The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia

Rowan A Radford, Marco Morsch, Stephanie L Rayner, Nicholas J Cole, Dean L Pountney, Roger S Chung, Rowan A Radford, Marco Morsch, Stephanie L Rayner, Nicholas J Cole, Dean L Pountney, Roger S Chung

Abstract

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two progressive, fatal neurodegenerative syndromes with considerable clinical, genetic and pathological overlap. Clinical symptoms of FTD can be seen in ALS patients and vice versa. Recent genetic discoveries conclusively link the two diseases, and several common molecular players have been identified (TDP-43, FUS, C9ORF72). The definitive etiologies of ALS and FTD are currently unknown and both disorders lack a cure. Glia, specifically astrocytes and microglia are heavily implicated in the onset and progression of neurodegeneration witnessed in ALS and FTD. In this review, we summarize the current understanding of the role of microglia and astrocytes involved in ALS and FTD, highlighting their recent implications in neuroinflammation, alterations in waste clearance involving phagocytosis and the newly described glymphatic system, and vascular abnormalities. Elucidating the precise mechanisms of how astrocytes and microglia are involved in ALS and FTD will be crucial in characterizing these two disorders and may represent more effective interventions for disease progression and treatment options in the future.

Keywords: amyotrophic lateral sclerosis; astrocyte; frontotemporal dementia; glymphatic; microglia; neuroinflammation; phagocytosis; vasculature.

Figures

Figure 1
Figure 1
Genetic and pathological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). (A) Familial and sporadic genetic mutations were linked to the clinical phenotypes on the ALS (blue) and FTD (red) spectrum. Genes are plotted according to their hypothesized mechanism in relation to disease (top to bottom). (B) Pathological protein inclusions are a hallmark of ALS and FTD, reflecting the significant overlap on the disease spectrum. FUS (Red) and TDP-43 (Blue) inclusions are found in both ALS and FTD. Predominate SOD1 (Pink) and Tau (Green) is more indicative of ALS and FTD respectively. FTD-UPS (Yellow) is found in ~1% of cases and represent cases of familial CHMP2B mutations.
Figure 2
Figure 2
Phagocytic dysfunction and the glymphatic pathway and its (potential) involvement in ALS and FTD. (A) Three genes (TREM2, GRN and PFN1) which link microglial phagocytic dysfunction to ALS and FTD and their effect on microglial phenotype. All three are predicted loss of function mutations which decrease the phagocytic capacity of microglia. Depending on the type of mutation/s to these genes different neurodegenerative conditions can arise, while variants cause increase risk of developing neurodegenerative conditions or worsen prognosis. Neuronal Ceroid Lipofuscinosis is a type of neurodegenerative lysosomal disorder which has been reported in patients PRGN null patients (Petkau and Leavitt, 2014). AD, Alzheimer’s disease; PD, Parkinson’s disease; MS, multiple sclerosis. (B) In the normal CNS, CSF circulates in a perivascular compartment driven by arterial pulse pressure. Astrocytic endfeet cover the perivascular space and facilitate movement of CSF into the parenchyma largely via AQP4. This fluid flow through the interstitial space allows the removal of debris from the extracellular space before draining into venous perivascular compartments. Microglia also remove potentially toxic waste via phagocytosis and dysfunctional microglial phagocytosis is linked to ALS and FTD pathogenesis (see A). In the CNS of ALS and FTD patients, glymphatic function and microglial phagocytosis may be compromised and contribute to neurodegeneration. Reactive astrocytes conceivably lose AQP4 polarization and express it elsewhere. This may lead to turbulent flow through the interstitium. Cerebral vascular function is reduced in patients which could potentially lead to decreased pressure for glymphatic function. A, astrocytes; M, microglia; N, neuron; CSF, cerebrospinal fluid.

References

    1. Abbott N. J., Ronnback L., Hansson E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53. 10.1007/978-1-61779-452-0_34
    1. Al-Chalabi A., Jones A., Troakes C., King A., Al-Sarraj S., Van Den Berg L. (2012). The genetics and neuropathology of amyotrophic lateral sclerosis. Acta. Neuropathol. 124, 339–352. 10.1007/s00401-012-1022-4
    1. Argaw A. T., Asp L., Zhang J., Navrazhina K., Pham T., Mariani J. N., et al. . (2012). Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122, 2454–2468. 10.1172/JCI60842
    1. Asai T., Tomita Y., Nakatsuka S. I., Hoshida Y., Myoui A., Yoshikawa H., et al. . (2002). VCP (p97) Regulates NFKB Signaling Pathway, Which Is Important for Metastasis of Osteosarcoma Cell Line. Jpn. J. Cancer Res. 93, 296–304. 10.1111/j.1349-7006.2002.tb02172.x
    1. Aspelund A., Antila S., Proulx S. T., Karlsen T. V., Karaman S., Detmar M., et al. . (2015). A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999. 10.1084/jem.20142290
    1. Bataveljić D., Nikolić L., Milosević M., Todorović N., Andjus P. R. (2012). Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1G93A rat model. Glia 60, 1991–2003. 10.1002/glia.22414
    1. Bennion Callister J., Pickering-Brown S. M. (2014). Pathogenesis/genetics of frontotemporal dementia and how it relates to ALS. Exp. Neurol. 262, 84–90. 10.1016/j.expneurol.2014.06.001
    1. Bertel O., Malessa S., Sluga E., Hornykiewicz O. (1991). Amyotrophic lateral sclerosis: changes of noradrenergic and serotonergic transmitter systems in the spinal cord. Brain Res. 566, 54–60. 10.1016/0006-8993(91)91680-y
    1. Bi F., Huang C., Tong J., Qiu G., Huang B., Wu Q., et al. . (2013). Reactive astrocytes secrete lcn2 to promote neuron death. Proc. Natl. Acad. Sci. U S A 110, 4069–4074. 10.1073/pnas.1218497110
    1. Borroni B., Ferrari F., Galimberti D., Nacmias B., Barone C., Bagnoli S., et al. . (2014). Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiol. Aging. 35, 934.e7–934.e10. 10.1016/j.neurobiolaging.2013.09.017
    1. Brettschneider J., Libon D., Toledo J., Xie S., Mccluskey L., Elman L., et al. . (2012). Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta. Neuropathol. 123, 395–407. 10.1007/s00401-011-0932-x
    1. Brooks B. R., Zielger M. G., Lake C. R., Wood J. H., Enna S. J., Engel W. K. (1980). Cerebrospinal fluid norepinephrine and free γ-aminobutyric acid in amyotrophic lateral sclerosis. Brain Res. Bull. 5, 765–768. 10.1016/0361-9230(80)90126-4
    1. Cady J., Koval E. D., Benitez B. A., Zaidman C., Jockel-Balsarotti J., Allred P., et al. . (2014). The TREM2 variant p.R47H is a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol. 71, 449–453. 10.1001/jamaneurol.2013.6237
    1. Cagnin A., Rossor M., Sampson E. L., Mackinnon T., Banati R. B. (2004). In vivo detection of microglial activation in frontotemporal dementia. Ann. Neurol. 56, 894–897. 10.1002/ana.20332
    1. Chapouly C., Tadesse Argaw A., Horng S., Castro K., Zhang J., Asp L., et al. . (2015). Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain 138, 1548–1567. 10.1093/brain/awv077
    1. Chen H., Qian K., Chen W., Hu B., Blackbourn L. W., Du Z., et al. . (2015). Human-derived neural progenitors functionally replace astrocytes in adult mice. J. Clin. Invest. 125, 1033–1042. 10.1172/jci69097
    1. Chiò A., Pagani M., Agosta F., Calvo A., Cistaro A., Filippi M. (2014). Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet. Neurol. 13, 1228–1240. 10.1016/S1474-4422(14)70167-X
    1. Chung W. S., Clarke L. E., Wang G. X., Stafford B. K., Sher A., Chakraborty C., et al. . (2013). Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394–400. 10.1038/nature12776
    1. Colonna M. (2003). TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453. 10.1038/nri1106
    1. Corcia P., Tauber C., Vercoullie J., Arlicot N., Prunier C., Praline J., et al. . (2012). Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS ONE 7:e52941. 10.1371/journal.pone.0052941
    1. Davis C. H. O., Kim K. Y., Bushong E. A., Mills E. A., Boassa D., Shih T., et al. . (2014). Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. U S A 111, 9633–9638. 10.1073/pnas.1404651111
    1. De Reuck J., Deramecourt V., Cordonnier C., Auger F., Durieux N., Bordet R., et al. . (2012). Detection of microbleeds in post-mortem brains of patients with frontotemporal lobar degeneration: a 7.0-Tesla magnetic resonance imaging study with neuropathological correlates. Eur. J. Neurol. 19, 1355–1360. 10.1111/j.1468-1331.2012.03776.x
    1. Deretic V., Saitoh T., Akira S. (2013). Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737. 10.1016/b978-0-12-801043-3.00031-5
    1. Di Giorgio F. P., Carrasco M. A., Siao M. C., Maniatis T., Eggan K. (2007). Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608–614. 10.3410/f.1087760.540674
    1. Dickson D. W., Kouri N., Murray M. E., Josephs K. A. (2011). Neuropathology of frontotemporal lobar degeneration-tau (FTLD-Tau). J. Mol. Neurosci. 45, 384–389.
    1. Dong J. H., Ying G. X., Zhou C. F. (2004). Entorhinal deafferentation induces the expression of profilin mRNA in the reactive microglial cells in the hippocampus. Glia 47, 102–108. 10.1002/glia.10355
    1. Du A. T., Jahng G. H., Hayasaka S., Kramer J. H., Rosen H. J., Gorno-Tempini M. L., et al. . (2006). Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67, 1215–1220. 10.1212/01.wnl.0000238163.71349.78
    1. Duran A., Linares J. F., Galvez A. S., Wikenheiser K., Flores J. M., Diaz-Meco M. T., et al. . (2008). The signaling adaptor p62 is an important NF-κB mediator in tumorigenesis. Cancer Cell 13, 343–354. 10.1016/j.ccr.2008.02.001
    1. Engelborghs S., Vloeberghs E., Le Bastard N., Van Buggenhout M., Mariën P., Somers N., et al. . (2008). The dopaminergic neurotransmitter system is associated with aggression and agitation in frontotemporal dementia. Neurochem. Int. 52, 1052–1060. 10.1016/j.jalz.2008.05.1962
    1. Frakes A. E., Ferraiuolo L., Haidet-Phillips A. M., Schmelzer L., Braun L., Miranda C. J., et al. . (2014). Microglia induce motor neuron death via the classical NF-κB pathway in amyotrophic lateral sclerosis. Neuron 81, 1009–1023. 10.1016/j.neuron.2014.01.013
    1. Freischmidt A., Wieland T., Richter B., Ruf W., Schaeffer V., Muller K., et al. . (2015). Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631–636. 10.1038/nn.4000
    1. Garbuzova-Davis S., Hernandez-Ontiveros D. G., Rodrigues M. C. O., Haller E., Frisina-Deyo A., Mirtyl S., et al. . (2012). Impaired blood-brain/spinal cord barrier in ALS patients. Brain Res. 1469, 114–128. 10.1016/j.brainres.2012.05.056
    1. Greenway M. J., Andersen P. M., Russ C., Ennis S., Cashman S., Donaghy C., et al. . (2006). ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat. Genet. 38, 411–413. 10.3410/f.1031679.373763
    1. Guerreiro R., Lohmann E., Brás J. (2013). Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 70, 78–84. 10.1001/jamaneurol.2013.579
    1. Haidet-Phillips A. M., Hester M. E., Miranda C. J., Meyer K., Braun L., Frakes A., et al. . (2011). Astrocytes from Familial and Sporadic ALS Patients are Toxic to Motor Neurons. Nat. Biotechnol. 29, 824–828. 10.1038/nbt.1957
    1. Hardiman O., Van Den Berg L. H., Kiernan M. C. (2011). Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat. Rev. Neurol. 7, 639–649. 10.1038/nrneurol.2011.153
    1. Harms M., Cady J., Koval E., Benitez B., Zaidman C., Jockel-Balsarotti J., et al. (2014). The trem2 variant p.R47h is a risk factor for sporadic amyotrophic lateral sclerosis (I5-2.002). Neurol. 82, I5-2.002.
    1. Huang C., Huang B., Bi F., Yan L. H., Tong J., Huang J., et al. . (2014). Profiling the genes affected by pathogenic TDP-43 in astrocytes. J. Neurochem. 129, 932–939. 10.1111/jnc.12660
    1. Iguchi Y., Katsuno M., Niwa J. I., Takagi S., Ishigaki S., Ikenaka K., et al. . (2013). Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain 136, 1371–1382. 10.1093/brain/awt029
    1. Ilieva H., Polymenidou M., Cleveland D. W. (2009). Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772. 10.1083/jcb.200908164
    1. Iliff J. J., Chen M. J., Plog B. A., Zeppenfeld D. M., Soltero M., Yang L., et al. . (2014). Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 34, 16180–16193. 10.1523/jneurosci.3020-14.2014
    1. Iliff J. J., Wang M., Liao Y., Plogg B. A., Peng W., Gundersen G. A., et al. . (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111. 10.1126/scitranslmed.3003748
    1. Iliff J. J., Wang M., Zeppenfeld D. M., Venkataraman A., Plog B. A., Liao Y., et al. . (2013). Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33, 18190–18199. 10.1523/jneurosci.1592-13.2013
    1. Jessen N., Munk A., Lundgaard I., Nedergaard M. (2015). The glymphatic system: a beginner’s guide. Neurochem. Res. [Epub ahead of print]. 10.1007/s11064-015-1581-6
    1. Kaneko M., Sano K., Nakayama J., Amano N. (2010). Nasu-Hakola disease: The first case reported by Nasu and review: The 50th anniversary of japanese society of neuropathology. Neuropathol. 30, 463–470. 10.1111/j.1440-1789.2010.01127.x
    1. Kiernan M. C., Vucic S., Cheah B. C., Turner M. R., Eisen A., Hardiman O., et al. . (2011). Amyotrophic lateral sclerosis. Lancet 377, 942–955. 10.1016/S0140-6736(10)61156-7
    1. Kim J. G., Moon M. Y., Kim H. J., Li Y., Song D. K., Kim J. S., et al. . (2012). Ras-related GTPases Rap1 and RhoA Collectively Induce the Phagocytosis of Serum-opsonized Zymosan Particles in Macrophages. J. Biol. Chem. 287, 5145–5155. 10.1074/jbc.m111.257634
    1. Kleinberger G., Yamanishi Y., Suárez-Calvet M., Czirr E., Lohmann E., Cuyvers E., et al. . (2014). TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 6, 243ra286. 10.1126/scitranslmed.3009093
    1. Kondo T., Funayama M., Tsukita K., Hotta A., Yasuda A., Nori S., et al. . (2014). Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice. Stem Cell Reports 3, 242–249. 10.1016/j.stemcr.2014.05.017
    1. Kress B. T., Iliff J. J., Xia M., Wang M., Wei H. S., Zeppenfeld D., et al. . (2014). Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76, 845–861. 10.1002/ana.24271
    1. Lagier-Tourenne C., Cleveland D. W. (2009). Rethinking ALS: the FUS about TDP-43. Cell 136, 1001–1004. 10.1016/j.cell.2009.03.006
    1. Lambrechts D., Storkebaum E., Morimoto M., Del-Favero J., Desmet F., Marklund S. L., et al. . (2003). VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. 34, 383–394. 10.3410/f.1014424.193513
    1. Lee S., Park J. Y., Lee W. H., Kim H., Park H. C., Mori K., et al. . (2009). Lipocalin-2 Is an Autocrine Mediator of Reactive Astrocytosis. J. Neurosci. 29, 234–249. 10.1523/jneurosci.5273-08.2009
    1. Ling S. C., Polymenidou M., Cleveland D. W. (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438. 10.1016/j.neuron.2013.07.033
    1. Louveau A., Smirnov I., Keyes T. J., Eccles J. D., Rouhani S. J., Peske J. D., et al. . (2015). Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341. 10.3410/f.725528187.793507666
    1. Mackenzie I. R. A., Rademakers R., Neumann M. (2010). TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007. 10.1016/s1474-4422(10)70195-2
    1. Marik J., Ogasawara A., Martin-Mcnulty B., Ross J., Flores J. E., Gill H. S., et al. . (2009). PET of glial metabolism using 2-18F-fluoroacetate. J. Nucl. Med. 50, 982–990. 10.2967/jnumed.108.057356
    1. Martin J. A., Craft D. K., Su J. H., Kim R. C., Cotman C. W. (2001). Astrocytes degenerate in frontotemporal dementia: possible relation to hypoperfusion. Neurobiol. Aging. 22, 195–207. 10.1016/s0197-4580(00)00231-1
    1. Meyer K., Ferraiuolo L., Miranda C. J., Likhite S., Mcelroy S., Renusch S., et al. . (2014). Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc. Natl. Acad. Sci. U S A 111, 829–832. 10.1073/pnas.1314085111
    1. Migheli A., Piva R., Atzori C., Troost D., Schiffer D. (1997). c-Jun, JNK/SAPK kinase and transcription factor NF-κB are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 56, 1314–1322. 10.1097/00005072-199712000-00006
    1. Minami S. S., Min S. W., Krabbe G., Wang C., Zhou Y., Asgarov R., et al. . (2014). Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat. Med. 20, 1157–1164. 10.1038/nm.3672
    1. Nagai M., Re D. B., Nagata T., Chalazonitis A., Jessell T. M., Wichterle H., et al. . (2007). Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622. 10.1038/nn1876
    1. Neumann H., Kotter M. R., Franklin R. J. M. (2009). Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132, 288–295. 10.1093/brain/awn109
    1. Ng A. S. L., Rademakers R., Miller B. L. (2015). Frontotemporal dementia: a bridge between dementia and neuromuscular disease. Ann. N. Y. Acad. Sci. 1338, 71–93. 10.1111/nyas.12638
    1. Oosthuyse B., Moons L., Storkebaum E., Beck H., Nuyens D., Brusselmans K., et al. (2001). Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138. 10.1038/88842
    1. Ouyang Y., Tinianow J. N., Cherry S. R., Marik J. (2014). Evaluation of 2-[lsqb]18F[rsqb]fluoroacetate kinetics in rodent models of cerebral hypoxia-ischemia. J. Cereb. Blood Flow. Metab. 34, 836–844. 10.1038/jcbfm.2014.22
    1. Papadopoulos M. C., Verkman A. S. (2013). Aquaporin water channels in the nervous system. Nat. Rev. Neurosci. 14, 265–277. 10.1038/nrn3468
    1. Paukert M., Agarwal A., Cha J., Doze V. A., Kang J. U., Bergles D. E. (2014). Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82, 1263–1270. 10.1016/j.neuron.2014.04.038
    1. Pearson A. M., Baksa K., Rämet M., Protas M., Mckee M., Brown D., et al. . (2003). Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect. 5, 815–824. 10.1016/s1286-4579(03)00157-6
    1. Petkau T. L., Leavitt B. R. (2014). Progranulin in neurodegenerative disease. Trends Neurosci. 37, 388–398. 10.1016/j.tins.2014.04.003
    1. Petkau T. L., Neal S. J., Orban P. C., Macdonald J. L., Hill A. M., Lu G., et al. . (2010). Progranulin expression in the developing and adult murine brain. J. Comp. Neurol. 518, 3931–3947. 10.1002/cne.22430
    1. Philips T., Robberecht W. (2011). Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet. Neurol. 10, 253–263. 10.1016/s1474-4422(11)70015-1
    1. Pickford F., Marcus J., Camargo L. M., Xiao Q., Graham D., Mo J. R., et al. . (2011). Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am. J. Pathol. 178, 284–295. 10.1016/j.ajpath.2010.11.002
    1. Piguet O., Hornberger M., Mioshi E., Hodges J. R. (2011). Behavioural-variant frontotemporal dementia: diagnosis, clinical staging and management. Lancet. Neurol. 10, 162–172. 10.1016/S1474-4422(10)70299-4
    1. Pomerantz J. L., Baltimore D. (1999). NF-kappaB; activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO. J. 18, 6694–6704. 10.1093/emboj/18.23.6694
    1. Ravits J. (2014). Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Exp. Neurol. 262, 121–126. 10.1016/j.expneurol.2014.07.021
    1. Ravits J., Appel S., Baloh R. H., Barohn R., Brooks B. R., Elman L., et al. . (2013). Deciphering amyotrophic lateral sclerosis: What phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph. Lateral Scler. Frontotemporal Degener. 14, 5–18. 10.3109/21678421.2013.778548
    1. Rayaprolu S., Mullen B., Baker M., Lynch T., Finger E., Seeley W., et al. . (2013). TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol. Neurodegener. 8, 19. 10.1186/1750-1326-8-19
    1. Re D. B., Le verche V., Yu C., Amoroso M. W., Politi K. A., Phani S., et al. . (2014). Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron. 81, 1001–1008. 10.1016/j.neuron.2014.01.011
    1. Renton A. E., Chio A., Traynor B. J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23. 10.1038/nn.3584
    1. Robberecht W., Philips T. (2013). The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264. 10.1038/nrn3430
    1. Roberson E. D. (2012). Mouse models of frontotemporal dementia. Ann. Neurol. 72, 837–849. 10.1002/ana.23722
    1. Seto S., Tsujimura K., Horii T., Koide Y. (2013). Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to mycobacterium tuberculosis infection in dendritic cells. PLoS ONE 8:e86017. 10.1371/journal.pone.0086017
    1. Sieben A., Van Langenhove T., Engelborghs S., Martin J. J., Boon P., Cras P., et al. . (2012). The genetics and neuropathology of frontotemporal lobar degeneration. Acta. Neuropathol. 124, 353–372. 10.1007/s00401-012-1029-x
    1. Skorupa A., King M. A., Aparicio I. M., Dussmann H., Coughlan K., Breen B., et al. . (2012). Motoneurons secrete angiogenin to induce RNA cleavage in astroglia. J. Neurosci. 32, 5024–5038. 10.1523/jneurosci.6366-11.2012
    1. Skorupa A., Urbach S., Vigy O., King M. A., Chaumont-Dubel S., Prehn J. H. M., et al. . (2013). Angiogenin induces modifications in the astrocyte secretome: Relevance to amyotrophic lateral sclerosis. J. Proteomics 91, 274–285. 10.1016/j.jprot.2013.07.028
    1. Streit W., Mrak R., Griffin W. S. (2004). Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation 1, 14. 10.1385/1-59259-297-x:003
    1. Swarup V., Phaneuf D., Bareil C., Robertson J., Rouleau G. A., Kriz J., et al. . (2011a). Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain 134, 2610–2626. 10.1093/brain/awr159
    1. Swarup V., Phaneuf D., Dupré N., Petri S., Strong M., Kriz J., et al. . (2011b). Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. J. Exp. Med. 208, 2429–2447. 10.1084/jem.20111313
    1. Thrane V. R., Thrane A. S., Plog B. A., Thiyagarajan M., Iliff J. J., Deane R., et al. . (2013). Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci. Rep. 3, 2582. 10.1038/srep02582
    1. Thrash J. C., Torbett B. E., Carson M. J. (2009). Developmental Regulation of TREM2 and DAP12 Expression in the Murine CNS: Implications for Nasu-Hakola Disease. Neurochem. Res. 34, 38–45. 10.1007/s11064-008-9657-1
    1. Tong J., Huang C., Bi F., Wu Q., Huang B., Liu X., et al. . (2013). Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. Embo. J. 32, 1917–1926.10.1038/emboj.2013.122
    1. Tresse E., Salomons F. A., Vesa J., Bott L. C., Kimonis V., Yao T. P., et al. . (2010). VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6, 217–227. 10.4161/auto.6.2.11014
    1. van Es M. A., Schelhaas H. J., Van Vught P. W. J., Ticozzi N., Andersen P. M., Groen E. J. N., et al. . (2011). Angiogenin variants in Parkinson disease and amyotrophic lateral Sclerosis-like. Ann. Neurol. 70, 964–973. 10.1002/ana.22611
    1. Wang Y., Cella M., Mallinson K., Ulrich J. D., Young K. L., Robinette M. L., et al. . (2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease modelling. Cell 160, 1061–1071. 10.1016/j.cell.2015.01.049
    1. Winkler E. A., Sengillo J. D., Sagare A. P., Zhao Z., Ma Q., Zuniga E., et al. . (2014). Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model Mice. Proc. Natl. Acad. Sci. USA 111, E1035–E1042. 10.1073/pnas.1401595111
    1. Wu C. H., Fallini C., Ticozzi N., Keagle P. J., Sapp P. C., Piotrowska K., et al. . (2012a). Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature 488, 499–503. 10.1038/nature11280
    1. Wu L. S., Cheng W. C., Shen C. K. J. (2012b). Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J. Biol. Chem. 287, 27335–27344. 10.1074/jbc.m112.359000
    1. Xavier A. L., Menezes J. R. L., Goldman S. A., Nedergaard M. (2014). Fine-tuning the central nervous system: microglial modelling of cells and synapses. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130593. 10.1098/rstb.2013.0593
    1. Xie L., Kang H., Xu Q., Chen M. J., Liao Y., Thiyagarajan M., et al. . (2013). Sleep Drives Metabolite Clearance from the Adult Brain. Science 342, 373–377. 10.1126/science.1241224
    1. Yang C., Wang H., Qiao T., Yang B., Aliaga L., Qiu L., et al. . (2014). Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U S A 111, E1121–E1129. 10.1073/pnas.1322641111
    1. Yang L., Kress B. T., Weber H. J., Thiyagarajan M., Wang B., Deane R., et al. . (2013). Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J. Transl. Med. 11, 107–107. 10.1186/1479-5876-11-107
    1. Zamanian J. L., Xu L., Foo L. C., Nouri N., Zhou L., Giffard R. G., et al. . (2012). Genomic analysis of reactive astrogliosis. J. Neurosci. 32, 6391–6410. 10.1523/JNEUROSCI.6221-11.2012
    1. Zhang Y., Chen K., Sloan S. A., Bennett M. L., Scholze A. R., O’keeffe S., et al. . (2014). An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons and Vascular Cells of the Cerebral Cortex. J. Neurosci. 34, 11929–11947. 10.1523/JNEUROSCI.1860-14.2014
    1. Zhong Z., Deane R., Ali Z., Parisi M., Shapovalov Y., O’banion K., et al. . (2008). ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat. Neurosci. 11, 420–422. 10.1038/nn2073
    1. Zhu G., Wu C. J., Zhao Y., Ashwell J. D. (2007). Optineurin negatively regulates TNFα- induced NF-κB activation by competing with NEMO for ubiquitinated RIP. Curr. Biol. 17, 1438–1443. 10.1016/j.cub.2007.07.041

Source: PubMed

3
Abonner