in patients with Parkinson’s disease and dopa-unresponsive freezing of gait. Transl Neurodegener. 2015;4:24. doi: 10.1186/s40035-015-0047-8.
    1. Litvinenko IV, Odinak MM, Mogil'naia VI, Emelin A. Efficacy and safety of galantamine (reminyl) in the treatment of dementia in patients with Parkinson’s disease (open-label controlled trial) Zh Nevrol Psikhiatr Im S S Korsakova. 2007;107(12):25–33.
    1. Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Close JC, Whone AL, Ben-Shlomo Y. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):249–258. doi: 10.1016/S1474-4422(15)00389-0.
    1. Gurevich T, Peretz C, Moore O, Weizmann N, Giladi N. The effect of injecting botulinum toxin type a into the calf muscles on freezing of gait in Parkinson’s disease: a double blind placebo-controlled pilot study. Mov Disord. 2007;22(6):880–883. doi: 10.1002/mds.21396.
    1. Wieler M, Camicioli R, Jones CA, Martin WR. Botulinum toxin injections do not improve freezing of gait in Parkinson disease. Neurology. 2005;65(4):626–628. doi: 10.1212/01.wnl.0000172930.63669.c8.
    1. Giladi N, Gurevich T, Shabtai H, Paleacu D, Simon ES. The effect of botulinum toxin injections to the calf muscles on freezing of gait in parkinsonism: a pilot study. J Neurol. 2001;248(7):572–576. doi: 10.1007/s004150170134.
    1. Vastik M, Hok P, Hlustik P, Otruba P, Tudos Z, Kanovsky P. Botulinum toxin treatment of freezing of gait in Parkinson’s disease patients as reflected in functional magnetic resonance imaging of leg movement. Neuro Endocrinol Lett. 2016;37(2):147–153.
    1. Fernandez HH, Lannon MC, Trieschmann ME, Friedman JH. Botulinum toxin type B for gait freezing in Parkinson’s disease. Med Sci Monit. 2004;10(7):Cr282–Cr284.
    1. Amboni M, Stocchi F, Abbruzzese G, Morgante L, Onofrj M, Ruggieri S, Tinazzi M, Zappia M, Attar M, Colombo D, et al. Prevalence and associated features of self-reported freezing of gait in Parkinson disease: the DEEP FOG study. Parkinsonism Relat Disord. 2015;21(6):644–649. doi: 10.1016/j.parkreldis.2015.03.028.
    1. Espay AJ, Fasano A, van Nuenen BF, Payne MM, Snijders AH, Bloem BR. “On” state freezing of gait in Parkinson disease: a paradoxical levodopa-induced complication. Neurology. 2012;78(7):454–457. doi: 10.1212/WNL.0b013e3182477ec0.
    1. Olanow CW, Kieburtz K, Odin P, Espay AJ, Standaert DG, Fernandez HH, Vanagunas A, Othman AA, Widnell KL, Robieson WZ, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014;13(2):141–149. doi: 10.1016/S1474-4422(13)70293-X.
    1. Fernandez HH, Standaert DG, Hauser RA, Lang AE, Fung VS, Klostermann F, Lew MF, Odin P, Steiger M, Yakupov EZ, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: final 12-month, open-label results. Mov Disord. 2015;30(4):500–509. doi: 10.1002/mds.26123.
    1. Serrao M, Ranavolo A, Conte C, Davassi C, Mari S, Fasano A, Chini G, Coppola G, Draicchio F, Pierelli F. Effect of 24-h continuous rotigotine treatment on stationary and non-stationary locomotion in de novo patients with Parkinson disease in an open-label uncontrolled study. J Neurol. 2015;262(11):2539–2547. doi: 10.1007/s00415-015-7883-4.
    1. Ondo W, Hunter C, Almaguer M, Gancher S, Jankovic J. Efficacy and tolerability of a novel sublingual apomorphine preparation in patients with fluctuating Parkinson’s disease. Clin Neuropharmacol. 1999;22(1):1–4. doi: 10.1097/00002826-199901000-00001.
    1. Brodsky MA, Park BS, Nutt JG. Effects of a dopamine agonist on the pharmacodynamics of levodopa in Parkinson disease. Arch Neurol. 2010;67(1):27–32. doi: 10.1001/archneurol.2009.287.
    1. Shoulson I, Oakes D, Fahn S, Lang A, Langston JW, LeWitt P, Olanow CW, Penney JB, Tanner C, Kieburtz K, et al. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann Neurol. 2002;51(5):604–612. doi: 10.1002/ana.10191.
    1. Zhang Z, Wang J, Chen S, Liu C, Zhang B, Peng R, Sun S, Sun X, Zhao G, Qu Q, et al. Efficacy and safety of rasagiline in Chinese patients with early Parkinson’s disease: a randomized, double-blind, parallel, placebo-controlled, fixed-dose study. Transl Neurodegener. 2018;7:32. doi: 10.1186/s40035-018-0137-5.
    1. Zhang Z, Shao M, Chen S, Liu C, Peng R, Li Y, Wang J, Zhu S, Qu Q, Zhang X, et al. Adjunct rasagiline to treat Parkinson’s disease with motor fluctuations: a randomized, double-blind study in China. Transl Neurodegener. 2018;7:14. doi: 10.1186/s40035-018-0119-7.
    1. Stern MB, Marek KL, Friedman J, Hauser RA, LeWitt PA, Tarsy D, Olanow CW. Double-blind, randomized, controlled trial of rasagiline as monotherapy in early Parkinson’s disease patients. Mov Disord. 2004;19(8):916–923. doi: 10.1002/mds.20145.
    1. Kitagawa M, Houzen H, Tashiro K. Effects of caffeine on the freezing of gait in Parkinson’s disease. Mov Disord. 2007;22(5):710–712. doi: 10.1002/mds.21208.
    1. LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM, Group USS Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005) Ann Neurol. 2008;63(3):295–302. doi: 10.1002/ana.21315.
    1. Bohnen NI, Frey KA, Studenski S, Kotagal V, Koeppe RA, Constantine GM, Scott PJ, Albin RL, Muller ML. Extra-nigral pathological conditions are common in Parkinson’s disease with freezing of gait: an in vivo positron emission tomography study. Mov Disord. 2014;29(9):1118–1124. doi: 10.1002/mds.25929.
    1. Pinto de Souza C, Hamani C, Oliveira Souza C, Lopez Contreras WO, Dos Santos Ghilardi MG, Cury RG, Reis Barbosa E, Jacobsen Teixeira M, Talamoni Fonoff E. Spinal cord stimulation improves gait in patients with Parkinson’s disease previously treated with deep brain stimulation. Mov Disord. 2017;32(2):278–282. doi: 10.1002/mds.26850.
    1. Samotus O, Parrent A, Jog M. Spinal cord stimulation therapy for gait dysfunction in advanced Parkinson’s disease patients. Mov Disord. 2018;33(5):783–92.
    1. Jacobs JV, Lou JS, Kraakevik JA, Horak FB. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson’s disease. Neuroscience. 2009;164(2):877–885. doi: 10.1016/j.neuroscience.2009.08.002.
    1. Takakusaki K, Habaguchi T, Ohtinata-Sugimoto J, Saitoh K, Sakamoto T. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience. 2003;119(1):293–308. doi: 10.1016/S0306-4522(03)00095-2.
    1. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1–17. doi: 10.14802/jmd.16062.
    1. Brudzynski SM, Wu M, Mogenson GJ. Decreases in rat locomotor activity as a result of changes in synaptic transmission to neurons within the mesencephalic locomotor region. Can J Physiol Pharmacol. 1993;71(5-6):394–406. doi: 10.1139/y93-060.
    1. de Lima-Pardini AC, Coelho DB, Souza CP, Souza CO, Ghilardi M, Garcia T, Voos M, Milosevic M, Hamani C, Teixeira LA, et al. Effects of spinal cord stimulation on postural control in Parkinson’s disease patients with freezing of gait. Elife. 2018;7. 10.7554/eLife.37727.
    1. Fonoff ET, de Lima-Pardini AC, Coelho DB, Monaco BA, Machado B, Pinto de Souza C, Dos Santos Ghilardi MG, Hamani C. Spinal cord stimulation for freezing of gait: from bench to bedside. Front Neurol. 2019;10:905. doi: 10.3389/fneur.2019.00905.
    1. Schlenstedt C, Shalash A, Muthuraman M, Falk D, Witt K, Deuschl G. Effect of high-frequency subthalamic neurostimulation on gait and freezing of gait in Parkinson’s disease: a systematic review and meta-analysis. Eur J Neurol. 2017;24(1):18–26. doi: 10.1111/ene.13167.
    1. Zibetti M, Merola A, Rizzi L, Ricchi V, Angrisano S, Azzaro C, Artusi CA, Arduino N, Marchisio A, Lanotte M, et al. Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov Disord. 2011;26(13):2327–2334. doi: 10.1002/mds.23903.
    1. Rizzone MG, Fasano A, Daniele A, Zibetti M, Merola A, Rizzi L, Piano C, Piccininni C, Romito LM, Lopiano L, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord. 2014;20(4):376–381. doi: 10.1016/j.parkreldis.2014.01.012.
    1. Li J, Zhang Y, Li Y. Long-term follow-up of bilateral subthalamic nucleus stimulation in Chinese Parkinson’s disease patients. Br J Neurosurg. 2015;29(3):329–333. doi: 10.3109/02688697.2014.997665.
    1. Krause M, Fogel W, Mayer P, Kloss M, Tronnier V. Chronic inhibition of the subthalamic nucleus in Parkinson’s disease. J Neurol Sci. 2004;219(1-2):119–124. doi: 10.1016/j.jns.2004.01.004.
    1. Davis JT, Lyons KE, Pahwa R. Freezing of gait after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Clin Neurol Neurosurg. 2006;108(5):461–464. doi: 10.1016/j.clineuro.2005.07.008.
    1. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349(20):1925–1934. doi: 10.1056/NEJMoa035275.
    1. Visser-Vandewalle V, van der Linden C, Temel Y, Celik H, Ackermans L, Spincemaille G, Caemaert J. Long-term effects of bilateral subthalamic nucleus stimulation in advanced Parkinson disease: a four year follow-up study. Parkinsonism Relat Disord. 2005;11(3):157–165. doi: 10.1016/j.parkreldis.2004.10.011.
    1. Ferraye MU, Debu B, Fraix V, Xie-Brustolin J, Chabardes S, Krack P, Benabid AL, Pollak P. Effects of subthalamic nucleus stimulation and levodopa on freezing of gait in Parkinson disease. Neurology. 2008;70(16 Pt 2):1431–1437. doi: 10.1212/01.wnl.0000310416.90757.85.
    1. Niu L, Ji LY, Li JM, Zhao DS, Huang G, Liu WP, Qu Y, Ma LT, Ji XT. Effect of bilateral deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson’s disease. J Int Med Res. 2012;40(3):1108–1113. doi: 10.1177/147323001204000330.
    1. Vercruysse S, Vandenberghe W, Munks L, Nuttin B, Devos H, Nieuwboer A. Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson’s disease: a prospective controlled study. J Neurol Neurosurg Psychiatry. 2014;85(8):871–877. doi: 10.1136/jnnp-2013-306336.
    1. Adams C, Keep M, Martin K, McVicker J, Kumar R. Acute induction of levodopa-resistant freezing of gait upon subthalamic nucleus electrode implantation. Parkinsonism Relat Disord. 2011;17(6):488–490. doi: 10.1016/j.parkreldis.2011.02.014.
    1. van Nuenen BF, Esselink RA, Munneke M, Speelman JD, van Laar T, Bloem BR. Postoperative gait deterioration after bilateral subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord. 2008;23(16):2404–2406. doi: 10.1002/mds.21986.
    1. Fleury V, Pollak P, Gere J, Tommasi G, Romito L, Combescure C, Bardinet E, Chabardes S, Momjian S, Krainik A, et al. Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait. Mov Disord. 2016;31(9):1389–1397. doi: 10.1002/mds.26545.
    1. Kim R, Kim HJ, Kim A, Kim Y, Kim AR, Shin CW, Paek SH, Jeon B. Depression may negatively affect the change in freezing of gait following subthalamic nucleus stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2017;44:133–136. doi: 10.1016/j.parkreldis.2017.08.016.
    1. Moreau C, Defebvre L, Destee A, Bleuse S, Clement F, Blatt JL, Krystkowiak P, Devos D. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology. 2008;71(2):80–84. doi: 10.1212/01.wnl.0000303972.16279.46.
    1. Xie T, Vigil J, MacCracken E, Gasparaitis A, Young J, Kang W, Bernard J, Warnke P, Kang UJ. Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology. 2015;84(4):415–420. doi: 10.1212/WNL.0000000000001184.
    1. Xie T, Bloom L, Padmanaban M, Bertacchi B, Kang W, MacCracken E, Dachman A, Vigil J, Satzer D, Zadikoff C, et al. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. J Neurol Neurosurg Psychiatry. 2018;89(9):989–994. doi: 10.1136/jnnp-2018-318060.
    1. Phibbs FT, Arbogast PG, Davis TL. 60-Hz frequency effect on gait in Parkinson’s disease with subthalamic nucleus deep brain stimulation. Neuromodulation. 2014;17(8):717–720. doi: 10.1111/ner.12131.
    1. Sidiropoulos C, Walsh R, Meaney C, Poon YY, Fallis M, Moro E. Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson’s disease. J Neurol. 2013;260(9):2306–2311. doi: 10.1007/s00415-013-6983-2.
    1. Xie T, Padmanaban M, Bloom L, MacCracken E, Bertacchi B, Dachman A, Warnke P. Effect of low versus high frequency stimulation on freezing of gait and other axial symptoms in Parkinson patients with bilateral STN DBS: a mini-review. Transl Neurodegener. 2017;6:13. doi: 10.1186/s40035-017-0083-7.
    1. Xie T, Kang UJ. Comments on the recent viewpoint article on low-frequency deep brain stimulation for Parkinson’s disease. Mov Disord. 2017;32(1):176. doi: 10.1002/mds.26861.
    1. Chen S, Gao G, Feng T, Zhang J, Chinese Medical Association Neurosurgery Branch of Functional Neurosurgery G, Chinese Medical Association Neurology Branch of Parkinson’s D, Movement Disorders G, Chinese Physician Association Neurosurgeon Branch of Functional Neurosurgery Expert C, Chinese Physician Association Neurologist Branch of Parkinson’s D, Movement Disorders Professional C et al. Chinese expert consensus on programming deep brain stimulation for patients with Parkinson’s disease. Transl Neurodegener. 2018;7:11. doi: 10.1186/s40035-018-0116-x.
    1. Mestre TA, Sidiropoulos C, Hamani C, Poon YY, Lozano AM, Lang AE, Moro E. Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Mov Disord. 2016;31(10):1570–1574. doi: 10.1002/mds.26710.
    1. Thevathasan W, Debu B, Aziz T, Bloem BR, Blahak C, Butson C, Czernecki V, Foltynie T, Fraix V, Grabli D, et al. Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease: a clinical review. Mov Disord. 2018;33(1):10–20. doi: 10.1002/mds.27098.
    1. Welter ML, Demain A, Ewenczyk C, Czernecki V, Lau B, El Helou A, Belaid H, Yelnik J, Francois C, Bardinet E, et al. PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J Neurol. 2015;262(6):1515–1525. doi: 10.1007/s00415-015-7744-1.
    1. Thevathasan W, Cole MH, Graepel CL, Hyam JA, Jenkinson N, Brittain JS, Coyne TJ, Silburn PA, Aziz TZ, Kerr G, et al. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. Brain. 2012;135(Pt 5):1446–1454. doi: 10.1093/brain/aws039.
    1. Thevathasan W, Coyne TJ, Hyam JA, Kerr G, Jenkinson N, Aziz TZ, Silburn PA. Pedunculopontine nucleus stimulation improves gait freezing in Parkinson disease. Neurosurgery. 2011;69(6):1248–1253. doi: 10.1227/NEU.0b013e31822b6f71.
    1. Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO, Hutchison WD, Lozano AM. Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain. 2010;133(Pt 1):215–224. doi: 10.1093/brain/awp261.
    1. Ferraye MU, Debu B, Fraix V, Goetz L, Ardouin C, Yelnik J, Henry-Lagrange C, Seigneuret E, Piallat B, Krack P, et al. Effects of pedunculopontine nucleus area stimulation on gait disorders in Parkinson’s disease. Brain. 2010;133(Pt 1):205–214. doi: 10.1093/brain/awp229.
    1. Thevathasan W, Pogosyan A, Hyam JA, Jenkinson N, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, et al. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain. 2012;135(Pt 1):148–160. doi: 10.1093/brain/awr315.
    1. Weiss D, Walach M, Meisner C, Fritz M, Scholten M, Breit S, Plewnia C, Bender B, Gharabaghi A, Wachter T, et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain. 2013;136(Pt 7):2098–2108. doi: 10.1093/brain/awt122.
    1. Valldeoriola F, Munoz E, Rumia J, Roldan P, Camara A, Compta Y, Marti MJ, Tolosa E. Simultaneous low-frequency deep brain stimulation of the substantia nigra pars reticulata and high-frequency stimulation of the subthalamic nucleus to treat levodopa unresponsive freezing of gait in Parkinson’s disease: a pilot study. Parkinsonism Relat Disord. 2019;60:153–157. doi: 10.1016/j.parkreldis.2018.09.008.
    1. Farrand AQ, Helke KL, Gregory RA, Gooz M, Hinson VK, Boger HA. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson’s disease. Brain Stimul. 2017;10(6):1045–1054. doi: 10.1016/j.brs.2017.08.008.
    1. Mondal B, Choudhury S, Simon B, Baker MR, Kumar H. Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson’s disease. Mov Disord. 2019;34(6):917–918. doi: 10.1002/mds.27662.
    1. Kim YW, Shin IS, Moon HI, Lee SC, Yoon SY. Effects of non-invasive brain stimulation on freezing of gait in Parkinsonism: a systematic review with meta-analysis. Parkinsonism Relat Disord. 2019;64:82–89. doi: 10.1016/j.parkreldis.2019.02.029.
    1. Mi TM, Garg S, Ba F, Liu AP, Wu T, Gao LL, Dan XJ, Chan P, McKeown MJ. High-frequency rTMS over the supplementary motor area improves freezing of gait in Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord. 2019;68:85–90. doi: 10.1016/j.parkreldis.2019.10.009.
    1. Kim SJ, Paeng SH, Kang SY. Stimulation in supplementary motor area versus motor cortex for freezing of gait in Parkinson’s disease. J Clin Neurol. 2018;14(3):320–326. doi: 10.3988/jcn.2018.14.3.320.
    1. Valentino F, Cosentino G, Brighina F, Pozzi NG, Sandrini G, Fierro B, Savettieri G, D'Amelio M, Pacchetti C. Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study. Mov Disord. 2014;29(8):1064–1069. doi: 10.1002/mds.25897.
    1. Dagan M, Herman T, Harrison R, Zhou J, Giladi N, Ruffini G, Manor B, Hausdorff JM. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov Disord. 2018;33(4):642–646. doi: 10.1002/mds.27300.
    1. Lu C, Amundsen Huffmaster SL, Tuite PJ, MacKinnon CD. The effects of anodal tDCS over the supplementary motor area on gait initiation in Parkinson’s disease with freezing of gait: a pilot study. J Neurol. 2018;265(9):2023–2032. doi: 10.1007/s00415-018-8953-1.
    1. Nieuwboer A, Kwakkel G, Rochester L, Jones D, van Wegen E, Willems AM, Chavret F, Hetherington V, Baker K, Lim I. Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J Neurol Neurosurg Psychiatry. 2007;78(2):134–140. doi: 10.1136/jnnp.200X.097923.
    1. Barthel C, Nonnekes J, van Helvert M, Haan R, Janssen A, Delval A, Weerdesteyn V, Debu B, van Wezel R, Bloem BR, et al. The laser shoes: a new ambulatory device to alleviate freezing of gait in Parkinson disease. Neurology. 2018;90(2):e164–e171. doi: 10.1212/WNL.0000000000004795.
    1. McCandless PJ, Evans BJ, Janssen J, Selfe J, Churchill A, Richards J. Effect of three cueing devices for people with Parkinson’s disease with gait initiation difficulties. Gait Posture. 2016;44:7–11. doi: 10.1016/j.gaitpost.2015.11.006.
    1. Zhao Y, Nonnekes J, Storcken EJ, Janssen S, van Wegen EE, Bloem BR, Dorresteijn LD, van Vugt JP, Heida T, van Wezel RJ. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson’s disease. J Neurol. 2016;263(6):1156–1165. doi: 10.1007/s00415-016-8115-2.
    1. Sweeney D, Quinlan LR, Browne P, Richardson M, Meskell P, ÓLaighin G. A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease. Sensors (Basel). 2019;19(6). 10.3390/s19061277.
    1. Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P. Rehabilitation treatment of gait in patients with Parkinson’s disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov Disord. 2009;24(8):1139–1143. doi: 10.1002/mds.22491.
    1. Cheng FY, Yang YR, Wu YR, Cheng SJ, Wang RY. Effects of curved-walking training on curved-walking performance and freezing of gait in individuals with Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord. 2017;43:20–26. doi: 10.1016/j.parkreldis.2017.06.021.
    1. Lo AC, Chang VC, Gianfrancesco MA, Friedman JH, Patterson TS, Benedicto DF. Reduction of freezing of gait in Parkinson’s disease by repetitive robot-assisted treadmill training: a pilot study. J Neuroeng Rehabil. 2010;7:51. doi: 10.1186/1743-0003-7-51.
    1. Barbe MT, Cepuran F, Amarell M, Schoenau E, Timmermann L. Long-term effect of robot-assisted treadmill walking reduces freezing of gait in Parkinson’s disease patients: a pilot study. J Neurol. 2013;260(1):296–298. doi: 10.1007/s00415-012-6703-3.
    1. Pilleri M, Weis L, Zabeo L, Koutsikos K, Biundo R, Facchini S, Rossi S, Masiero S, Antonini A. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease. J Neurol Sci. 2015;355(1-2):75–78. doi: 10.1016/j.jns.2015.05.023.
    1. Zhu Z, Yin M, Cui L, Zhang Y, Hou W, Li Y, Zhao H. Aquatic obstacle training improves freezing of gait in Parkinson’s disease patients: a randomized controlled trial. Clin Rehabil. 2018;32(1):29–36. doi: 10.1177/0269215517715763.
    1. Santos L, Fernandez-Rio J, Winge K, Barragan-Perez B, Rodriguez-Perez V, Gonzalez-Diez V, Blanco-Traba M, Suman OE, Philip Gabel C, Rodriguez-Gomez J. Effects of supervised slackline training on postural instability, freezing of gait, and falls efficacy in people with Parkinson’s disease. Disabil Rehabil. 2017;39(16):1573–1580. doi: 10.1080/09638288.2016.1207104.
    1. Stummer C, Dibilio V, Overeem S, Weerdesteyn V, Bloem BR, Nonnekes J. The walk-bicycle: a new assistive device for Parkinson’s patients with freezing of gait? Parkinsonism Relat Disord. 2015;21(7):755–757. doi: 10.1016/j.parkreldis.2015.04.025.
    1. Agosta F, Gatti R, Sarasso E, Volonte MA, Canu E, Meani A, Sarro L, Copetti M, Cattrysse E, Kerckhofs E, et al. Brain plasticity in Parkinson’s disease with freezing of gait induced by action observation training. J Neurol. 2017;264(1):88–101. doi: 10.1007/s00415-016-8309-7.
    1. Pelosin E, Avanzino L, Bove M, Stramesi P, Nieuwboer A, Abbruzzese G. Action observation improves freezing of gait in patients with Parkinson’s disease. Neurorehabil Neural Repair. 2010;24(8):746–752. doi: 10.1177/1545968310368685.
    1. Cosentino C, Baccini M, Putzolu M, Ristori D, Avanzino L, Pelosin E. Effectiveness of physiotherapy on freezing of gait in Parkinson’s disease: a systematic review and meta-analyses. Mov Disord. 2019. 10.1002/mds.27936.

Source: PubMed

3
Abonner